GROWTH OF MAXIMUM MODULUS OF POLYNOMIALS WITH PRESCRIBED ZEROS

Abdul Aziz and B. A. Zargar

University of Kashmir, Srinagar, India

$$
\begin{aligned}
& \begin{aligned}
& \text { AbSTRACT. } \text { Let } P(z) \text { be a polynomial of degree } n \text { not vanishing in } \\
&|z|<k \text { where } k \geq 1 . ~ I t ~ i s ~ s h o w n ~ t h a t ~
\end{aligned} \\
& \max _{|z|=R>1}|P(z)|< \frac{(R+k)^{n}}{(R+k)^{n}+(1+R k)^{n}} \times \\
&\left\{\left(R^{n}+1\right) \max _{|z|=1}|P(z)|-\left(R^{n}-\left(\frac{1+R k}{R+k}\right)^{n}\right) \min _{|z|=k}|P(z)|\right\} .
\end{aligned}
$$

Among other things our result includes a refinement of a theorem due to Ankeny and Rivilin as a special case. We shall also prove an another result of similar nature.

Let $P(z)$ be a polynomial of degree n, then

$$
\begin{equation*}
\max _{|z|=R>1}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)| \tag{1}
\end{equation*}
$$

Inequality (1) is a simple deduction from Maximum Modulus Principle (see [6, vol. 1, p. 137, problem III 269] or [7, p. 346]). It was shown by Ankeny and Rivilin [1] (see also [5, p. 442]), that if $P(z) \neq 0$ in $|z|<1$, then (1) can be replaced by

$$
\begin{equation*}
\max _{|z|=R>1}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)| \tag{2}
\end{equation*}
$$

Inequality (2) is sharp, with equality for $P(z)=\alpha z^{n}+\beta,|\alpha|=|\beta|=1$. For the class of polynomials not vanishing in the disk $|z|<k, k \geq 1$, Aziz and Mohammad [4] proved the following generalization of inequality (2).

2000 Mathematics Subject Classification. 30A06, 30A64.
Key words and phrases. Growth of Maximum Modulus, inequalities for polynomials.

Theorem 1. Let $P(z)$ be a polynomial of degree n having no zeros in the disk $|z|<k$, where $k>1$, then

$$
\max _{|z|=R>1}|P(z)| \leq \frac{\left(R^{n}+1\right)(R+k)^{n}}{(R+k)^{n}+(1+R k)^{n}} \max _{|z|=1}|P(z)|
$$

Theorem 1 does not appear to be sharp for $k>1$ with the exception $n=1$. However Aziz [2] (see also [3]) have proved the following sharp result which is an interesting generalization of inequality (2).

Theorem 2. Let $P(z)$ be a polynomial of degree n which does not vanish in the disk $|z|<1$, then

$$
\max _{|z|=R>1}|P(z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{|z|=1}|P(z)|-\left(\frac{R^{n}-1}{2}\right) \min _{|z|=1}|P(z)| .
$$

Here the result is best possible and equality holds for $P(z)=\alpha z^{n}+\beta$ where $|\beta| \geq|\alpha|$

In this paper we first prove the following more general result which provides a refinement of Theorem 1 and includes Theorem 2 as a special case.

Theorem 3. If $P(z)$ is a polynomial of degree n which does not vanish in $|z|<k$ where $k \geq 1$, then

$$
\begin{align*}
\max _{|z|=R>1}|P(z)|< & \frac{(R+k)^{n}}{(R+k)^{n}+(1+R k)^{n}} \times \\
& (3) \tag{3}\\
& \left\{\left(R^{n}+1\right) \max _{|z|=1}|P(z)|-\left(R^{n}-\left(\frac{1+R k}{R+k}\right)^{n}\right) \min _{|z|=k}|P(z)|\right\} .
\end{align*}
$$

For $k=1$, this reduces to Theorem 2.
If $P(z)$ does not vanish in $|z|<k$, where $k \geq 1$ then it is known (see [4, inequality (6)]) that

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)| \quad \text { for } \quad 1 \leq R^{2} \leq k \tag{4}
\end{equation*}
$$

The result is best possible and equality in (4) holds for $P(z)=((z+k) /(1+k))^{n}$. Here we present the following refinement of (4).

Theorem 4. If $P(z)$ is a polynomial of degree n having no zeros in the disk $|z|<k$ where $k \geq 1$ then for $1 \leq R \leq k^{2}$ we have

$$
\max _{|z|=R}|P(z)| \leq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)|-\left\{\left(\frac{R+k}{1+k}\right)^{n}-1\right\} \min _{|z|=k}|P(z)|
$$

Remark 5. Theorem 3 in general provides much better information than Theorem 1 regarding $\max _{|z|=R>1}|P(z)|$. We illustrate this with the help of following examples.

Example 6. Let

$$
P(z)=\left(z^{2}+9\right)(z-19) .
$$

Then $P(z)$ is a polynomial of degree 3 which does not vanish in $|z|<t$, where $0<t \leq 3$. Clearly

$$
|P(z)| \geq\left\{9-|z|^{2}\right\}\{19-|z|\}
$$

which in particular gives

$$
\min _{|z|=2}|P(z)| \geq 85 \quad \text { and } \quad \max _{|z|=1}|P(z)|=200
$$

Using Theorem 1 with $k=t=3, R=2$, it follows that

$$
\begin{equation*}
\max _{|z|=2}|P(z)| \leq 480.8 \tag{5}
\end{equation*}
$$

where as using Theorem 3 with $k=2$, and $R=2$, we get

$$
\max _{|z|=2}|P(z)| \leq 435.5
$$

which is much better than (5).
Example 7. Let

$$
P(z)=z^{3}+3^{3}
$$

then $P(z)$ does not vanish in $|z|<t$, where $0<t \leq 3$. Clearly

$$
\min _{|z|=2}|P(z)| \geq 19 \quad \text { and } \quad \max _{|z|=1}|P(z)|=28
$$

Using Theorem 1 with $k=t=3, R=2$, it follows that

$$
\begin{equation*}
\max _{|z|=2}|P(z)| \leq 67.4 \tag{6}
\end{equation*}
$$

We use Theorem 3 with $k=t=2, R=2$, we get

$$
\max _{|z|=2}|P(z)| \leq 46.5
$$

which is much better than (6).
Similar remarks apply to Theorem 4 also. For the proof of Theorem 3 we need the following lemma.

Lemma 8. If $P(z)$ is a polynomial of degree n which does not vanish for $|z|<k, k>0$ then for all $R \geq 1, r \leq k$ and for every $\theta, 0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|P\left(R r e^{i \theta}\right)\right|<\left(\frac{R r+k}{r+R k}\right)^{n}\left|R^{n} P\left(\frac{r e^{i \theta}}{R}\right)\right|-\left\{\left(\frac{R r+k}{r+R k}\right)^{n}\right\} \min _{|z|=k}|P(z)| \tag{7}
\end{equation*}
$$

Proof. The result is obvious for $R=1$. So we assume $R>1$. By hypothesis, the polynomial $P(z)$ has all its zeros in $|z| \geq k$ and $m=\min _{|z|=k}|P(z)|$, therefore, $m \leq|P(z)|$ for $|z| \leq k$. We show for any given complex number α with $|\alpha| \leq 1$, the polynomial $F(z)=P(z)+\alpha m$ has all its zeros in $|z| \geq k$. This is obvious if $m=0$ that is if $P(z)$ has a zero on $|z|=k$. We now suppose
that all the zeros of $P(z)$ lie in $|z|>k$ so that $m=\min _{|z|=k}|P(z)|>0$. Hence $\frac{m}{P(z)}$ is analytic for $|z| \leq k$ and $\left|\frac{m}{P(z)}\right| \leq 1$ for $|z|=k$. Since $\frac{m}{P(z)}$ is not a constant, it follows by Maximum Modulus Principle that

$$
\begin{equation*}
m<|P(z)| \quad \text { for } \quad|z|<k \tag{8}
\end{equation*}
$$

Now assume that $F(z)=P(z)+\alpha m$ has a zero in $|z|<k$, say at $z=z_{0}$ with $\left|z_{0}\right|<k$, then

$$
P\left(z_{0}\right)+\alpha m=F\left(z_{0}\right)=0
$$

This implies

$$
\left|P\left(z_{0}\right)\right|=|\alpha m| \leq m
$$

which is a contradiction to (8). Hence we conclude that in any case $F(z)=$ $P(z)+\alpha m$ has all its zeros in $|z| \geq k$. Let

$$
R_{1} e^{i \theta_{1}}, R_{2} e^{i \theta_{2}}, \ldots, R_{n} e^{i \theta_{n}}
$$

be the zeros of $F(z)$. Then $R_{j} \geq k, j=1,2, \ldots, n$ and we have

$$
F(z)=\prod_{j=1}^{n}\left(z-R_{j} e^{i \theta_{j}}\right)
$$

therefore, for all $R \geq 1, r \leq k$ and for every $\theta, 0 \leq \theta<2 \pi$, we have

$$
\begin{align*}
\left|\frac{F\left(R r e^{i \theta}\right)}{R^{n} F\left(\frac{r e^{i \theta}}{R}\right)}\right| & =\prod_{j=1}^{n}\left|\frac{R r e^{i \theta}-R_{j} e^{i \theta_{j}}}{r e^{i \theta}-R R_{j} e^{i \theta_{j}}}\right| \\
& =\prod_{j=1}^{n}\left|\frac{R r e^{i\left(\theta-\theta_{j}\right)}-R_{j}}{r e^{i\left(\theta-\theta_{j}\right)}-R R_{j}}\right| \tag{9}
\end{align*}
$$

Since $R_{j} \geq k \geq r$ and $R \geq 1$, therefore, it can be easily verified after a short calculation that

$$
\begin{align*}
\left|\frac{R r e^{i\left(\theta-\theta_{j}\right)}-R_{j}}{r e^{i\left(\theta-\theta_{j}\right)}-R R_{j}}\right| & =\left(\frac{R^{2} r^{2}+R_{j}^{2}-2 R r R_{j} \cos \left(\theta-\theta_{j}\right)}{r^{2}+R^{2} R_{j}^{2}-2 R r R_{j} \cos \left(\theta-\theta_{j}\right)}\right)^{1 / 2} \\
& \leq\left(\frac{R r+R}{r+R R_{j}}\right) \leq\left(\frac{R r+k}{r+R k}\right) \tag{10}
\end{align*}
$$

The first estimate is obtained by observing that the function

$$
f(t)=\frac{R r^{2}+R_{j}^{2}-2 R r R_{j} t}{r^{2}+R^{2} R_{j}^{2}-2 R r R_{j} t}
$$

is a decreasing function of t on $[-1,1]$, which follows from taking a derivative and using the hypothesis $R_{j} \geq r$. The function f, therefore, has a maximum
at $t=-1$ and the first estimate follows. The estimate (10) also follows by noting that the function

$$
g\left(R_{j}\right)=\frac{R r+R_{j}}{R+R R_{j}}
$$

is a decreasing function of R_{j} which can be verified by using derivative again and the fact that $R_{j} \geq k$. Thus $g(k)$ is maximum. Using (10) in (9), it follows that

$$
\left|F\left(R r e^{i \theta}\right)\right| \leq\left(\frac{R r+k}{r+R k}\right)^{n} R^{n} F\left(\frac{r e^{i \theta}}{R}\right)
$$

for every $\theta, 0 \leq \theta<2 \pi, R>1, k \geq r$. Replacing $F(z)$ by $P(z)+\alpha m$, we get

$$
\begin{equation*}
\left|P\left(R r e^{i \theta}\right)+\alpha m\right| \leq\left(\frac{R r+k}{r+R k}\right)^{n}\left|R^{n} P\left(\frac{r e^{i \theta}}{R}\right)+R^{n} \alpha m\right| \tag{11}
\end{equation*}
$$

for every α with $|\alpha| \leq 1,0 \leq \theta<2 \pi, R>1$ and $k \geq r$. Since $r / R \leq k$, we choose argument of α with $|\alpha|=1$ on the R. H. S of (11) such that for $|z|=1$,

$$
\begin{equation*}
\left|P\left(\frac{r z}{R}\right)+\alpha m\right|=\left|P\left(\frac{r z}{R}\right)\right|-m \tag{12}
\end{equation*}
$$

which is possible by (8). Using (12) in (11), we abtain for $|z|=1, R>1$ and $k>r$,

$$
|P(R r z)|-m \leq\left(\frac{R r+k}{r+R k}\right)^{n}\left|R^{n} P\left(\frac{r}{R}\right)\right|-\left(\frac{R r+k}{r+R k}\right)^{n} R^{n} m
$$

This implies

$$
\begin{align*}
|P(R r z)| \leq & \left(\frac{R r+k}{r+R k}\right)^{n}\left|R^{n} P\left(\frac{r z}{R}\right)\right| \\
& -\left\{\left(\frac{R r+k}{r+R k}\right)^{n} R^{n}-1\right\} \min _{|z|=k}|P(z)| \tag{13}
\end{align*}
$$

for $|z|=1, R \geq 1$ and $r \leq k$, which is the desired result. This completes the proof of Lemma 8.

We also need the following lemma:
Lemma 9. If $P(z)$ is a polynomial of degree n, then

$$
\left|P\left(R e^{i \theta}\right)\right|+\left|Q\left(R e^{i \theta}\right)\right| \leq\left(R^{n}+1\right) \max _{|z|=1}|P(z)|, \quad 0 \leq \theta \leq 2 \pi
$$

where

$$
Q(z)=z^{n} \overline{P(1 / \bar{z})} \quad \text { and } \quad R \geq 1
$$

Lemma 9 is due to Aziz and Mohammad [4]. However, for the sake of completeness, we give here a brief outline of the proof. In fact, we deduce it from Lemma 8, and thereby present an independent proof of Lemma 9. Let $M=\max _{|z|=1}|P(z)|$, then

$$
|P(z)| \leq M \quad|z|=1
$$

By Rouches theorem, it follows that for every real or complex number λ, with $|\lambda|>1$, the polynomial

$$
F(z)=P(z)-\lambda M
$$

does not vanish in $|z|<1$. Applying Lemma 8 , to the polynomial $F(z)$ with $k=1=r$, it follows that for every $\theta, 0 \leq \theta<2 \pi, R>1$,

$$
\begin{align*}
\left|F\left(R e^{i \theta}\right)\right| & \leq R^{n}\left|F\left(\frac{e^{i \theta}}{R}\right)\right|-\left(R^{n}-1\right) \min _{|z|=1}|F(z)| \\
& \leq\left|R^{n} F\left(\frac{e^{i \theta}}{R}\right)\right| . \tag{14}
\end{align*}
$$

If $G(z)=z^{n} \overline{F(1 / \bar{z})}$, then we have $G(z)=Q(z)-\bar{\lambda} z^{n} M$ and

$$
\left|G\left(R e^{i \theta}\right)\right|=\left|R^{n} e^{i n \theta} \overline{F\left(\frac{e^{i \theta}}{R}\right)}\right|=\left|R^{n} F\left(\frac{e^{i \theta}}{R}\right)\right| .
$$

Using this in (14), it follows that for every $R \geq 1$, and $0 \leq \theta<2 \pi$,

$$
\left|P\left(R e^{i \theta}\right)-\lambda M\right|=\left|F\left(R e^{i \theta}\right)\right| \leq\left|G\left(R^{i \theta}\right)\right|=\left|Q\left(R e^{i \theta}\right)-\bar{\lambda} R^{n} e^{i n \theta} M\right|
$$

choosing the argument of λ in R. H. S of this inequality suitably, we get

$$
\left|P\left(R e^{i \theta}\right)\right|-|\lambda| M \leq|\lambda| R^{n}-\left|Q\left(R e^{i \theta}\right)\right|
$$

Or

$$
\left|P\left(R^{i \theta}\right)\right|+\left|Q\left(R^{i \theta}\right)\right| \leq\left(R^{n}+1\right)|\lambda| M
$$

for every $\theta, 0 \leq \theta<2 \pi$, and $k \geq 1$, letting $|\lambda| \rightarrow 1$, we get the assertion of Lemma 9.

Proof of Theorem 3. Since all the zeros of $P(z)$ lie in $|z| \geq k \geq 1$, using Lemma 8, it follows from (7) with $r=1$, that

$$
\begin{equation*}
\left|P\left(R e^{i \theta}\right)\right| \leq\left(\frac{R+k}{1+R k}\right)^{n}\left|R^{n} P\left(\frac{e^{i \theta}}{R}\right)\right|-\left\{\left(\frac{R+k}{1+R k}\right)^{n} R^{n}-1\right\} m \tag{15}
\end{equation*}
$$

for every $\theta, 0 \leq \theta \leq 2 \pi$ and $R \geq 1$. Since

$$
Q(z)=z^{n} P \overline{(1 / \bar{z})}
$$

therefore,

$$
\begin{equation*}
\left|Q\left(R e^{i \theta}\right)\right|=\left|R^{n} P\left(\frac{e^{i \theta}}{R}\right)\right| \tag{16}
\end{equation*}
$$

Using (16) in (15), we get

$$
\left|P\left(R e^{i \theta}\right)\right| \leq\left(\frac{R+k}{1+R k}\right)^{n}\left|Q\left(R e^{i \theta}\right)\right|-\left\{\left(\frac{R+k}{1+R k}\right)^{n} R^{n}-1\right\} m
$$

This implies

$$
\begin{align*}
\frac{(1+R k)^{n}+(R+k)^{n}}{(1+R k)^{n}}\left|P\left(R e^{i \theta}\right)\right| & \leq \\
\left(\frac{R+k}{1+R k}\right)^{n}\left\{\left|P\left(R e^{i \theta}\right)\right|+\left|Q\left(R e^{i \theta}\right)\right|\right\} & -\left\{\left(\frac{R+k}{1+R k}\right)^{n} R^{n}-1\right\} m \tag{17}
\end{align*}
$$

Inequality (17) yields with the help of Lemma 9 that

$$
\begin{aligned}
& \quad \frac{(1+R k)^{n}+(R+k)^{n}}{(1+R k)^{n}}\left|P\left(R e^{i \theta}\right)\right| \leq \\
& \text { (18) } \frac{(R+k)^{n}\left(R^{n}+1\right)}{(1+R k)^{n}} \max _{|z|=1}|P(z)|-\left\{\left(\frac{R+k}{1+R k}\right)^{n} R^{n}-1\right\} \min _{|z|=1}|P(z)|= \\
& \left(\frac{R+k}{1+R k}\right)^{n}\left[\left(R^{n}+1\right) \max _{|z|=1}|P(z)|-\left\{R^{n}-\left(\frac{1+R k}{R+k}\right)^{n}\right\} \min _{|z|=k}|P(z)|\right] .
\end{aligned}
$$

From (18) it follows that

$$
\begin{aligned}
\left|P\left(R e^{i \theta}\right)\right| \leq & \frac{(R+k)^{n}}{(1+R k)^{n}+(R+k)^{n}} \times \\
& {\left[\left(R^{n}+1\right) \max _{|z|=1}|P(z)|-\left\{R^{n}-\left(\frac{1+R k}{R+k}\right)^{n}\right\} \min _{|z|=1}|P(z)|\right] }
\end{aligned}
$$

for every $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$. Which is equivalent to the desired result. This completes the proof of Theorem 3.

Proof of Theorem 4. Let $m=\min _{|z|=k}|P(z)|$, then we have

$$
\begin{equation*}
m \leq|P(z)| \quad \text { for } \quad|z|=k \tag{19}
\end{equation*}
$$

Since $P(z)$ does not vanish in $|z|<k$, and it follows as in the proof of Lemma 8 that for every real or complex number α with $|\alpha| \leq 1$, the polynomial $F(z)=P(z)+\alpha m$ has all its zeros in $|z| \geq k$. If

$$
R_{1} e^{i \theta_{1}}, R_{2} e^{i \theta_{2}}, \ldots, R_{n} e^{i \theta_{n}}
$$

be the zeros of $F(z)$, then $R_{j} \geq k, j=1,2, \ldots, n$ and we have

$$
F(z)=\prod_{j=1}^{n}\left(z-R_{j} e^{i \theta_{j}}\right)
$$

It can be easily seen for $1 \leq R \leq k^{2}$ and $0 \leq \theta<2 \pi$

$$
\begin{aligned}
\left|\frac{P\left(R e^{i \theta}\right)}{P\left(e^{i \theta}\right)}\right| & =\prod_{j=1}^{n}\left|\frac{R e^{i \theta}-R_{j} e^{i \theta_{j}}}{e^{i \theta}-R_{j} e^{i \theta_{j}}}\right| \leq \prod_{j=1}^{n}\left(\frac{R+R_{j}}{1+R_{j}}\right) \\
& \leq \prod_{j=1}^{n}\left(\frac{R+k}{1+k}\right)=\left(\frac{R+k}{1+k}\right)^{n}
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left|F\left(R e^{i \theta}\right)\right| \leq\left(\frac{R+k}{1+k}\right)^{n}\left|F\left(e^{i \theta}\right)\right| \tag{20}
\end{equation*}
$$

for every $\theta, 0 \leq \theta<2 \pi$ and $1 \leq R \leq k^{2}$. Replacing $F(z)$ by $P(z)+\alpha m$ in (20), we get

$$
\begin{equation*}
\left|P\left(R e^{i \theta}\right)+\alpha m\right| \leq\left(\frac{R+k}{1+k}\right)^{n}\left|P\left(e^{i \theta}\right)+\alpha m\right| \tag{21}
\end{equation*}
$$

for every α with $|\alpha| \leq 1,0 \leq \theta<2 \pi$ and $1 \leq R \leq k^{2}$. Since $P(z)$ does not vanish for $|z|<k$, by Maximum Modulus Principle it follows from (19) that

$$
\begin{equation*}
m \leq|P(z)| \quad \text { for } \quad|z| \leq k \quad \text { where } \quad k \geq 1 \tag{22}
\end{equation*}
$$

Taking in particular $z=e^{i \theta}, 0 \leq \theta<2 \pi$ in (22), then

$$
|z|=\left|e^{i \theta}\right|=1 \leq k
$$

and we get

$$
\begin{equation*}
m \leq\left|P\left(e^{i \theta}\right)\right| \quad \text { for } \quad 0 \leq \theta<2 \pi \tag{23}
\end{equation*}
$$

Choosing the argument α with $|\alpha|=1$ on the R. H. S of (21) such that for $|z|=1$,

$$
\begin{equation*}
|P(z)+\alpha m|=|P(z)|-m \tag{24}
\end{equation*}
$$

which is possible by (23), we obtain from (21) that

$$
\left|P\left(R e^{i \theta}\right)\right|-m \leq\left(\frac{R+k}{1+k}\right)^{n}\left\{P\left(e^{i \theta}\right)-m\right\}
$$

for every $\theta, 0 \leq \theta<2 \pi, 1 \leq R \leq k^{2}$. This gives

$$
|P(R z)| \leq\left(\frac{R+k}{1+k}\right)^{n}|P(z)|-\left\{\left(\frac{R+k}{1+k}\right)^{n}-1\right\} m
$$

for $|z|=1$ and $1 \leq R \leq k^{2}$, from which it immediately follows that

$$
\max _{|z|=1}|P(z)| \leq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)|-\left\{\left(\frac{R+k}{1+k}\right)^{n}-1\right\} \min _{|z|=k}|P(z)|
$$

for $|z|=1$ and $1 \leq R \leq k^{2}$. This completes the proof of Theorem 4.

References

[1] N. C. Ankeny and T. J. Rivilin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
[2] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc. 35 (1987), 247- 256.
[3] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory 54 (3), 1988, 306-313.
[4] A. Aziz and Q. G. Mohammad, Growth of polynomials, with zeros outside a circle, Proc. Amer. Math. Soc. 81 (4) (1981), 549-553.
[5] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials: Extremal properties, inequalities, zeros, World Scientiftc Publishing Co., Singapore, 1994.
[6] G. Polya and G. Szego, Aufgaben and Lehrsatze aus der Analysis, Springer-Verlag, Berlin, 1925.
[7] M. Riesz, Über einen Satz des Hern Serge Bernstein, Acta Math. 40 (1961) 337-347.
P. G. Department of Mathematics,

Univ. of Kashmir, Srinagar 190006.
India
Received: 30.10.1998.
Revised: 07.12.1999.

