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GROWTH OF MAXIMUM MODULUS OF POLYNOMIALS
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Abstract. Let P (z) be a polynomial of degree n not vanishing in
|z| < k where k ≥ 1. It is shown that

max
|z|=R>1

|P (z)| <
(R + k)n

(R + k)n + (1 + Rk)n
×

{

(Rn + 1) max
|z|=1

|P (z)| −

(

Rn −

(

1 + Rk

R + k

)n)

min
|z|=k

|P (z)|

}

.

Among other things our result includes a refinement of a theorem due to
Ankeny and Rivilin as a special case. We shall also prove an another result
of similar nature.

Let P (z) be a polynomial of degree n, then

(1) max
|z|=R>1

|P (z)| ≤ Rn max
|z|=1

|P (z)|.

Inequality (1) is a simple deduction from Maximum Modulus Principle (see
[6, vol. 1, p. 137, problem III 269] or [7, p. 346]). It was shown by Ankeny
and Rivilin [1] (see also [5, p. 442]), that if P (z) 6= 0 in |z| < 1, then (1) can
be replaced by

(2) max
|z|=R>1

|P (z)| ≤ Rn + 1

2
max
|z|=1

|P (z)|.

Inequality (2) is sharp, with equality for P (z) = αzn + β, |α| = |β| = 1. For
the class of polynomials not vanishing in the disk |z| < k, k ≥ 1, Aziz and
Mohammad [4] proved the following generalization of inequality (2).
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Theorem 1. Let P (z) be a polynomial of degree n having no zeros in the
disk |z| < k, where k > 1, then

max
|z|=R>1

|P (z)| ≤ (Rn + 1)(R+ k)n

(R + k)n + (1 +Rk)n
max
|z|=1

|P (z)|.

Theorem 1 does not appear to be sharp for k > 1 with the exception
n = 1. However Aziz [2] (see also [3]) have proved the following sharp result
which is an interesting generalization of inequality (2).

Theorem 2. Let P (z) be a polynomial of degree n which does not vanish
in the disk |z| < 1, then

max
|z|=R>1

|P (z)| ≤
(
Rn + 1

2

)
max
|z|=1

|P (z)| −
(
Rn − 1

2

)
min
|z|=1

|P (z)|.

Here the result is best possible and equality holds for P (z) = αzn + β where
|β| ≥ |α|

In this paper we first prove the following more general result which pro-
vides a refinement of Theorem 1 and includes Theorem 2 as a special case.

Theorem 3. If P (z) is a polynomial of degree n which does not vanish
in |z| < k where k ≥ 1, then

max
|z|=R>1

|P (z)| <
(R+ k)n

(R + k)n + (1 +Rk)n
×

{
(Rn + 1) max

|z|=1
|P (z)| −

(
Rn −

(
1 +Rk

R+ k

)n)
min
|z|=k

|P (z)|
}
.(3)

For k = 1, this reduces to Theorem 2.

If P (z) does not vanish in |z| < k, where k ≥ 1 then it is known (see [4,
inequality (6)] ) that

(4) max
|z|=R

|P (z)| ≤
(
R+ k

1 + k

)n

max
|z|=1

|P (z)| for 1 ≤ R2 ≤ k.

The result is best possible and equality in (4) holds for P (z) = ((z + k)/(1 + k))
n
.

Here we present the following refinement of (4).

Theorem 4. If P (z) is a polynomial of degree n having no zeros in the
disk |z| < k where k ≥ 1 then for 1 ≤ R ≤ k2 we have

max
|z|=R

|P (z)| ≤
(
R+ k

1 + k

)n

max
|z|=1

|P (z)| −
{(

R+ k

1 + k

)n

− 1

}
min
|z|=k

|P (z)|.

Remark 5. Theorem 3 in general provides much better information than
Theorem 1 regarding max

|z|=R>1
|P (z)|. We illustrate this with the help of fol-

lowing examples.
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Example 6. Let
P (z) = (z2 + 9)(z − 19).

Then P (z) is a polynomial of degree 3 which does not vanish in |z| < t, where
0 < t ≤ 3. Clearly

|P (z)| ≥
{
9 − |z|2

}
{19 − |z|}

which in particular gives

min
|z|=2

|P (z)| ≥ 85 and max
|z|=1

|P (z)| = 200

Using Theorem 1 with k = t = 3, R = 2, it follows that

(5) max
|z|=2

|P (z)| ≤ 480.8

where as using Theorem 3 with k = 2, and R = 2, we get

max
|z|=2

|P (z)| ≤ 435.5

which is much better than (5).

Example 7. Let
P (z) = z3 + 33,

then P (z) does not vanish in |z| < t, where 0 < t ≤ 3. Clearly

min
|z|=2

|P (z)| ≥ 19 and max
|z|=1

|P (z)| = 28.

Using Theorem 1 with k = t = 3, R = 2, it follows that

(6) max
|z|=2

|P (z)| ≤ 67.4.

We use Theorem 3 with k = t = 2, R = 2, we get

max
|z|=2

|P (z)| ≤ 46.5

which is much better than (6).

Similar remarks apply to Theorem 4 also. For the proof of Theorem 3 we
need the following lemma.

Lemma 8. If P (z) is a polynomial of degree n which does not vanish for
|z| < k, k > 0 then for all R ≥ 1, r ≤ k and for every θ, 0 ≤ θ < 2π

(7) |P (Rreiθ)| <
(
Rr + k

r +Rk

)n ∣∣∣∣RnP

(
reiθ

R

)∣∣∣∣−
{(

Rr + k

r +Rk

)n}
min
|z|=k

|P (z)|.

Proof. The result is obvious for R = 1. So we assume R > 1. By hy-
pothesis, the polynomial P (z) has all its zeros in |z| ≥ k and m = min

|z|=k
|P (z)|,

therefore, m ≤ |P (z)| for |z| ≤ k. We show for any given complex number α
with |α| ≤ 1, the polynomial F (z) = P (z) + αm has all its zeros in |z| ≥ k.
This is obvious if m = 0 that is if P (z) has a zero on |z| = k. We now suppose
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that all the zeros of P (z) lie in |z| > k so that m = min
|z|=k

|P (z)| > 0. Hence

m
P (z) is analytic for |z| ≤ k and

∣∣∣ m
P (z)

∣∣∣ ≤ 1 for |z| = k. Since m
P (z) is not a

constant, it follows by Maximum Modulus Principle that

(8) m < |P (z)| for |z| < k.

Now assume that F (z) = P (z) +αm has a zero in |z| < k, say at z = z0 with
|z0| < k, then

P (z0) + αm = F (z0) = 0.

This implies

|P (z0)| = |αm| ≤ m,

which is a contradiction to (8). Hence we conclude that in any case F (z) =
P (z) + αm has all its zeros in |z| ≥ k. Let

R1e
iθ1 , R2e

iθ2 , . . . , Rne
iθn

be the zeros of F (z). Then Rj ≥ k, j = 1, 2, . . . , n and we have

F (z) =

n∏

j=1

(z −Rje
iθj ),

therefore, for all R ≥ 1, r ≤ k and for every θ, 0 ≤ θ < 2π, we have
∣∣∣∣∣∣
F (Rreiθ)

RnF
(

reiθ

R

)

∣∣∣∣∣∣
=

n∏

j=1

∣∣∣∣
Rreiθ −Rje

iθj

reiθ −RRjeiθj

∣∣∣∣

=
n∏

j=1

∣∣∣∣
Rrei(θ−θj) −Rj

rei(θ−θj) −RRj

∣∣∣∣ .(9)

Since Rj ≥ k ≥ r and R ≥ 1, therefore, it can be easily verified after a short
calculation that

∣∣∣∣
Rrei(θ−θj) −Rj

rei(θ−θj) −RRj

∣∣∣∣ =

(
R2r2 +R2

j − 2RrRj cos (θ − θj)

r2 +R2R2
j − 2RrRj cos (θ − θj)

)1/2

≤
(
Rr +R

r +RRj

)
≤
(
Rr + k

r +Rk

)
.(10)

The first estimate is obtained by observing that the function

f(t) =
Rr2 + R2

j − 2RrRjt

r2 +R2R2
j − 2RrRjt

is a decreasing function of t on [−1, 1], which follows from taking a derivative
and using the hypothesis Rj ≥ r. The function f , therefore, has a maximum
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at t = −1 and the first estimate follows. The estimate (10) also follows by
noting that the function

g(Rj) =
Rr +Rj

R+RRj

is a decreasing function of Rj which can be verified by using derivative again
and the fact that Rj ≥ k. Thus g(k) is maximum. Using (10) in (9), it follows
that

|F (Rreiθ)| ≤
(
Rr + k

r +Rk

)n

RnF

(
reiθ

R

)

for every θ, 0 ≤ θ < 2π, R > 1, k ≥ r. Replacing F (z) by P (z) + αm, we get

(11) |P (Rreiθ) + αm| ≤
(
Rr + k

r +Rk

)n

|RnP

(
reiθ

R

)
+Rnαm|

for every α with |α| ≤ 1, 0 ≤ θ < 2π, R > 1 and k ≥ r. Since r/R ≤ k, we
choose argument of α with |α| = 1 on the R. H. S of (11) such that for |z| = 1,

(12) |P
(rz
R

)
+ αm| = |P

(rz
R

)
| −m

which is possible by (8). Using (12) in (11), we abtain for |z| = 1, R > 1 and
k > r,

|P (Rrz)| −m ≤
(
Rr + k

r +Rk

)n ∣∣∣RnP
( r
R

)∣∣∣−
(
Rr + k

r +Rk

)n

Rnm.

This implies

|P (Rrz)| ≤
(
Rr + k

r +Rk

)n ∣∣∣RnP
(rz
R

)∣∣∣

−
{(

Rr + k

r +Rk

)n

Rn − 1

}
min
|z|=k

|P (z)|(13)

for |z| = 1, R ≥ 1 and r ≤ k, which is the desired result. This completes the
proof of Lemma 8.

We also need the following lemma:

Lemma 9. If P (z) is a polynomial of degree n, then

|P (Reiθ)| + |Q(Reiθ)| ≤ (Rn + 1) max
|z|=1

|P (z)|, 0 ≤ θ ≤ 2π,

where
Q(z) = znP (1/z) and R ≥ 1.

Lemma 9 is due to Aziz and Mohammad [4]. However, for the sake of
completeness, we give here a brief outline of the proof. In fact, we deduce it
from Lemma 8, and thereby present an independent proof of Lemma 9. Let
M = max

|z|=1
|P (z)|, then

|P (z)| ≤M |z| = 1.
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By Rouches theorem, it follows that for every real or complex number λ, with
|λ| > 1, the polynomial

F (z) = P (z) − λM

does not vanish in |z| < 1. Applying Lemma 8, to the polynomial F (z) with
k = 1 = r, it follows that for every θ, 0 ≤ θ < 2π, R > 1,

|F (Reiθ)| ≤ Rn

∣∣∣∣F
(
eiθ

R

)∣∣∣∣− (Rn − 1) min
|z|=1

|F (z)|

≤
∣∣∣∣RnF

(
eiθ

R

)∣∣∣∣ .(14)

If G(z) = znF (1/z), then we have G(z) = Q(z) − λznM and

|G(Reiθ)| =

∣∣∣∣∣R
neinθF

(
eiθ

R

)∣∣∣∣∣ =
∣∣∣∣RnF

(
eiθ

R

)∣∣∣∣ .

Using this in (14), it follows that for every R ≥ 1, and 0 ≤ θ < 2π,

|P (Reiθ) − λM | = |F (Reiθ)| ≤ |G(Reiθ)| = |Q(Reiθ) − λRneinθM |
choosing the argument of λ in R. H. S of this inequality suitably, we get

|P (Reiθ)| − |λ|M ≤ |λ|Rn − |Q(Reiθ)|.
Or

|P (Reiθ)| + |Q(Reiθ)| ≤ (Rn + 1)|λ|M
for every θ, 0 ≤ θ < 2π, and k ≥ 1, letting |λ| → 1, we get the assertion of
Lemma 9.

Proof of Theorem 3. Since all the zeros of P (z) lie in |z| ≥ k ≥ 1,
using Lemma 8, it follows from (7) with r = 1, that

(15) |P (Reiθ)| ≤
(
R+ k

1 +Rk

)n ∣∣∣∣RnP

(
eiθ

R

)∣∣∣∣−
{(

R+ k

1 +Rk

)n

Rn − 1

}
m

for every θ, 0 ≤ θ ≤ 2π and R ≥ 1. Since

Q(z) = znP (1/z)

therefore,

(16) |Q(Reiθ)| = |RnP

(
eiθ

R

)
|.

Using (16) in (15), we get

|P (Reiθ)| ≤
(
R+ k

1 +Rk

)n

|Q(Reiθ)| −
{(

R+ k

1 +Rk

)n

Rn − 1

}
m.
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This implies

(1 +Rk)n + (R+ k)n

(1 +Rk)n
|P (Reiθ)| ≤

(
R+ k

1 +Rk

)n {
|P (Reiθ)| + |Q(Reiθ)|

}
−
{(

R+ k

1 +Rk

)n

Rn − 1

}
m.

(17)

Inequality (17) yields with the help of Lemma 9 that

(1 +Rk)n + (R+ k)n

(1 +Rk)n
|P (Reiθ)| ≤

(R+ k)n(Rn + 1)

(1 +Rk)n
max
|z|=1

|P (z)| −
{(

R+ k

1 +Rk

)n

Rn − 1

}
min
|z|=1

|P (z)| =

(
R+ k

1 +Rk

)n [
(Rn + 1) max

|z|=1
|P (z)| −

{
Rn −

(
1 +Rk

R+ k

)n}
min
|z|=k

|P (z)|
]
.

(18)

From (18) it follows that

|P (Reiθ)| ≤ (R + k)n

(1 + Rk)n + (R+ k)n
×

[
(Rn + 1) max

|z|=1
|P (z)| −

{
Rn −

(
1 +Rk

R + k

)n}
min
|z|=1

|P (z)|
]

for every θ, 0 ≤ θ < 2π and R ≥ 1. Which is equivalent to the desired result.
This completes the proof of Theorem 3.

Proof of Theorem 4. Let m = min|z|=k |P (z)|, then we have

(19) m ≤ |P (z)| for |z| = k.

Since P (z) does not vanish in |z| < k, and it follows as in the proof of Lemma
8 that for every real or complex number α with |α| ≤ 1, the polynomial
F (z) = P (z) + αm has all its zeros in |z| ≥ k. If

R1e
iθ1 , R2e

iθ2 , . . . , Rne
iθn

be the zeros of F (z), then Rj ≥ k, j = 1, 2, . . . , n and we have

F (z) =
n∏

j=1

(z −Rje
iθj ).

It can be easily seen for 1 ≤ R ≤ k2 and 0 ≤ θ < 2π
∣∣∣∣
P (Reiθ)

P (eiθ)

∣∣∣∣ =

n∏

j=1

∣∣∣∣
Reiθ −Rje

iθj

eiθ −Rjeiθj

∣∣∣∣ ≤
n∏

j=1

(
R+Rj

1 +Rj

)

≤
n∏

j=1

(
R+ k

1 + k

)
=

(
R + k

1 + k

)n

.
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This implies

(20) |F (Reiθ)| ≤
(
R+ k

1 + k

)n

|F (eiθ)|

for every θ, 0 ≤ θ < 2π and 1 ≤ R ≤ k2. Replacing F (z) by P (z) + αm in
(20), we get

(21) |P (Reiθ) + αm| ≤
(
R+ k

1 + k

)n

|P (eiθ) + αm|

for every α with |α| ≤ 1, 0 ≤ θ < 2π and 1 ≤ R ≤ k2. Since P (z) does not
vanish for |z| < k, by Maximum Modulus Principle it follows from (19) that

(22) m ≤ |P (z)| for |z| ≤ k where k ≥ 1.

Taking in particular z = eiθ, 0 ≤ θ < 2π in (22), then

|z| = |eiθ| = 1 ≤ k

and we get

(23) m ≤ |P (eiθ)| for 0 ≤ θ < 2π.

Choosing the argument α with |α| = 1 on the R. H. S of (21) such that for
|z| = 1,

(24) |P (z) + αm| = |P (z)| −m

which is possible by (23), we obtain from (21) that

|P (Reiθ)| −m ≤
(
R+ k

1 + k

)n {
P (eiθ) −m

}

for every θ, 0 ≤ θ < 2π, 1 ≤ R ≤ k2. This gives

|P (Rz)| ≤
(
R+ k

1 + k

)n

|P (z)| −
{(

R+ k

1 + k

)n

− 1

}
m

for |z| = 1 and 1 ≤ R ≤ k2, from which it immediately follows that

max
|z|=1

|P (z)| ≤
(
R+ k

1 + k

)n

max
|z|=1

|P (z)| −
{(

R+ k

1 + k

)n

− 1

}
min
|z|=k

|P (z)|

for |z| = 1 and 1 ≤ R ≤ k2. This completes the proof of Theorem 4.
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