
GLASNIK MATEMATIČKI
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SPLINE COLLOCATION METHOD FOR SINGULAR
PERTURBATION PROBLEM

Mirjana Stojanović

University of Novi Sad, Yugoslavia

Abstract. We introduce piecewise interpolating polynomials as an
approximation for the driving terms in the numerical solution of the singu-
larly perturbed differential equation. In this way we obtain the difference
scheme which is second order accurate in uniform norm. We verify the
convergence rate of presented scheme by numerical experiments.

1. Introduction

There are a lot of difference schemes trying to solve thin-layer phenomena
in 1D and 2D. The layers are caused by a dominating convection or advection
term, or by singularly perturbed behaviour. The aim is to find better nu-
merical techniques for singular perturbation problems, convection-dominated
flows, reaction-diffusion problems, etc. A number of new books appear on
that subject ([8, 9, 13]).

Further development of collocation techniques are towards PDEs singu-
larly perturbed in 2D. The study of numerical behaviour of the solution of a
nonlinear reaction diffusion equations with one source term (heat equation)
arise in plasma physics for the computation. Sufficient conditions of blow up
is obtained for the numerical solution as for the exact solution in [14]. The
stability and the convergence of the scheme is proved.

ε-uniform numerical methods are constructed for a class of semilinear
problems by classical finite difference operator on special piecewise-uniform
meshes (cf. [6]).

New direction in application of splines in solving singularly perturbed
problems is spline-wavelet decomposition of corresponding Sobolev spaces
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based on a special point value vanishing property of basis functions, a con-
struction of fast discrete wavelet transform, using collocation method (cf. [3]).

The former approaches include fitted finite difference methods, finite el-
ement methods using exponential elements and method which uses a pri-
ori refined or special meshes. Development of these fields goes to different
schemes for boundary layer away from boundary layer with rectangular meshes
and their combinations in 2D. Also, the fitted finite difference operators on
piecewise-uniform, say, Shishkin meshes are used in [7]. Then, the solutions
with two sharp layers are considered: boundary layer and spike layer solution
(cf. [4]).

Singularly perturbed PDEs are all pervasive in applications of mathemat-
ics to problems in the sciences and engineering, say Navier-Stokes equations
of fluid flow at high Reynolds number, the drift-diffusion equations of semi-
conductor device physics, etc. Classical methods are inadequate for solving
those problems when ε is very small.

The main point in the numerical computations in 2D appear to exibit
blow up solutions or what is the most important global solutions of the Euler
and Navier-Stokes equations, but extreme numerical instability appear near
the blow up time and it is difficult to find reliable conclusions. The above
results are the subject of [2]. Thus, the numerical solutions of Navier-Stokes
and Euler equations are the challenges of new millennium. It is necessary to
make substantial progress in that field.

Thus, the new directions in solving boundary value problems are PDEs
in 2D or more in 3D and new techniques more adequate for very small ε.

In this paper we revise an old technique spline collocation technique for
singular perturbation problem in 1D to obtain optimal difference scheme in
uniform norm, with respect to small parameter ε. O’Riordan and Stynes in
[10, 11, 12, 15] are introduced piecewise constants on each subinterval [xi−1, xi]
as an approximation for the functions p(x) and f(x) in singularly perturbed
differential equation in one dimension. In this paper we use quadratic interpo-
lating splines instead of piecewise constants as an approximation for function
f(x).

2. Scheme generation

Consider the following two-point boundary value problem

(1) Lu ≡ −εu′′ + p(x)u = f(x), u(0) = α0, u(1) = α1

0 < ε << 1, α0, α1 are given constants, functions p(x) and f(x) are smooth
enough and satisfy p(x) ≥ β > 0 for x ∈ [0, 1]. Then, the solution u(x) has a
boundary layer at both end points [0, 1].
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We seek solution to (1) on each subinterval (xi−1, xi) of interval [0, 1] as
a solution of differential equation

(2) LS∆(x) ≡ −εS′′
∆(x) + p̄iS∆(x) = f̄i, x ∈ Ii = (xi−1, xi),

S∆(xi−1) = ui−1, S∆(xi) = ui. The value ui−1 and ui will be determined from
the corresponding difference scheme. The corresponding difference scheme is
a consequence of the continuity condition of the first derivative of spline at
observed points. This method is in principal of collocation type.

As an approximation for the function p(x) we use piecewise constants
p=(p̄i−1+p̄i)/2 where p̄i = p(xi). For the function f(x) we introduce quadratic
interpolating spline at points xi−1, xi−1/2 and xi (xi−1/2 is the mid-point of
subinterval [xi−1, xi]):

f̄i = fi−1

(
2/h2(x − xi−1/2)(x− xi)

)
+ fi

(
2/h2(x− xi−1/2)(x− xi−1)

)

+ fi−1/2

(
− 4/h2(x− xi−1)(x − xi)

)
.

(3)

Spline

S∆(x)= 1/ sinhρi

(
sinh (

√
pi/ε(x− xi−1))

(
ui − 4fi−1/(piρ

2
i )− fi(1/pi + 4/(piρ

2
i )) + fi−1/2/pi(8/ρ

2
i )
)

− sinh (
√
pi/ε(x− xi))(

ui−1− fi−1(4/(piρ
2
i ) + 1/pi)− fi(4/(piρ

2
i )) + fi−1/28/(piρ

2
i )
))

+ 2x2/(pih
2)(fi−1 + fi − 2fi−1/2)

+ 2x/(pih
2)
(
− fi−1(xi−1/2 + xi)− fi(xi−1/2 + xi−1)

+ 2fi−1/2(xi−1 + xi)
)

+ C

(4)

where ρi =
√
pi/εh, and pi = (p̄(xi−1)+p̄(xi))/2 is the solution to (2) with (3).

Using continuity condition of (4) at the point xi we obtain spline collocation
method which gives the following spline difference scheme

Rhvi = Qhfi, i = 1(1)n− 1, v0 = α0, vn = αn,

where

Rhvi = r−i vi−1 + rc
i vi + r+i vi+1,

Qhfi = q−i fi−1 + qc
i fi + q+i fi+1 + q−i1/2fi−1/2 + q+i1/2fi+1/2.



396 M. STOJANOVIĆ

We can modify these piecewise constants in order to obtain uniform scheme
in the following way:

r−i = −ρi/ sinh ρi,

r+i = −ρi+1/ sinh ρi+1,

rc
i = ρi coth ρi + ρi+1 coth ρi+1,

q−i = 1/p̄i−1(4/ρi tanh ρi/2− ρi/ sinh ρi − 1),

q+i = 1/p̄i+1(4/ρi+1 tanh ρi+1/2− ρi+1/ sinh ρi+1 − 1),

qc
i = 1/p̄i(4/ρi tanh (ρi/2) + ρi coth ρi + 4/ρi+1 tanh (ρi+1/2)

+ ρi+1 coth ρi+1 − 6),

q−i1/2 = 1/p̄i−1/2(−8/ρi tanh (ρi/2) + 4),

q+i1/2 = 1/p̄i+1/2(−8/ρi+1 tanh (ρi+1/2) + 4).

(5)

In the sequel we will use the notation O(hi), i = 0(1)6, to denote a quantity
bounded in absolute value by Chi.

3. Proof of the uniform convergence

The proof of the uniform convergence will be given for the case p(x) =
const, the first.

The scheme (5) has the matrix form

A · V = F

where V = [v1, ..., vn−1]T and F is also vector. Then,

(6) |u(xi)− vi| ≤M ||A−1||max
i
|τi(u)|,

where τi(u) is the truncated error of the scheme.

Lemma 1 ([5]). Let u(x) ∈ C4([0, 1]), and p′(0) = p′(1) = 0. Then, the
solution to (1) has the form

(7) u(x) = u0(x) + w0(x) + g(x)

where

(8) u0(x) = p0 exp(−x
√
p(0)/ε)

(9) w0(x) = p1 exp(−(1− x)
√
p(1)/ε),

p0, p1 are bounded functions of ε independent of x and

(10) |g(i)(x)| ≤M(1 + ε1−i/2), i = 0(1)n,

M is a constant independent of ε.

Lemma 2. Let p(x) = const. Then, the truncated error for the boundary
layer functions uo and w0 equals zero.
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Proof. From (2) it is obvious that the approximation for the function
f(x) affects only the particular solution to (2) and the solution of the homoge-
neous problem is independent of f(x). The truncated error for the boundary
layer function (8) is τi(u) = Rhui − Qh(L(ui)). Denote these parts of differ-

ence by τr and τq . We have τr = uoi

(
exp(ρ0)r−i + rc

i + exp(−ρ0)r+i

)
where

u0i = exp(−
√
p(0)/εxi), τq = u0i

(
(ρ2

0−ρ2
i−1)ρ2

i−1 exp(ρ0)q−i +(ρ2
0−ρ2

i )ρ2
i q

c
i +

(ρ2
0 − ρ2

i+1)ρ2
i+1q

+
i exp(−ρ0)

)
. When p = const part τq = 0. Using r−i , rc

i , r+i
from (5) by simple calculation we obtain τr = 0. It implies τi(u) = 0. Similarly
τi(w0) = 0.

Lemma 3. Estimate of the matrix for the scheme (5) is

(11) ||A−1|| ≤
{
Mε/h2 for h2 ≤ ε
M
√
ε/h for h2 ≥ ε,

where || · || denotes the usual max norm.

Proof. Follows from

||A−1|| = (r−i + rc
i + r+i )−1

= (−ρi/ sinh ρi + ρi coth ρi + ρi+1 coth ρi+1 − ρi+1/ sinh ρi+1)−1.

Theorem 4. Let p(x) = const and f ∈ C2([0, 1]). Let {vi}, i = 1(1)n− 1
be the approximation of the solution to (1) obtained by (5). Then, there is a
constant C independent of ε and h such that

|u(xi)− vi| ≤ Ch3 min(h/ε, 1/
√
ε).

Proof. From Lemma 2 we have τi(u) = τi(w) for p(x) = const. Thus,
we have to estimate only function g(x). According to [1]

(12) τi(g) = τ
(0)
i gi + τ

(1)
i g

(1)
i + τ

(2)
i g

(2)
i + τ

(3)
i g

(3)
i + τ

(4)
i g

(4)
i + ...+R.

For the scheme (5) τ
(0)
i = τ

(1)
i = τ

(2)
i = τ

(3)
i = 0. It remains to estimate τ

(4)
i .

We have

τ
(4)
i = h4/24

(
r+i + r−i − p(q−i + q+i )− 1/16(q−i1/2 + q+i1/2)

)

+ εh2/p
(
q−i + q+i + 1/4(q+i1/2 + q−i1/2)

)
.

After ordering these expressions we obtain

τ
(4)
i = h4/24

(
− 7/ρ tanh (ρ/2) + 3/2

)
+ εh2

(
2/ρ sinh (ρ/2)− ρ/ sinh (ρ/2)

)
,

where ρ =
√
p/εh, for p = const. When h2 ≤ ε then |τ (4)

i | ≤ Mh4ρ2 and for

h2 ≥ ε we obtain |τ (4)
i | ≤ M(h4 + εh2), i.e. |τ (4)

i | ≤ Mh4. Using (10), (11)
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and (6) we obtain

|ui − vi| ≤Mh3 min(h/ε, 1/
√
ε).

Similarly we can estimate τ
(4)
i and the remainder terms. They are of the

minor order. We have

τ
(5)
i = h5/5!

(
r+i − r−i −

(
− pi−1q

−
i + pi+1q

+
i + 1/32(q+i1/2 − q−i1/2)

))

+ εh3/6
(
− q−i + q+i + 1/8(−q−i1/2 + q+i1/2)

)
.

For p(x) = const we have τ
(5)
i = 0. Then,

τ
(6)
i = h6/6!

(
r+i + r−i − (pi−1q

−
i + pi+1q

+
i + 1/64(pi−1/2q

−
i1/2 + pi+1/2q

+
i1/2)

)

+ εh4/24
(
q−i + q+i + 1/16(q−i1/2 + q+i1/2)

)

and

τ
(6)
i = h6/6!(−31/(4ρ) tanh(ρ/2)− 17/8)

+ εh4/24(7/ρ tanh(ρ/2)− 2ρ/ sinh ρ− 3/2).

When h2 ≤ ε we have |τ (6)
i | ≤ Mh6ρ2 and for h2 ≥ ε we have |τ (6)

i | ≤ h6.

Thus, |τ (6)
i g(6)| ≤Mh6/ε2ρ2 for h2 ≤ ε, and |τ (6)

i g(6)| ≤Mh6/ε2 for h2 ≥ ε.

Theorem 5. Let p, f ∈ C2([0, 1]) and p′(0) = p′(1) = 0 and {vi}, i =
1(1)n − 1 be the approximation to (1) obtained by (5). Then, the following
estimate holds:

|u(xi)− vi| ≤Mhmin(h,
√
ε).

Proof. Nodal errors due to function g(x). For the function g(x) we

have τ
(0)
i = τ

(1)
i = 0 and τ

(2)
i = τ

(2)
i (ρ̃i) + (ρi − ρ̃i + ρi+1 − ρ̃i)(−h2a −

bε/pi + C), where ρ̃ =
√
p/εh and τ

(2)
i (ρ̃i) = 0 (cf. Theorem 4) when

p(x) = const. We have |ρi − ρ̃ + ρi+1 − ρ̃| ≤ Mh3/
√
ε, ρi/ sinh ρi =

ρ̃/ sinh ρ̃ + (ρi − ρ̃)b/ρi tanh (ρi/2) = 1/ρ̃ tanh (ρ̃/2) + (ρi − ρ̃)a, ρi coth ρi =

ρ̃ coth ρ̃ + (ρi − ρ̃)c where b = −(sinh ρ̃ − ρ cosh ρ̃)/ sinh2 ρ̃ = −ρ̃/3 + O(ρ2),

a = −1/(ρ̃ coth (ρ̃/2))2
(

coth (ρ̃/2) − ρ/2(coth2 (ρ̃/2) − 1)
)

= ρ̃/12 + O(ρ2),

and c =
(

coth ρ̃−ρ(coth2 ρ̃−1)
)

= ρ̃/3+O(ρ2). So we obtain |τ (2)
i | ≤Mh4/ε

for h2 ≤ ε, |τ (2)
i | ≤Mh2 for h2 ≥ ε. Using matrix estimate (11) we obtain the

nodal errors due to the function g(x).

(13) |u(xi)− vi| ≤Mhmin(h,
√
ε).
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Nodal errors due to boundary layer function u0(x). According to
[1]

τr = u0i

(
r−i exp(ρ0) + rc

i + r+i exp(−ρ0)
)

and

−τq = (p0/ε)
(

(p0 − pi−1)q−i exp(ρ0) + (p0 − pi)q
c
i + (p0 − pi+1)q+i exp(−ρ0)

+ (p0 − pi−1/2) exp(ρ0/2)q−i1/2 + (p0 − pi+1/2) exp(−ρ0/2)q+i1/2

)
.

Setting the coefficients of (5) we obtain

τr = 2u0iρi/ sinh ρi(cosh ρ0 − cosh ρi) +O(h4/ε)

= vih
2/ε(p0 − pi) +O(h4/ε)

(14)

and

τq = (p0/ε)
(

(p0 − pi)
(
q−i exp(ρ0) + qc

i + q+i exp(−ρ0) + q−i1/2 exp(ρ0/2)

+ qi1/2 exp(−ρ0/2)
)

+ (pi − pi−1)q−i exp(ρ0) + (pi − pi+1)q+i exp(−ρ0)

+ (pi − pi−1/2)q−i1/2 exp(ρ0/2) + (pi − pi+1/2)q+i1/2 exp(−ρ0/2)
)
.

Divide τq into two parts τq = τqA+ τqB where

τqA = (p0/ε)(p0 − pi)/pi

(
(4/ρi tanh (ρi/2)− ρ/ sinh ρi − 1)2 coshρ0

+ (8/ρi tanh (ρi/2) + 2ρi coth ρi − 6)

+ 2 cosh (ρ0/2)(−8/ρi tanh (ρi/2) + 4)
)

+N

= (p0/ε)(p0 − pi)/pi

(
2A cosh ρ0 +B + 2C cosh (ρ0/2)

)
.

(15)

Here N denotes the part of τq which is negligible, i.e. it does not influence
to the order of uniform convergence which is O(h2) what is our intention to
prove. We denote by

A = 4/ρi tanh (ρi/2)− ρi/ sinh ρi − 1,

B = 8/ρi tanh (ρi/2) + 2ρi coth ρi − 6,

C = −8/ρi tanh (ρi/2) + 4.

In a case h2 ≤ ε we shall estimate these parts separately. Taylor’s expansion
gives A = −1/360ρ4

i +O(ρ5
i ), B = ρ2

i /3− ρ4
i /90 +O(ρ6

i ), C = ρ2
i /3− ρ4

i /30 +
O(ρ6

i ). Putting it in (15) and after ordering the terms we obtain

(16) τqA = (p0 − pi)h
2/ε+O(h4/ε).

Subtracting (14) and (15) we obtain

(17) |τr − τqA| ≤Mh4/ε for h2 ≤ ε.
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Further, we have

τq = u0i

(
(pi − pi−1)q−i exp(ρ0) + (pi − pi+1)q+i exp(−ρ0)

+ (pi − pi−1/2) exp(ρ0/2)q−i1/2 + (pi − pi+1/2)q+i1/2 exp(−ρ0/2)
)
.

Divide this into two parts:

D = u0i

(
(pi − pi−1)q−i exp(ρ0) + (pi − pi+1)q+i exp(−ρ0)

)
,

E = u0i

(
(pi − pi−1/2)q−i1/2 exp(ρ0/2) + (p0 − pi+1/2) exp(−ρ0/2)

)
.

As |q−i | ≤Mρ4
i , |q+i | ≤Mρ4

i we obtain |D| ≤Mh6/ε2,

E = h/2p′(ξ1) exp(ρ0/2)q−i1/2 − h/2p′(ξ2)q+i1/2 exp(−ρ0/2)

where xi−1 ≤ ξ1 ≤ xi, xi ≤ ξ2 ≤ xi+1, and |E| ≤ h2/2p′′(ξ)ρ2
i /3, where

ξ1 ≤ ξ ≤ ξ2. It implies |E| ≤Mh4/ε. The final estimate is |τqB| ≤Mh4/ε for
h2 ≤ ε. This estimate, (17) and the matrix estimate give |u(xi)− vi| ≤ Mh2

for h2 ≤ ε for boundary layer term.
In the case h2 ≥ ε we have |q−i | ≤M, |q+i | ≤M, |qc

i | ≤Mh/
√
ε, |q−i1/2| ≤

M , |q+i1/2| ≤ M. Thus, |τq | ≤ (p0 − pi−1)Mu0i + (p − pi)h/
√
εMu0i + (p0 −

pi−1/2)Mu0i + (p0 − pi+1/2)Mu0i.

Using estimate |p(0)− p(xi)| ≤Mx2
i under the condition p′(0) = 0 for τq

we obtain

(18) |τq | ≤Mε for h2 ≥ ε.

In the estimate of τr we shall find the deviation from τr(ρ̃) where ρ̃ =
√
p/εh

where p = const. Then,

τr = τr−τr(ρ̃) = u0i

(
(r(ρ̃)−r−i ) exp(ρ0)+(rc

i (ρ̃)−rc
i )+(r+i (ρ̃)−r+i ) exp(−ρ0)

)
.

As |r+i (ρ̃)− r+i | ≤Mx2
i+1, |r−i (ρ̃)− r−i | ≤Mx2

i−1, |rc
i (ρ̃)− rc

i | ≤Mx2
i we have

(19) |τr| ≤Mε for h2 ≥ ε.

We obtain the same estimate for

(20) |τi(w)| ≤Mε for h2 ≥ ε.

Then, (18), (19), (20) and the matrix estimate (11) give

(21) |u(xi)− vi| ≤Mh
√
ε for h2 ≥ ε.

Thus, (13), (21) and the similar estimate for the function w(x) show that the
boundary layer term contributes O(hmin(h,

√
ε)) to the nodal errors.
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4. Numerical experiments

To illustrate computationally the convergence of the presented scheme we
consider the following singular two-point boundary value problem

(22) −εu′′ + u = − cos2 πx− 2επ2 cos 2πx, u(0) = u(1) = 0,

with the exact solution

u(x) = (exp(−(1− x)/
√
ε) + exp(−x/√ε))/(1 + exp(−1/

√
ε))− cos2 πx

taken from [5]. Techniques which determines the rate of uniform convergence
is well-known double mesh principle taken from [5]. In the notation of [5] we
have the following tables.

Table 1 presents rate of uniform convergence for the scheme (5) as applied
to the example (22).

Table 1.

ε/k 1 2 3 4 5 pε

1 4.01 4.00 4.00 3.96 3.54 3.90
2−1 4.01 4.00 4.00 3.98 5.15 4.23
2−2 4.01 4.00 4.00 4.00 3.51 3.91
2−3 4.01 4.00 4.00 3.99 3.80 3.96
2−4 4.01 4.00 4.00 4.00 4.01 4.00
2−5 4.02 4.01 4.00 4.00 3.96 4.00
2−6 4.03 4.01 4.00 4.00 3.99 4.01
2−7 4.05 4.01 4.00 4.00 4.00 4.01
2−8 4.09 4.02 4.01 4.00 4.00 4.02
2−9 4.15 4.02 4.01 4.00 4.00 4.04
2−10 4.24 4.08 4.02 4.01 4.00 4.07
10−5 3.40 3.93 4.38 4.30 4.11 4.02
10−6 3.01 3.23 3.56 4.13 4.40 3.67

Table 2 shows the difference between the exact and the approximate so-
lution to (22) obtained by (5).

Table 2.

ε/N 32 64 128 256 512 1024
2−6 0.801E-06 0.502E-07 0.313E-08 0.196E-09 0.122E-10 0.695E-12
2−10 0.831E-06 0.493E-07 0.303E-08 0.189E-09 0.115E-10 0.737E-12
10−5 0.131E-05 0.830E-07 0.401E-08 0.205E-09 0.119E-10 0.729E-12
10−6 0.630E-06 0.646E-07 0.534E-08 0.301E-09 0.144E-10 0.774E-12
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In Table 3 is given the rate of the uniform convergence convergence and
in Table 4 are given the errors in E∞ = maxi |u(xi)−vi| norm for the example
with non-constant function p(x) for modified scheme (5)

−εu′′ + (1 + x)2u = 4(3x2 − 3x+ 2)(1 + x)2, u(0) = −1, u(1) = 0.

Table 3.

ε/k 1 2 3 4 5 pε

20 1.99 2.00 2.00 2.00 2.00 2.00
2−1 1.99 2.00 2.00 2.00 2.00 2.00
2−2 1.99 2.00 2.00 2.00 2.00 2.00
2−3 1.99 2.00 2.00 2.00 2.00 2.00
2−4 1.95 2.00 2.00 2.00 2.00 1.99
2−5 1.98 1.99 2.00 2.00 2.00 1.99
2−6 1.90 1.99 2.00 2.00 2.60 2.10
2−7 1.94 1.97 1.99 2.00 2.00 1.98
2−8 1.89 1.97 1.98 2.00 2.00 1.97
2−9 1.68 1.92 1.97 2.00 2.02 1.92
2−10 1.16 1.90 1.97 1.99 2.00 1.80

Table 4.

ε/N 32 64 128 256 512
1 0.400E-04 0.999E-05 0.250E-05 0.624E-06 0.156E-06

2−1 0.570E-04 0.143E-04 0.357E-05 0.893E-06 0.223E-06
2−2 0.718E-04 0.180E-04 0.451E-05 0.113E-05 0.281E-06
2−3 0.869E-04 0.218E-04 0.545E-05 0.136E-05 0.341E-06
2−4 0.108E-03 0.270E-04 0.675E-05 0.169E-05 0.422E-06
2−5 0.132E-03 0.332E-04 0.831E-05 0.208E-05 0.519E-06
2−6 0.155E-03 0.390E-04 0.976E-05 0.244E-05 0.611E-06
2−7 0.170E-03 0.435E-04 0.109E-04 0.273E-05 0.684E-06
2−8 0.182E-03 0.465E-04 0.118E-04 0.252E-05 0.738E-06
2−9 0.183E-03 0.485E-04 0.124E-04 0.311E-05 0.778E-06
2−10 0.187E-03 0.502E-04 0.122E-04 0.322E-05 0.807E-06
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