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ABSTRACT. Let X be a continuum and Y a subcontinuum of X. The
purpose of this paper is to investigate the relation between the conditions
“X is unicoherent at Y” and “Y is unicoherent”. We say that X is strangled
by Y if the closure of each component of X \ Y intersects Y in one single
point. We prove: If X is strangled by Y and Y is unicoherent then X is
unicoherent at Y. We also prove the converse for a locally connected (not
necessarily metric) continuum X.

1. INTRODUCTION

In this paper continuum means a compact, connected and metric space.
A subcontinuum of a space X is a subspace of X which is a continuum.
In section 3 we also consider compact, connected and Hausdorff spaces (not
necessarily metric). These spaces will be called Hausdorff continua.

The continuum X is said to be unicoherent if every pair of subcontinua of
X whose union is X has connected intersection. The concept of unicoherence
at a subcontinuum of a metric continuum is due to M. A. Owens [8]. The same
definition may include the nonmetric case. It is said that X is unicoherent at
a subcontinuum Y of X if for every pair H and K of subcontinua of X whose
union is X, the intersection H N K NY is a subcontinuum of X.

First of all, observe that neither one of the following implications is true:
1) X is unicoherent at a subcontinuum Y =Y is unicoherent.
2) Y is unicoherent = X is unicoherent at Y .
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Indeed, as a counterexample to the first one, let X consists of a circum-
ference Y and a spiral (homeomorphic copy of [0,00)) converging to Y. For
the second, take X as a two dimensional cell and Y any subarc of X. (Notice
that, in this example, X is unicoherent and locally connected).

The purpose of this paper is to investigate under which additional prop-
erties, the concepts “X is unicoherent at a subcontinuum Y” and “Y is uni-
coherent” are equivalent.

We define: A continuum X is strangled by a subcontinuum Y if the
intersection of Y with the closure of each component of X \ Y consists of a
single point. When X is a semi-locally connected continuum, X is strangled
by Y if and only if ¥ is the union of cyclic elements (see [9,IV, Theorem 3.3,
p.67]). We also observe that every locally connected (metric) continuum is
semi-locally connected [9,I,Corollary 13.21, p.20]

We prove the following result. Assume that X is strangled by Y and
Y is unicoherent. Then X is unicoherent at Y. Since the converse is not
true (Example 1) we discuss the problem under properties concerning local
connectedness.

In section 3 we prove Theorem 11 which characterizes those subcontinua
Y of a locally connected (not necessarily metric) continuum X such that X
is unicoherent at Y.

A dendrite is a locally connected and hereditarily unicoherent metric
continuum. Characterizations of dendrites in terms of unicoherence at sub-
continua are given in [1,3,7,8]. As a corollary of our results, we prove the
following generalization of Theorem 1 in [3]: If a locally connected metric
continuum X is unicoherent at a one-dimensional subcontinuum Y then Y is
a dendrite. (Theorem 13)

Recently, some papers have been written about unicoherence at subcon-
tinua ([3,4,10]). In particular, these papers deal with some questions posed
in [2] about mappings preserving unicoherence at subcontinua.

We will use the following notation in this paper:

P(X) denotes the family of subsets of X, C'(X) is the set of all subcon-

tinua of X and I'(X) = C(X)\ {(X}U{{z} : z € X}). If Z is a subset of X,
the set of components of Z will be denoted by K(Z).

2. STRANGLED.

‘We prove here that under the condition “X is strangled by Y”,
Y is unicoherent implies X is unicoherent at Y, the converse is
discussed in this section.
The following results will be used below:

THEOREM 2.1. [6, ChV. 48 VIII, Theorem 5,p.220] If a space K is ir-
reducibly connected between the closed sets M and N then K \ (M U N) is
connected and dense in K.
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THEOREM 2.2. [6,ChV. 48 I X, Theorem 3,p.223] If an indecomposable
continuum X is irreducibly connected between two closed sets M and N, then
there exists a composant L such that LN (M UN) = 0.

If X is strangled by Y and C € K(X \ ' Y) we call the unique point in
Cl(C)NY the attaching point of C, and we denote it by att(C).

LEMMA 2.3. Let X be a metric continuum which is strangled by Y €
C(X). Then

i) For every H € C(X), HNY is connected.

ii) att(C) € H whenever C € K(X\Y), and HNC #Q# HN (X \ O).

i) H N CU(C) is connected for every C € K(X \Y)

PROOF. i) Suppose H NY is not connected, so that HNY = M | N. Let
K € C(H) be irreducible between M and N. We consider the following two
cases:

Case 1) K is decomposable. Since K is irreducibly connected between the
closed sets M N K and N N K, it follows from Theorem 1 that K \ (M U N)
= K\Y is a connected subset which is dense in K. Therefore K \ (M UN) is
contained in C € K(X\Y) and K = CI(K\ (M UN)) C Cl(C). But this is a
contradiction since C1(C) N'Y contains a single point, while K N'Y contains
at least two points (one in M and one in N).

Case 2) K is indecomposable. Then by Theorem 2 there exists a composant
L of K contained in K \ (M UN). Being a composant, L is a connected subset
which is dense in K . Since L is contained in K \ Y, L is contained in some
CeK(X\Y)sothat KNY = CI(L)NY is contained in CI(C)NY and this
again is a contradiction.

ii) The hypothesis imply that H NY # (. Let K € C(H) be irreducible
between H NY and a point p € HNC' . We consider the same two cases than
in the proof of i) and proceed in the same way with {p} = M and HNY = N.
Casel) K is decomposable. Then the set L = K \ (M UN) is a connected
subset of K which is dense in K. Since L is contained in X \ Y then it is
contained in D € K(X \ Y). Therefore K = Ci(L) C Cl(D) = D U att(D).
Since p € K, D = C so that att(C) € K C H.

Case 2) K is indecomposable. The composant L is contained in D € (X \Y).
On the other hand since K = CI(L) C CI(D) = DU att(D), then D = C and
att(C) € K C H.

iii) Suppose that H N CI(C) is not connected, so it is clear that H N C # 0.
Therefore, by i) att(C) € H. Write H N Cl(C) = M|N and suppose that
att(C) € N. Let K € C(H) be irreducible between M and Y. As above, we
consider two cases and again we get a connected and dense subset L of K\Y
which intersects C. Therefore L C C which implies K C CI(C). This shows
that H N CI(C) contains a connected set intersecting M and N contrary to
the assumption. O
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Figure 1

THEOREM 2.4. Let X be a continuum and Y € C(X). Suppose that X is
strangled by Y and 'Y is unicoherent. Then X is unicoherent at Y.

PrOOF. Follows from Lemma 2.3 i) O
The following example shows that the converse of Theorem 3 is not true.

EXAMPLE 2.1 (See Figure 1). Let Y C IR? be the union of S' and the
arc [1,2] x {0}. Let Cp = {(1+ 3=)(cosf,sinf): 0 € [0,(2— 5)7|} and
X =Y UlU,en Cn- It is easy to verify that X is strangled by Y. In order
to prove that X is unicoherent at Y, suppose that X = H U K. Then, for
infinitely many indices n € IN, C,, C H. Since St C CI(lUC,,) then we can
assume that for some a <2, HNY = S'U([1,a] x {0}), so that HNKNY =
KN (StU[1,a] x {0}) which is a connected set by Lemma 2.3 i).

Nevertheless we have the following Theorem

THEOREM 2.5. Let X be a continuum and Y € C(X). Assume that X
is locally connected at each point of BA(Y). If X is strangled by Y and X s
unicoherent at Y then Y is unicoherent.

PROOF. Suppose that Y is not unicoherent so that Y = H U K where H,
K € C(X) and HN K is not connected. Let H = H UV where V is the
closure of the union of all components of X \ Y whose attaching point is in
H. Similarly define K = K UV

We want to prove that HNKANY is not connected, contrary to the
hypothesis.

Let x € (HNVk)\ K. Then z = lim z,, where z,, € C,, € K(X \Y) and
att(Cy) € K. Since x ¢ K there is an open and connected subset U of X such
that x € U C CI(U) C H \ K so that z,, € CI(U) for n large enough. This
implies that for some fixed n € IN, CI(U)NC,, # 0 and CI({U)N X \ C), # 0.
Therefore, by Lemma 2.3 ii) att(C,) € CI(U) and this is a contradiction.
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This proves that HNV g C HN K. Similarly KNV € HN K. On the other
hand, since Y = HU K, then (Vg NVg)NY C HN K.

Therefore the equality

HNKNY =(HNK)UHNVE)U(KNVy)U(VgNVg)NY

becomes

HNKNY = HNK and this proves that H N K NY is not connected, as
desired. O

QUESTION: Let X be a continuum and Y € C(X). Assume that X is locally
connected at each point of Bd(Y') and X is unicoherent at Y. Is it true that
Y intersects the closure of each component of X \ Y in a connected set? Is X
strangled by Y7

Example 2.1 shows that, in Theorem 2.5, the hypothesis X is locally con-
nected at every point of Bd(Y') cannot be changed by X is locally connected at
some points of Bd(Y'). Indeed It is easy to verify that X is locally connected
at every point in (1,2] x {0}.

THEOREM 2.6. Let X be strangled by a subcontinuum Y. Assume that
X contains two open and connected disjoint subsets Uy, Us such that Y \ U;
is connected, i = 1,2 but Y \ (Uy U Us) is not connected. Then X is not
unicoherent at Y .

ProOOF. Let H; = (Y\U;)UCI({CI(C) : C € K(X \Y),att(C) e Y\ U,}).
Clearly, H; € C(X), i =1,2 and X = H; U Hy. It follows from Lemma 2.3
i), that H; N U; = (0 whenever i,5 € {1,2}, ¢ # j. This implies that
HiNHyNY =Y \ (U; UUsy) which is not connected. O

In particular, suppose that X is strangled by S' and that there exist
y1,%2 € S and connected disjoint neighborhoods of 3; and 3». Then it follows
from Lemma 2.3 ¢), that the hypothesis of the last theorem are satisfied.

3. LocAaLLy CONNECTED HAUSDORFF CONTINUA

In this section we consider Hausdorff continua, which are lo-
cally connected. For such spaces X we prove Theorem 11 which
characterizes those Y € C(X) such that X is unicoherent at Y.

Recall that Hausdorff continuum means compact, connected and Haus-
dorff space (not necessarily metric). We will use the following definitions and
results:

A chain in a space X is a finite family {Uy, ..., Up,} of open subsets of X
(called links of the chain) such that U; NU; # 0 iff | i —j|<1

THEOREM 3.1. [5, Theorem 3.4,p.108] Let W C P(X) be an open cover
of a connected space X. Then for every u,v € X there is a chain from u to v
whose links are elements of WW.



228 DEBORAH OLIVEROS AND ISABEL PUGA

THEOREM 3.2. [6,ChV.,47, I, Theorem 3,p.168] Let X be a Hausdorff
continuum and C € C(X). Suppose that X \ C = AU B is a separation
of X\ C (A and B are open and nonempty subsets of X \ C and they are
disjoint). Then C' U A and C U B are Hausdorff continua

THEOREM 3.3. [6,ChV., 47,111, Theorem 2,p.172] Let E be a proper and
non-empty subset of a Hausdorff continuum X. If U € K(E) then CIL(U) N
Bd(E) # 0.

In what follows X stands for a locally connected, Hausdorff continuum.

LEMMA 3.4. LetY € C(X) and U C K(X\Y). Then
ClJ{U U eup)\|J{U : U eu} ¢ Bd(Y)

PrOOF. Let z € Cl(U{U : U eU}) \ U{U : U € U} and suppose = ¢
Bd(Y). Then xz € X \Y, so that z € U for some Uy € K(X \Y).
Therefore Uy ¢ U and since x € CI(U{U:U eU}) and Uy is open,
Up N (U{U : U eU}) # (. But this is is impossible since the components
are disjoint. O

A similar version of Lemma 3.5, below, was proved in section 2 (Lemma
2.3 7). In the present case we do not require that X be metric and we only
require connectedness for the subset V of X. Instead, X is assumed to be
locally connected.

LEMMA 3.5. Let Y € C(X). Suppose that X is strangled by Y. Then for
each connected subset V. of X, VNY is also a connected subset of X.

PROOF. We may assume that VNY # 0. Let VNY = AU B where
Cl(A)NB = 0 = CI(B)NA. It follows immediately that CI(A)NCI(B) C Y\V.

Define M* = CI(U{U e K(X\Y):att(U) € A}) and M = M*NV.
Analogously, let N* = CI(U{U e K(X \Y):att(U) € B} and N =N*NV.
In what follows it will be proved that V is the union of the sets M U A and
N U B and that these two sets are separated. Therefore one of them shall be
empty, say NUB = (. This implies B = () and proves that V' NY is connected.

We assert that V\Y C MUN. Indeed, if x € V\Y thenz € U € K(X\Y)
so that © € V N U. On the other hand V N (X \ U) # 0 because VNY # 0.
Then, since V is connected, VN Bd(U) # ) and therefore Bd(U) = att(U) =
VNBIU) cVNY =AU B and it follows that CI(U) C M* U N*. Hence
Cl(U)NV € M UN and therefore x € (M U N).

It follows now that V.= (VNY)U (V\Y) = (AUB)U(MUN) =
(M UA)U (N UB). In order to verify that these two sets are separated
it will be enough to prove that CI(M U A) N (N U B) = 0. ( Similarly
(MUA)NCI(NUB)=0).

We assert that M* N Bd(Y) C CI(A) (1)

Let x € M* N Bd(Y). Any open set containing x, contains an open and
connected set W containing . Since z € M*, then W N U =# () for some U
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in the set defining M*. Hence W N Bd(U) # @ so that W N A # () and this
proves that z € Cl(A).
Similarly N* N Bd(Y) C Cl(B) (2)
Now we consider the equality:
CIIMUA)N(NUB)=(Cl(M)NN)U (Cl(M)n B)
U(CI(A)NN)U (CI(A) N B)

and prove that each one of the parenthesis on its right side is an empty set.

Let z € CI(M)NN. Then z € M*\J{U € K(X \Y) :att(U) € A}. By
Lemma 3.4, z € Bd(Y) and by (1), z € Cl(A). Similarly, = € CI(B), so that
x € Cl(A)NCI(B) C Y \ V. This contradicts that € V and proves that
CUM)N N = 0.

Now, let x € CI(M) N B. Again, by Lemma 3.4, € Bd(Y) and by (1),
x € CI(A). But this is a contradiction since CI(A) N B = .

Since Cl(A)NB = 0, it only remains to prove that CI(A)NN = (. Let x €
Cl(A)NN. Then = € Bd(Y). By (2) x € Cl(B). Therefore z € CI(A)NCI(B)
so that = ¢ V. O

THEOREM 3.6. Assume that X is unicoherent at' Y €C(X). Then, X is
strangled by Y.

PROOF. Let U be any component of X \ Y, then we have to prove that
Cl(U)NY is a single point. Since the boundary of every nonempty, proper
subset of a connected space X is nonempty, we only need to prove that Bd(U)
contains no more than one point. Since X is a regular and locally connected
space, then U is open [5,Theorem 3.2,p.106] and for each u€ U there is an
open and connected subset W, of U such that u € W,, C Cl(W,,) C U. Let us
suppose that there are two different points p and ¢ in Bd(U) and let P and
@ be open and connected neighborhoods of p and ¢ respectively such that
Cl(P)NCI(Q) =0. Let u € PNU and v € QNU. Since U is connected, there
exists, by Theorem 3.1, a finite set ' C U such that the set {W, : 2 € F'}
is a chain from u to v. Therefore H = (|J,cp Cl(W,)) UCI(P)UCI(Q) is a
subcontinuum of X (in the metric case, by [7,Theorem 8.26 p.132] an arc from
u to v can be taken instead of (J, . CI(W,)). Now we consider two cases:

i) X \ H is connected. Then CI(X \ H) is a subcontinuum of X and X =
HUCIH(X\ H). It follows from the definition of H, that HNCI(X \ H)NY =
(BA(P)U Bd(@Q))NY, so that HNCU(X \ H)NY = Bdy(P) U Bdy(Q).
Since Y is connected then Bdy (P) and Bdy (Q) are nonempty subsets of Y.
Moreover each one of them is closed and they are disjoint. This proves that
HNYNCI(X \ H) is not connected.

it) X \ H is not connected. Let X \ H = AU B be a separation of X \ H.
Then, by Theorem 3.1, X = (AU H) U (B U H) is a decomposition of X into
two of its subcontinua. On the other hand (AUH)N(BUH)NY = HNY =
(CUP)NY)U(CL(Q)NY) gives a separation of the set (AUH)N(BUH)NY,
so that it is not connected. o
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The following example shows that the converse of Theorem 3.6 fails to be
true.

EXAMPLE 3.1. Let X be a figure eight. In other words, X is the union
of two circumferences intersecting in exactly one point p. Let Y be one of
the two circumferences. Then X is a locally connected continuum which is not
unicoherent at Y € T'(X). Nevertheless, the boundary of the connected set
X\Y is the singleton {p}.

We recall that a cut point of a connected space X is a point p € X such
that X \ {p} is not connected.

COROLLARY 3.7. Assume that X has no cut points. Then X is not uni-
coherent at any Y € I'(X).

PROOF. We notice that the boundary of a nonempty and open subset U
of X whose complement contains more than one point, contains at least two
points. Indeed, Bd(U) is nonempty since X is connected. On the other hand
if Bd(U) = {p} then Bd(X \U) = {p} and X\ {p} = UU(X \(UU{p})) is a
separation of X \ {p}, so that p is a cut point of X. Now, since X \ Y is open
and X is locally connected, then each U € K(X \Y) is an open set. Since
Y € T'(X) then U is a proper subset of X whose complement is not a single
point. Therefore, Bd(U) has more than one point and hence, by Theorem
3.6, X is not unicoherent at Y. O

THEOREM 3.8. Suppose that X is unicoherent at’ Y € C(X). Then'Y is
unicoherent.

PrRoOOF. Let H and K be subcontinua of Y such that Y = H U K. We
need to prove that H N K is connected.

Let H (resp. K) be the family of U € K(X \ Y) such that U N H #
(resp. UNK #0).

Let M = Huu{U:Uef{} and N = K U U{U:Uef(}. It is
clear that M and N are connected subsets of X. It follows from Theorem 3.3
that X = M UN. To prove that M is a closed set, take z € CI(M) \ M,

hence = € C’Z(U{U U e ﬁ} )\ U{U U e I:I} Hence, by Lemma 3.4,

x € Bd(Y). Since © ¢ M then ¢ H. Let W be an open set such that
x € W C X\ H. There exists Uy € H such that W N Uy # 0. Since Uy is an
open set of X then W N Up is an open and nonempty subset of W and it is
also a proper subset of W since x € W \ Up. On the other hand, by Theorem
3.6, Bd(Uy) = att(Uy) € H, so that W N Uy is a closed subset of W. Hence
W is not a connected set. This contradicts that X is a locally connected
space and proves that X = M U N is a decomposition of X into two of its
subcontinua. Therefore, by hypothesis, M N N NY is a connected set and
since HNK = M NNNY then HN K is connected. O
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THEOREM 3.9. Let X be a locally connected and Hausdorff continuum.
Then X is unicoherent at Y if and only if the following two conditions are
satisfied:

i) X is strangled by Y and

it) Y is unicoherent.

PROOF. The necessity follows from Theorems 3.6 and 3.8 For the suffi-
ciency, let H and K be subcontinua of X such that X = H U K. By Lemma
3.5, HNY and K NY are subcontinua of Y and since Y = (HNY)U (K NY)
and Y is unicoherent then H N K NY is connected, so that X is unicoherent
at Y. o

The following example shows that, if local connectedness is dropped in
the last theorem then conditions 4) and i) are not necessarily satisfied.

EXAMPLE 3.2. let X consists of a circumference Y contained in the Eu-
clidean plane and a spiral (homeomorphic copy of a ray) converging to Y.
Then X is unicoherent at Y but neither i) nor i) are satisfied.

THEOREM 3.10. Let X be a locally connected continuum. X strangled by
Y and X is unicoherent, then X is unicoherent at'Y .

PRrROOF. Let H and K be subcontinua of X such that X = H U K. Then
H N K is connected and, by Lemma 3.4, H N K NY is connected, so that X
is unicoherent at Y.

Nevertheless, the converse is not true. Indeed, let X be the union of a
circumference C and an arc Y such that C'NY is one of the end points of Y.
Then X is unicoherent at Y but X is not unicoherent.

As a consequence of Theorem 3.1 and Lemma 3.5 we have the following
Theorem.

THEOREM 3.11. Let X be a locally connected continuum which is unico-
herent at Y € C(X). Then'Y is locally connected.

The following Theorem generalizes Theorem 1 in [3].

THEOREM 3.12. Let X be a locally connected metric continuum. Suppose
that X is unicoherent at’ Y € C(X) and Y is one dimensional. Then'Y is a
dendrite.

PrOOF. By Theorems 3.8 and 3.11, Y is locally connected and unico-
herent. Every one dimensional, locally connected and unicoherent metric
continuum is a dendrite, [ 6,VIIL57IIT,Corollary8,p.442] , so Y is a dendrite.

0

The following characterization of dendrites follows immediately from The-
orem 3.4:

A locally connected metric continuum X is a dendrite iff X is unicoherent at
Y for every Y € C(X). A stronger version of this characterization is proved
in [8,Theorem 3.7 p.155 ]
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