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Abstract. The authors consider the difference equation

∆2(rn∆2yn) ± qnf(yn) = Qn; n = 1, 2, 3, . . . (∗)

where rn > 0, qn > 0, for all n ≥ 1 and f : R −→ R is continuous such
that uf(u) > 0 for u 6= 0. Dividing the solutions of (∗) into several classes
for the cases Qn = 0 and Qn 6= 0, the authors obtain conditions for the

existence/nonexistence of solutions of (∗) in these classes. Examples are
inserted to illustrate the results.

1. Introduction

In this paper we are concerned with the oscillatory and nonoscillatory
behavior of solutions of the nonlinear nonhomogeneous fourth order difference
equations

(E±) ∆2(rn∆2yn) ± qnf(yn) = Qn; n = 1, 2, 3, . . .

where ∆ is the forward difference operator defined by ∆yn = yn+1 − yn and
the real sequences {rn}, {qn}, {Qn} and the function f satisfies the following
conditions:

(c1) {rn} is a positive real sequence such that 0 < m ≤ rn ≤ M , for all
n ≥ 1;

(c2) qn > 0 for all n ≥ 1 and Qn 6≡ 0 for all n ≥ 1;
(c3) f : R → R is continuous and nondecreasing such that uf(u) > 0 for

u 6= 0.
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By a solution of equation (E±), we always mean a real sequence {yn}
satisfying equation (E±) for all n ≥ 1 and for which sup{| yn |: n ≥ s} > 0
for any s ≥ 1. A solution of (E±) is nonoscillatory if it is either eventually
positive or eventually negative, and oscillatory otherwise.

The problem of oscillation and nonoscillation of solutions of difference
equations has received a great deal of attention in the last few years, for
example, see [1,2,5], which cover a large number of recent papers. Compared
to second order difference equations, the study of higher order equations and
in particular fourth order equations has received considerably less attention,
see, for example [3,4,6,9–14] and the references cited therein. Therefore, in
this paper we study the oscillatory and asymptotic properties of solutions of
the equation (E±).

Before considering the nonhomogeneous equations (E±), we first study
the oscillatory and asymptotic properties of the associated homogeneous equa-
tions

(H±) ∆2(rn∆2yn) ± qnf(yn) = 0.

In Section 2, we classify all nonoscillatory solutions of (H±) into several
classes according to their asymptotic behavior and obtain conditions for the
existence/nonexistence of solutions in these classes. In Section 3, we first
transform the equation (E±) into (H±

± ) and then classify the nonoscillatory
solutions into several classes as in Section 2. Using the results obtained in
Section 2 we establish conditions for the existence/nonexistence of solutions
of (E±) in these classes. Results obtained here are motivated by some of the
results obtained in [3]. Examples are inserted to illustrate the results.

2. Classification of solutions of equation (H±)

Following Yan and Liu [14] and Graef and Thandapani [3], we say that a
solution {yn} is of type I or M1 if for n sufficiently large

yn > 0, ∆yn > 0, rn∆2yn < 0 and ∆(rn∆2yn) > 0;

and it is of type II or M2 if for n sufficiently large

yn > 0, ∆yn > 0, rn∆2yn > 0 and ∆(rn∆2yn) > 0.

Further it has been shown in [3] and [11] under the condition (c1) that a
positive solution of (H+) is necessarily of type M1 or M2. Now we establish
conditions for the nonexistence of solutions of (H+) in the classes M1 and M2.

Theorem 2.1. With respect to the difference equation (H+), assume that

(1)

∞∑

n=n0

qn = ∞.

Then M1 = ∅.
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Proof. Let {yn} be a M1–type solution of equation (H+). Without loss
of generality we may assume that

yn > 0, ∆yn > 0, rn∆2yn < 0 and ∆(rn∆2yn) > 0 for all n ≥ N ≥ 1.

Let wn =
∆(rn∆2yn)
f(yn)

. Then from equation (H+), we have

∆wn ≤ −qn − ∆(rn+1∆
2yn+1)∆f(yn)

f(yn)f(yn+1)

≤ −qn.
Summing the last inequality we see that

n∑

s=N

qs ≤ wN

a contradiction to (1). This completes the proof of the theorem.

Example 2.2. Consider the equation

(2) ∆2

(
n+ 1

n+ 2
∆2yn

)
+

2n2(4n+ 9)

(n− 1)3(n+ 1)(n+ 3)3(n+ 2)2
y3

n = 0, n ≥ 2.

All conditions of Theorem 2.1 are satisfied except condition (1). Hence the
equation (2) has a solution {yn} =

{
n−1

n

}
belonging to the class M1. To

prove our next result we require the following lemma.

Lemma 2.3. Let {yn} be a M2–type solution of equation (H+). Then, for
all sufficiently large n,

(a) ∆(rn∆2yn) ≤ 2rn∆2yn
n ;

(b) rn∆2yn ≤ 6M∆yn
n ;

(c) ∆yn ≤ 2
n

(
6M
m + 1

)
yn.

Proof. Since {yn} is a M2–type solution of (H+), there is an integer
N ≥ 1 such that {yn}, {∆yn}, {rn∆2yn} and {∆(rn∆2yn)} are all positive
for n ≥ N . From equation (H+), we have ∆2(rn∆2yn) < 0 for n ≥ N , so that
∆(rn∆2yn) is decreasing for n ≥ N . Hence

rn∆2yn ≥ rn∆2yn − rN∆2yN =
n−1∑

s=N

∆(rs∆
2ys) ≥ ∆(rn∆2yn)(n−N).

Since (n−N) ≥ n
2 for n ≥ 2N , we have rn∆2yn ≥ n∆(rn∆2yn)

2 for n ≥ 2N ,

which proves (a).
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For n ≥ N1 ≥ 2N we have from summation by parts formula

rs∆
2ys(s−N)

∣∣∣
n

N1

−
n−1∑

s=N1

rs∆
2ys =

n−1∑

s=N1

(s−N1 + 1)∆(rs∆
2ys).

Now using the result (a) in the last equation, we obtain

(3) (n−N1)rn∆2yn ≤ 3

n−1∑

s=N1

rs∆
2ys.

Since 0 < m ≤ rn ≤M and ∆2yn > 0 for n ≥ N1, (3) implies that

(n−N1)rn∆2yn ≤ 3M(∆yn − ∆yN1) ≤ 3M∆yn for n ≥ N1

and
nrn∆2yn

2 ≤ 3M∆yn for n ≥ 2N1. This proves (b).
Again from summation by parts formula for n ≥ N2 ≥ 2N1, we have

m(s−N2)∆ys

∣∣∣
n

N2

−m
n−1∑

s=N2

∆ys = m
n−1∑

s=N2

(s−N2 + 1)∆2ys ≤
n−1∑

s=N2

srs∆
2ys.

Now using the result (b) in the last inequality, we obtain

m(n−N2)∆yn −m

n−1∑

s=N2

∆ys ≤ 6M

n−1∑

s=N2

∆yn.

Thus for n ≥ 2N2, we have

mn

2
∆yn ≤ (6M +m)

n−1∑

s=N2

∆ys = (6M +m)(yn − yN2) ≤ (6M +m)yn,

from which (c) follows. This completes the proof of the lemma.

Remark 2.4. If {yn} is a M1–type solution of (H+), then a similar ar-
gument yields n∆yn ≤ 2yn for all large n.

Theorem 2.5. With respect to the difference equation (H+) assume that

(4)
f(u)

u
≥M1 for all u 6= 0

and

(5)
∞∑

n=n0

n2qn = ∞.

Then M2 = ∅.
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Proof. Let {yn} be a M2–type solution of (H+). Without loss of gener-
ality, we may assume that yn > 0, ∆yn > 0, rn∆2yn > 0 and ∆(rn∆2yn) > 0
for all n ≥ N ≥ 1. Define

wn =
∆(rn∆2yn)

rn∆2yn
.

Then from equation (H+) we have

∆wn ≤ −qnf(yn)

rn∆2yn
≤ 0, n ≥ N

or

(6) ∆wn +
qnf(yn)

rn∆2yn
≤ 0, n ≥ N.

From Lemma 2.3, we have

(7) rn∆2yn ≤ 12M

n2

(
6M

m
+ 1

)
yn, n ≥ 2N2.

For n ≥ 2N2 +N = N3, we have from (6) and (7)

(8) ∆wn +
n2qnf(yn)

12M
(

6M
m + 1

)
yn

≤ 0, n ≥ N3.

In view of condition (4), (8) implies that

∆wn +
M1

12M
(

6M
m + 1

)n2qn ≤ 0, n ≥ N3.

Now summing the last inequality from N3 to n and then using the condition
(5), we see that {wn} is eventually negative, which is absurd. This completes
the proof of the theorem.

Example 2.6. Consider the difference equation

(9) ∆2

(
n− 1

n
∆2yn

)
+

4

n3(n+ 1)(n+ 2)(1 + n4)
(yn + y3

n) = 0, n ≥ 2.

It is easy to see that all conditions of Theorem 2.5 are satisfied except condi-
tion (5). Hence the equation (9) has a solution {yn} = {n2} which belongs to
the class M2.

From Theorem 2.1 and Theorem 2.5, we obtain the following oscillation
criterion for equation (H+).

Theorem 2.7. With respect to the difference equation (H+) assume con-
ditions (4) and (5) hold. Then all solutions of (H+) are oscillatory.

Next we shall give an improved version of Theorem 2.5.
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Theorem 2.8. With respect to the difference equation (H+) assume that
for all c > 0

(10)

∞∑

n=n0

qnf(cn2) = ∞.

Then M2 = ∅.
Proof. Let {yn} be a solution of type M2. Then, as in Theorem 2.5,

we may assume yn, ∆yn, rn∆2yn and ∆(rn∆2yn) are all positive for n ≥ N .
Since {rn∆2yn} is positive and increasing for n ≥ N , there is a constant k > 0
such that rn∆2yn > k for all n ≥ N . It then follows that

yn > c(n−N)(n−N − 1) for all n ≥ N, where c =
k

2M
.

From equation (H+) we have

∆(rN∆2yN ) = ∆(rn∆2yn) +
n−1∑

s=N

qsf(ys) >
n−1∑

s=N

qsf(c(s−N)(s−N + 1)

for all n ≥ N . Thus,
∞∑

n=N

qnf(cn2) <∞

which contradicts (10). This completes the proof.

In an analogous manner we may define a solution {yn} of equation (H−)
to be of type M1 if for n sufficiently large

yn > 0, ∆yn < 0, rn∆2yn > 0 and ∆(rn∆2yn) < 0;

a solution {yn} is of type M2 if for n sufficiently large

yn > 0, ∆yn > 0, rn∆2yn > 0 and ∆(rn∆2yn) < 0;

and a solution {yn} is of type M3 if for n sufficiently large

yn > 0, ∆yn > 0, rn∆2yn > 0 and ∆(rn∆2yn) > 0.

It is easily seen that a positive solution of equation (H−) is necessarily of type
M1, M2 or M3 and the following analogue of Lemma 2.3 can be derived for
M2–type solutions.

Lemma 2.9. Let {yn} be a M2–type solution of equation (H−). Then for
n ≥ N1,

(i) nrn∆2yn ≤ 3M∆yn,

(ii) n∆yn ≤ 2
(

6M
m + 1

)
yn.

In the following we obtain criteria for the nonexistence of M1, M2 and
M3–type solution for the equation (H−).
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Theorem 2.10. (a) Equation (H−) has no M2–type solutions if

(11)

∞∑

n=n0

nqn = ∞.

(b) Any M1–type solution of equation (H−) tends to zero as n→ ∞ if

(12)

∞∑

n=n0

n(3)qn = ∞

where n(3) is the usual factorial notation.

Proof. To prove (b), let {yn} be a positive solution of equation (H−) of
the type M1. Then there is an integer N ≥ 1 such that

yn > 0, ∆yn < 0, rn∆2yn > 0 and ∆(rn∆2yn)) < 0 for n ≥ N.

Let n ≥ N1 and j > 2n = N . Assume that lim
n→∞

yn = c > 0.

Summing equation (H−) twice and using the estimate

rn∆2yn < M∆2yn,

then sum twice the resulting inequality, we have

yn ≥ yj − ∆yj(j − n) +M−1rj∆
2yj

(j − n)(2)

2!
−

M−1∆(rj∆
2yj)

(j − n)(3)

3!
+

1

M3!

j−3∑

s=n

(s− n)(3)qsf(ys),

from which we may obtain
∞∑

s=N∗

s(3)qs < 3!23Mc−1yN .

This contradicts the condition (12). The proof of (a) is similar and hence the
details are omitted. This completes the proof of the theorem.

Example 2.11. Consider the difference equation

(13) ∆2

(
n+ 2

n+ 1
∆2yn

)
− 4

n3(n+ 1)4(n+ 2)(n+ 3)
y3

n = 0, n ≥ 2.

All conditions of Theorem 2.10 (a) are satisfied except condition (11). Hence
the equation (13) has a solution {yn} = {n(n+1)} which belongs to the class
M2. The difference equation

(14) ∆4yn − 24n2

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
y3

n = 0

satisfies all conditions of Theorem 2.10 (b) and hence any M1–type solution
of equation (14) tends to zero as n → ∞. One such solution of (14) is
{yn} =

{
1
n

}
.
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3. Classification of solutions of equation (E±)

Let un = yn − Rn where {yn} is a positive solution of (E±) and {Rn} is
a solution of

(E) ∆2(rn∆2Rn) = Qn.

Then we may transform (E+) to homogeneous difference equation for which
the results of Section 2 may be applied. Since the resulting equation does
not have precise form (H+) or (H−), the arguments have to be modified
accordingly. Specifically

∆2(rn∆2un) = ∆2(rn∆2yn) − ∆2(rn∆2Rn) = −qnf(yn);

eliminating yn, we see that {un} is a solution of the homogeneous equation

(H+
+) ∆2(rn∆2un) + qnf(un +Rn) = 0.

Since yn > 0 for n ≥ N ≥ 1, we have un +Rn > 0 and ∆2(rn∆2un) < 0 for all
n ≥ N . Therefore {∆(rn∆2un)}, {rn∆2un}, {∆un} and {un} are monotonic
and one-signed. If un < 0, that is, 0 < yn < Rn, we may further transform
the equation by assuming vn = −un. Then

∆2(rn∆2vn) = −∆2(rn∆2un) = qnf(Rn − vn).

Thus vn = Rn − yn is positive solution of the equation

(H−
+) ∆(rn∆2vn) − qnf(Rn − vn) = 0.

If {un} is a positive solution of (H+
+ ) of type M1 or M2, we say that {yn} is

a positive solution of (E+) of type MR
1 or MR

2 .
If {vn} is a positive solution of (H−

+ ) of type M1, M2 or M3, we say that {yn}
is a positive solution of (E+) of MR

1 , MR
2 or MR

3 .
Similarly for the equation (E−), we may let un = yn − Rn. As above, it

follows that {un} is a nonoscillatory solution of

(H−
−) ∆(rn∆2un) − qnf(un +Rn) = 0.

If un < 0, we may let, vn = −un then {vn} is a positive solution of

(H+
−) ∆2(rn∆2vn) + qnf(Rn − vn) = 0.

If {un} is a positive solution of (H−
− ) of type M1, M2 or M3, we say that {yn}

is a positive solution of (E−) of type MR
1 , MR

2 or MR
3 ; if {vn} is a positive

solution of (H+
− ) of type M1 or M2, then we say that {yn} a positive solution

of (E−) of type MR
1 or MR

2 .
In this section we obtain conditions for the nonexistence of positive solu-

tions of (E+) of types MR
j (j = 1, 2) and MR

j (j = 1, 2, 3). Similar results are

also obtained for the equation (E−).
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Theorem 3.1. Let {Rn} be a bounded solution of (E). Assume that

(15)

∞∑

n=n0

n2qn = ∞

and

(16)
f(u)

u
≥ B > 0 for u 6= 0,

then equation (E+) has no MR
2 –type solutions.

Proof. Assume that {yn} is a positive solution of (E+) of MR
2 –type for

n ≥ N . Then un = yn −Rn is a M2–type solution of (H+
+ ) for n ≥ N . Let

zn =
∆(rn∆2un)

rn∆2un
, n ≥ N.

Then

∆zn = − qnf(un +Rn)

rn∆2un
− ∆(rn+1∆

2un+1)∆(rn∆2un)

rn∆2unrn+1∆2un+1

≤− qnf(un +Rn)

rn∆2un
, n ≥ N.(17)

By Lemma 2.3, we have rn∆2un ≤ 12M
n2

(
6M
m + 1

)
un and using this in (17),

we obtain

(18) ∆zn ≤ − qnn
2f(un +Rn)

12M
(

6M
m + 1

)
un

= −Aqnn2 f(un +Rn)

un
,

where A is constant. From (16) and (18), we have

(19) ∆zn +ABqnn
2

(
un +Rn

un

)
≤ 0.

Since {Rn} is bounded and {yn} is of type MR
2 , {un} is unbounded, which

implies Rn
un

→ 0 as n→ ∞. So for any ε > 0 with 0 < ε < 1, 1 + Rn
un

≥ 1− ε

for n sufficiently large (n > N1 ≥ N). Substituting this estimate in (19) and
summing the resulting inequality, we obtain

AB(1 − ε)

n−1∑

s=N1

s2qs <∞,

which contradicts (13). This completes the proof of the theorem.

Remark 3.2. If {Rn} is oscillatory or eventually negative, then un > 0
and the conclusion of Theorem 3.1 becomes: A positive solution of (E+) is of
type MR

1 .
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Theorem 3.3. Let {Rn} be a solution of equation (E). Equation (E+)
has no positive solutions of types MR

1 or MR
2 if

(20)

∞∑

n=N

qnf(Rn + c) = ∞

for all positive constant c.

Proof. Suppose that {yn} is a positive solution of (E+) of type MR
1 or

MR
2 for n ≥ N . Then un = yn −Rn is a M1 or M2–type solution of (E+

+) for

n ≥ N2 ≥ N . Summing (E+
+) we obtain

n−1∑

s=N2

qsf(us +Rs) = ∆(rN2∆
2uN2) − ∆(rn∆2un)

or
n−1∑

s=N2

qsf(us +Rs) ≤ ∆(rN2∆
2uN2).

Since {un} is M1 or M2–type solution, we have ∆un > 0 for n ≥ N1 and
hence there is a constant c > 0 such that un ≥ c for n ≥ N2 and

n−1∑

s=N2

qsf(Rs + c) <∞

a contradiction to (20). This completes the proof.

Example 3.4. Consider the difference equation

∆4yn +
24

n2(n+ 1)2(n+ 2)(n+ 3)(n+ 4)(1 + n(n+ 1))
yn(1+ | yn |)

=
24

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

(21)

With Rn = 1
n all conditions of Theorem 3.1 are satisfied except condition (15)

and hence the equation (21) has a solution {yn} = {n(n+ 1)} which belongs
to the class MR

2 .

Remark 3.5. If {Rn} is oscillatory or eventually negative, the conclu-
sion of Theorem 3.3 may be strengthened to: Equation (E+) has no positive
solutions.

Theorem 3.6. Let {Rn} be a solution of equation (E).

(i) Equation (E+) has no positive solution of type MR
2 such that

rn∆2(yn −Rn) is bounded if for all positive constants c

(22)
∞∑

n=N

nqnf(Rn + c) = ∞.
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(ii) Equation (E+) has no positive solution of type MR
1 such that yn −Rn

is bounded if for all positive constants c

(23)

∞∑

n=N

n(3)qnf(Rn + c) = ∞,

where n(3) is the usual factorial notation.

Proof. We prove part (ii) of the theorem since the proof of part (i) is
similar and hence the details are omitted. Let {yn} be a MR

1 –type solution
of (E+) for n ≥ N . Then un = yn − Rn is a M1–type solution of (H+

+ ) for

n ≥ N1 ≥ N , and ∆2(rn∆2un) for n ≥ N1 ≥ N . Multiplying (H+
+ ) by n(3)

and summing from N1 to n− 1, we obtain

n−1∑

s=N1

s(3)qsf(us +Rs) = −
n−1∑

s=N1

s(3)∆2(rs∆
2us)

≤ −[ρ(s)]nN1
− 6muN1+3 + 6mun+3

where ρ(s) = s(3)∆(rs∆
2us) − 3s(2)rs+1∆

2us+1 + 6ms∆us+2.
This contradicts (23) if {un} is bounded for large n. This completes the proof.

Corollary 3.7. Let {Rn} be a bounded solution of (E). Then the equa-
tion (E+) has no bounded positive solutions of type MR

1 or MR
2 if (23) holds

for all positive constants c.

The proof follows by observing that since {Rn} is bounded, a MR
1 or MR

2

solution {yn} is bounded if and only if un = yn − Rn is bounded. A MR
2

solution is unbounded by Lemma 2.3. A bounded MR
1 solution is excluded

by Theorem 3.6 (ii).

Remark 3.8. In view of Remarks 3.2 and 3.5 we may assume, without
loss of generality, that Rn > 0 in considering the behavior of positive solutions
of (E+) of types MR

1 , MR
2 and MR

3 .

Applying the proof of Theorem 2.10 to the equations (H−
+ ) one can obtain

information regarding the behavior of MR
1 or MR

2 type solutions of (E+) for
large n.

Theorem 3.9. Let {Rn} be a positive solution of equation (E).

(i) Equation (E+) has no MR
2 –type solution which is bounded away from

zero as n→ ∞ if

(24)

∞∑

n=n0

nqn = ∞.
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(ii) Equation (E+) has no MR
1 –type solution which is bounded away from

zero as n→ ∞ if

(25)

∞∑

n=n0

n(3)qn = ∞.

Proof. We shall prove part (ii) since the proof of part (i) is similar and
hence the details are omitted. Let {yn} be a MR

1 –type solution of (E+) for
n ≥ N . Then vn = Rn − yn is a positive solution of (H−

+ ) of type M1 for

n ≥ N and ∆2(rn∆2vn) > 0 for n ≥ N1 ≥ N . If we assume that {yn} is
bounded away from zero as n → ∞, then there exists a positive constant c
such that (Rn − vn) ≥ c for n ≥ N2 ≥ N∗. We may suppose n ≥ N2 and if
j ≥ 2n = N1. As in the proof of Theorem 2.10, we may obtain via summation
of equation (H−

+ ) from n to j − 1 and elementary estimates

∞∑

s=N∗

s(3)qs ≤ 3!23MC−1yN1 ,

which contradicts (25).

Finally we consider the nonhomogeneous equation (E−) under the as-
sumption that {Rn} is a solution of (E). We first provide conditions for the
nonexistence of MR

1 and MR
2 type solutions.

Theorem 3.10. Let {Rn} be a solution of equation (E).

(i) Equation (E−) has no MR
2 –type solutions if for all positive

constants c
∞∑

n=n0

nqnf(Rn + c) = ∞.

(ii) Suppose that for all positive constants c

∞∑

n=n0

n(3)qnf(Rn + c) = ∞,

then any MR
1 type solution {yn} of (E−) satisfies

lim
n→∞

(yn −Rn) = 0.

Proof. The proof is similar to that of Theorems 2.10 and 3.9 and hence
the details are omitted.

Now letting wn =
∆(rn∆vn)

vn
and zn =

∆(rn∆vn)
rn∆vn

and repeating the

procedures which led to Theorem 3.1, we may obtain the following analogue.
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Theorem 3.11. Let {Rn} be a bounded solution of equation (E).

(i) Equation (E−) has no positive MR
2 solution which is bounded away

from zero if
∞∑

n=n0

n(2)qn = ∞.

(ii) Equation (E−) has no positive MR
1 solution which is bounded away

from zero as n→ ∞ if
∞∑

n=n0

qn = ∞.
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