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Abstract. Recently S. Mardešić and the author considered iterated
limits in the compact case. Using ANR-resolutions, they also generalized
their results to non-compact spaces. This paper gives an analogous poly-
hedral result in the general case. More precisely, for a given resolution of a
topological space, polyhedral resolutions of its terms are constructed in a
way that one can organize them naturally to obtain a polyhedral resolution
of the same space.

1. Introduction

It is a well-known fact ([13], [6]) that, in general, a compact Hausdorff
space X with dimX ≤ m, m ∈ N, cannot be obtained by means of a polyhe-
dral inverse limit p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) such that dimXλ ≤ m,
for all λ ∈ Λ. (There is an affirmative result in the theory of approximate sys-
tems, [8].) As a consequence of this difficulty, an interesting problem arises:
Consider an inverse system X = (Xλ, pλλ′ ,Λ) of compact Hausdorff spaces.

Let rλ = (rλ
ν ) : Xλ → Zλ = (Zλ

ν , r
λ
νν′ , Nλ), λ ∈ Λ, be arbitrary polyhe-

dral limits. Then, generally, the polyhedra Zλ
ν , λ ∈ Λ, ν ∈ Nλ, cannot

be organized into an inverse system having the limit space lim X. Assum-
ing the contrary and starting from a compact Hausdorff space X and an
inverse system X of compact metric spaces Xλ with lim X = X (see [6]),

one could choose inverse sequences Zλ consisting of compact polyhedra Zλ
n

of minimal dimensions (see [5]), and get a contradiction. (Again, there is
a positive solution, up to bonding mappings, in the theory of approximate
systems, [12].) Therefore, the following problem arises: Is it possible, for a

given X, to construct ”special” polyhedral (or ANR) limits pλ : Xλ → Xλ
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and maps pλλ′

= (pλλ′

, pλλ′

ν ) : Xλ′ → Xλ of the corresponding systems,

lim pλλ′

= pλλ′ , which can be organized naturally in a way to yield an in-
verse system Y = (Yµ, qµµ′ ,M) satisfying lim Y = lim X? Here ”naturally”
means: M = ∪

λ∈Λ
({λ} × Nλ), µ = (λ, ν) ≤ (λ′, ν′) = µ′ implies λ ≤ λ′ and

pλλ′

(ν) ≤ ν′, Yµ = Xλ
ν , qµµ′ are compositions of some pλ

νν′ and pλλ′

ν , ν ≤ ν′

in Nλ, λ ≤ λ′ in Λ, while the projections qµ : lim Y → Yµ are compositions
of pλ and pλ

ν .
In the case of compact Hausdorff spaces, S. Mardešić and the author [11]
recently solved the problem in the affirmative. Moreover, using ANR-
resolutions, the corresponding construction works generally for arbitrary
spaces. (It is well known that inverse limits do not behave properly in the
non-compact case, and that their proper substitution are resolutions.) In the
general case, a polyhedral solution of the problem remained an open question.

In this paper we have exhibited a construction by induction (quite dif-
ferent from that of [11]), which answers the question in the affirmative. The
basic step in this inductive construction is the construction of a special poly-
hedral resolution of a mapping, when a special kind of a polyhedral resolution
of the codomain space is given in advance.

Let us recall some basic notions and facts needed in the sequel. By a
space we mean a topological space, and by a mapping a continuous function.
Cov(X) denotes the set of all normal coverings of a space X. (These are
open coverings which admit a subordinate partition of unity.) If n ∈ N and
c = {U1, · · · ,Un} ⊆ Cov(X), then ∧c or U1 ∧ · · · ∧ Un denotes the covering of
X consisting of all non-empty intersections ∩

i
Ui, where Ui ∈ Ui. Of course,

∧c ∈ Cov(X). If U is a covering of X and A ⊆ X , then St(A,U) ⊆ X
denotes the union of all members of U meeting A; StU denotes the covering
consisting of all St(U,U), U ∈ U . Every normal covering U of X admits a
normal covering U ′ of X such that StU ′ refines U , StU ′ ≤ U .
By a polyhedron we mean a triangulable space endowed with the CW-
topology. If U is an open covering of a space X and |N(U)| is the correspond-
ing geometric nerve, then a mapping p : X → |N(U)| is (strictly) canonical
whenever p−1(St(U,U)) ⊆ U (p−1(St(U,U)) = U), U ∈ U . Every locally finite
partition of unity Φ = (ϕU , U ∈ U) subordinated to U determines a canonical
mapping pΦ : X → |N(U)|. A mapping f : P → Q of polyhedra is simplicial
(PL) provided there exist triangulations K and L of P and Q respectively,
such that f : |K| → |L| maps every closed simplex of K linearly onto (into) a
closed simplex of L (see [4]).
Some needed basic definitions and facts on inverse systems, limits and reso-
lutions can be found in [9]. We only recall the definition of a resolution of a
space: A map of systems p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) is a resolution of
X provided the following two conditions are satisfied:

(B1) (∀U ∈ Cov(X))(∃λ ∈ Λ)(∃V ∈ Cov(Xλ)) p−1
λ (V) ≤ U .
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(B2) (∀λ ∈ Λ)(∀U ∈ Cov(Xλ))(∃λ′ ≥ λ) pλλ′(Xλ′) ⊆ st(pλ(X),U).
If all Xλ are normal, (B2) can be written in the following simpler form:

(∀λ ∈ Λ)(∀ open U ⊇ Cl(pλ(X)) in Xλ)(∃λ′ ≥ λ) pλλ′(Xλ′) ⊆ U .
Finally, an inverse system X = (Xλ, pλλ′ ,Λ) is said to admit meshes, if there
exists a family {Uλ | Uλ ∈ Cov(Xλ), λ ∈ Λ} with the following property (see
condition (A3) in [16], [15], [14], [10]):

(∀λ ∈ Λ)(∀U ∈ Cov(Xλ))(∃λ′ ≥ λ)(∀λ′′ ≥ λ′) Uλ′′ ≤ p−1
λλ′′(U).

A sufficient condition to admit meshes reads as follows (see [14], [10]):
(C) (∀λ ∈ Λ) cw(Xλ) ≤ card(Λ),

where cw denotes the covering weight, i.e., the minimal cardinal of a basis of
the family of all normal coverings.

2. Canonical resolutions

It is well known ([7], [4]) that every mapping f : X → Y admits a
polyhedral resolution (p,f , q), i.e., p : X → X and q : Y → Y are polyhedral
resolutions of X and Y , respectively, and f : X → Y is a map of systems such
that fp = qf. The known constructions build p, q and f simultaneously. It is
also known that, in general, q may not exist if p is given in advance (see[16]),
while it is not known whether p exists if q is given in advance. (A positive
exception is a compact polyhedral resolution q of a compact metric Y , [3]).
However, we will show that for a particular type of a polyhedral resolution q

given in advance, there exists a polyhedral resolution (p,f , q) of f and p is a
resolution of the same type. The construction slightly improves the standard
ones ([7], Theorem 11; [4], Lemma 4.1, Proposition 4.2 and Theorem 4.5) and
makes the key step in solving the problem. It will be convenient to summarize
the additional conditions which such a resolution should satisfy.

Definition 1. A resolution p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) is said to
be canonical if it has the following additional properties:
(i) There exists a subset Λ0 ⊆ Λ such that

(1) for every λ ∈ Λ0, there exist an n(λ) ∈ N and a cλ = {U1, · · · ,Un(λ)} ⊆
Cov(X), such that Xλ = |N(Uλ)| and pλ : X → Xλ is a canonical mapping
with respect to Uλ, where Uλ = ∧cλ;

(2) if λ, λ′ ∈ Λ0 and λ ≤ λ′, then n(λ) ≤ n(λ′), cλ ⊆ cλ′ =
{U ′

1, · · · ,U ′
n(λ), · · · ,U ′

n(λ′)} and pλλ′ : Xλ′ → Xλ is the naturally induced

simplicial mapping |N(Uλ′)| → |N(Uλ)| determined by its values on vertices,
i.e., (U ′

1, · · · , U ′
n(λ), · · · , U ′

n(λ′)) 7→ (U1, · · · , Un(λ)), which is well defined since

each Ui is a unique U ′
j .

(ii) For every λ ∈ Λ r Λ0, there exists a unique λ0 ∈ Λ0, λ0 ≤ λ, such that
(1) Xλ is the carrier of pλ0

(X) with respect to a subdivision K(λ0, λ) of
N(Uλ0

);
(2) pλ0λ is the inclusion mapping (i.e. the restriction on Xλ of the identity

mapping pλ0λ0
on Xλ0

);
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(3) pλ : X → Xλ is the restriction of the corresponding mapping pλ0
.

(iii) If λ, λ′ ∈ Λ r Λ0 and λ ≤ λ′, then
(1) λ0 ≤ λ′0, where λ0, λ

′
0 are the corresponding indices in Λ0, and

K(λ0, λ
′) ≤ K(λ0, λ);

(2) pλλ′ : Xλ′ → Xλ is the restriction of the corresponding mapping pλ0λ′

0
.

Remark 1. The term canonical is convenient and compatible with Defi-
nition 4.1 of [4]. Naimely, all pλ in (ii)(3) are, by (ii)(1), even strictly canonical
(see [4], Definition 3.1 and Lemmas 3.3 and 3.4).

Lemma 1. Every space X admits a canonical resolution p : X → X.

Proof. Lemma 1 follows by results of [7], Theorems 10-11, and [4],
Lemma 4.1, Proposition 4.2 and Theorem 4.3 (see also [1], [2] and [15]). How-
ever, for the sake of completeness (and because of a few slight changes), let
us briefly recall the two main steps in the building of such a special polyhe-
dral resolution. The first step (which assures condition (B1) and a sufficiently
large antisymmetric and cofinite indexing set to apply Proposition 4.2 of [4])
follows the first part of the proof of Theorem11 in [7]. The second step (which
assures condition (B2) and preserves cofiniteness and strict canonicity - and
compactness in the compact case) follows the proof of Proposition 4.2 in [4].

Choose a cofinal subfamily U ⊆ Cov(X) and for each U ∈ U choose
a locally finite partition of unity Φ = (ϕU , U ∈ U) subordinated to U .
It determines a canonical mapping rΦ : X → |N(U)|. Let (C,≤) be the
set of all finite subsets of U ordered by inclusion ⊆. Obviously, (C,≤) is
antisymmetric and cofinite. If c = {U1, · · · ,Un} ∈ C, let Uc = ∧c =

{
n⋂

i=1

Ui 6= ∅ | Ui ∈ Ui, i = 1, · · · , n}, and let rc : X → Zc = |N(Uc)|
be the canonical mapping determined by the partition of unity Φ1 · · ·Φn =
(ϕ1

U1
· · ·ϕn

Un
, (U1, · · · , Un) ∈ U1 × · · · × Un) subordinated to Uc ∈ Cov(X),

where the partitions Φi = (ϕi
Ui
, Ui ∈ Ui) are already chosen. If c ≤ c′ =

{U ′
1, · · · ,U ′

n, · · · ,U ′
n′} (each Ui is a unique U ′

j), let rcc′ : Zc′ → Zc be the
naturally induced simplicial mapping determined by its values on the ver-
tices, i.e., (U ′

1, · · · , U ′
n, · · · , U ′

n′) 7→ (U1, · · · , Un). Then r = (rc) : X → Z =
(Zc, rcc′ , C) is a map of the space X to the simplicial (triangulations fixed)
polyhedral inverse system Z satisfying condition (B1). Finally, repeating the
polyhedra, bonding mappings and projections (see [15], Sec.2.), if it is nec-
essary, we obtain r∗ = (r∗a) : X → Z∗ = (Z∗

a , r
∗
aa′ , A), where Z∗ admits

meshes and A is also antisymmetric and cofinite. In fact, A is sufficiently
large so that Z∗ satisfies the stability condition (C) (see [14] or [10]). This
∗-construction is based on the well known Mardešić trick, [9]. More precisely,
(A,≤) = (F (A),⊆), where F (A) = {a ⊆ A | ∅ 6= a finite}, A = t

c∈C
({c} × Uc)
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and Uc ⊆ Cov(Zc) is a cofinal subfamily. The ordered sets C and A are re-
lated by an increasing surjection s : A → C such that s({(c,Wc)}) = c (see
[14], Lemma 1 and Remark 2), while Z∗

a = Zs(a), r
∗
aa′ = rs(a)s(a′), r

∗
a = rs(a).

In the second step, we first construct (see [4], Lemma 4.1), for every
a ∈ A, a family {Kaa′ | a′ ≥ a} of subdivisions Kaa′ of N(Us(a)), hence,
|Kaa′ | = Zs(a) = Z∗

a , such that Kaa′′ ≤ Kaa′ whenever a′ ≤ a′′, and that
all the carriers |Laa′ | of r∗a(X) ⊆ Z∗

a with respect to Kaa′ , a ≤ a′, are com-
patible with the corresponding restrictions of the bonding mappings r∗aa′ , i.e.,
r∗aa′(|La′a′′ |) ⊆ |Laa′′ |, whenever a ≤ a′ ≤ a′′. Moreover, these carriers and
the corresponding restriction satisfy condition (B2). We also want to retain
the basic triangulation N(Us(a)) since it is technically essential for our next
construction, which then requires a slight change in defining the indexing set
Λ (see the proof of Proposition 4.2 of [4]). Let Λ0 = {λ = (a, a) | a ∈ A}
and let Λ1 = ∪

a∈A
({a} × Aa) = {λ = (a, a1) | a, a1 ∈ A, a ≤ a1}. Note that

Λ0 ⊆ Λ1. Define Λ as the disjoint union Λ0 t Λ1 and order it coordinate-
wise (with respect to the ordering of A) satisfying the following additional
condition:If λ0 = (a, a) ∈ Λ0 and λ1 = (a, a) ∈ Λ1, then λ0 ≤ λ1 and
λ1 � λ0. Then (Λ,≤) is a partially ordered, unbounded and cofinite set.
Observe that Λ0 ⊆ Λ is nothing else but A regarded as the subset of Λ pre-
serving its own ordering. Put K(λ, λ) = N(Us(a)) when λ = (a, a) ∈ Λ0, and
K(λ, λ′) = Kaa′ when λ′ = (a, a′) ∈ Λ r Λ0. Now if λ = (a, a) ∈ Λ0,
let Xλ be the whole geometric nerve

∣∣N(Us(a))
∣∣, i.e., Xλ = Z∗

a , and if
λ = (a, a1) ∈ Λ1 = Λ r Λ0, let Xλ = |Laa1

| ⊆ Z∗
a . If λ ≤ λ′ = (a′, a′1)

in Λ, let pλλ′ : Xλ′ → Xλ be the corresponding restriction mapping of
r∗aa′ . (The special cases λ = λ′ and λ 6= λ′ ∧ a = a′ are included since
r∗aa = 1Z∗

a
.) Observe that, for λ ≤ λ′ in Λ0, pλλ′ = r∗aa′ is the naturally

induced simplicial mapping rs(a)s(a′) :
∣∣N(Us(a′))

∣∣ →
∣∣N(Us(a))

∣∣. Finally,
let pλ : X → Xλ, λ = (a, a1) ∈ Λ, be the corresponding restriction map-
ping of r∗a. In this way we have obtained the desired canonical resolution
p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) of the space X . Notice that r∗ : X → Z∗

is included in p : X → X as its ”basic level” over Λ0. �

Remark 2. Observe that the canonical resolution p : X → X, con-
structed in the proof of Lemma 1, has a few additional properties. Namely,
the indexing set (Λ,≤) is cofinite and antisymmetric, X0 = (Xλ, pλλ′ ,Λ0) is
an inverse system satisfying condition (C) and p0 = (pλ) : X → X0 satisfies
condition (B1).

Definition 2. A resolution (p,f , q) of a mapping f : X → Y is said to
be canonical if the resolutions p : X → X and q : Y → Y are canonical and
all the mappings of f : X → Y are restrictions of simplicial inclusions.

Let us now state our main lemma.
Lemma 2. Let f : X → Y be a mapping and let q = (qµ) : Y →

Y = (Yµ, qµµ′ ,M) be a canonical resolution of the space Y. Then there exist
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a canonical resolution p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) of the space X and
a map of systems f = (f, fµ) : X → Y such that (p,f , q) is a canonical
resolution of the mapping f.

Before proving Lemma 2, let us recall some details of Lemma 4.1 of [4]
and its proof (especially for (v) and (vi)), because of an additional technical
condition. When we inductively construct a family {Kaa′ | a′ ≥ a}, a ∈ A,
(notations from [4]), we take care of all the mappings paia, ai ≤ a, and all the
already constructed families {Kaa′ | a′ ≥ ai}. Assume, in addition, that a PL
mapping g : Xa → Q is given and that there is a family {Kbb′ | b′ ∈ B, b′ ≥ b}
of subdivisions Kbb′ of Kbb, |Kbb| = Q, such that Kbb′′ ≤ Kbb′ whenever
b′′ ≥ b′. Moreover, let there exist an increasing injection t : B → A such
that t(b) = a. Treating now g as an additional ”paia”, one can construct, in
the same way, a desired family {Kaa′ | a′ ≥ a} such that also the restrictions
of g preserve the corresponding carriers. This will be needed in the proof of
Lemma 2, when we construct the map of systems f .

Proof of Lemma 2. Consider the ”basic level” of the canonical resolu-
tion q : Y → Y , i.e., the restriction q0 : Y → Y 0 to the subset M0 ⊆ M .
Each projection qµ : Y → Yµ = |N(Vµ)|, µ ∈ M0, is a canonical mapping
determined by a locally finite partitions of unity Ψµ = (ψµ

V , V ∈ Vµ) sub-
ordinated to a normal covering Vµ ∈ Cov(Y ), while each bonding mapping
qµµ′ : Yµ′ → Yµ, µ, µ

′ ∈ M0, µ ≤ µ′, is the naturally induced simplicial map-
ping of the type |N(V ′

1 ∧ · · · ∧ V ′
n ∧ · · · ∧ V ′

n′)| → |N(V1 ∧ · · · ∧ Vn)|, where
each Vi is some V ′

j . Note that each Ψµ and f determine a locally finite parti-

tion of unity Φµ = (ϕµ
V = ψµ

V f, V ∈ Vµ), subordinated to f−1(Vµ) ∈ Cov(X).

Let rµ : X →
∣∣N(f−1(Vµ))

∣∣ be the canonical mapping determined by Φµ,

and let gµ :
∣∣N(f−1(Vµ))

∣∣ ↪→ Yµ be the simplicial inclusion. (N(f−1(Vµ)
is a subcomplex of N(Vµ).) Then gµrµ = qµf , µ ∈ M0. Choose a cofinal
subfamily U ⊆ Cov(X), and for every U ∈ U, U 6= f−1(Vµ), µ ∈ M0, choose
a locally finite partition of unity Φ = (ϕU , U ∈ U) subordinated to U . Let
rΦ : X → |N(U)| be the canonical mapping determined by Φ. We begin now to
build a canonical resolution of the space X. Put U0 = {U ∈ U | U 6= f−1(Vµ),
µ ∈ M0} ⊆ U and U′ = U0 t M0. Let (C,≤) be the set of all finite
subsets of U′ ordered by inclusion. Then C is partially ordered, cofinite
and directed. We proceed following the construction of a canonical resolu-
tion of X described in the proof of Lemma 1. In the first step we obtain
r∗ = (r∗a) : X → Z∗ = (Z∗

a , r
∗
aa′ , A) satisfying (B1), where Z∗ satisfies condi-

tion (C) and A is also antisymmetric and cofinite.
In the second step, the above mentioned additional technical condition

appears. Consider a µ ∈ M0 and denote (M0)µ = {µ′ ∈ M0 | µ′ ≥ µ}.
Let a = {({µ},W{µ})} ∈ A such that Z∗

a = Z{µ} =
∣∣N(f−1(Vµ))

∣∣, i.e.,
s(a) = {µ}, where s : A → C is the increasing surjection from the first step.
Let Aa = {a′ ∈ A | a′ ≥ a} and let gµ : (M0)µ → Aa be an increasing
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injection defined by gµ(µ) = a and, for µ′ > µ, gµ(µ′) = a′ for some a′ > a,
such that s(a′) = {µ′}. (Recall that M0 is included in the building of C
so that such a function g exists.) Now, when we construct a family {Kaa′ |
a′ ≥ a}, where a = gµ(µ) and µ ∈ M0, we have to take care of the mapping
gµ :

∣∣N(f−1(Vµ))
∣∣ = Z{µ} = Zs(a) = Z∗

a ↪→ Yµ and the already constructed
triangulationsK(µ, µ′) of Yµ, µ′ ∈MrM0, as well as of the bonding mappings
r∗aia and the triangulations Kaia′ of Z∗

ai
, ai ≤ a and a′ ≥ ai. This yields a

useful property (see (?) bellow) in defining the desired map of systems. In
this way we have enlarged r∗ to a canonical resolution p = (pλ) : X →
X = (Xλ, pλλ′ ,Λ), where r∗ has ”survived” as the restriction of p over Λ0 =
{(a, a) | a ∈ A} ⊆ Λ, and p has the additional properties stated in Remark 2.
Moreover, X has the additional property mentioned above:

(?) If µ ∈ M r M0 and µ ≥ µ0 ∈ M0 such that qµ0µ : Yµ ↪→ Yµ0

is the inclusion mapping (µ0 is unique for µ), then there exists a λ ∈ Λ,
λ = (a, a1) ≥ (a, a) ≡ λ0 ∈ Λ0, where a = gµ0(µ0), such that pλ0λ : Xλ =
|Laa1

| ↪→ Z∗
a = Z{µ0} = Xλ0

is the inclusion mapping and gµ0
(Xλ) ⊆ Yµ.

Finally, let us define the desired mapping of systems f = (f, fµ) : X → Y

satisfying fp = qf . To define f : M → Λ, first consider M0 ⊆M . If µ ∈ M0

put f(µ) = (a, a) ∈ Λ0, where a = gµ(µ). (Notice that f cannot be increasing;
see Remark 3 (a) below.) Then let the corresponding mapping fµ be the
simplicial inclusion gµ : Xf(µ) = Z{µ} = Z∗

a =
∣∣N(f−1(Vµ))

∣∣ ↪→ |N(Vµ)| =
Yµ. If µ ∈ M1 = M rM0, let f(µ) be an index λ = (a, a1) ∈ Λ according to
(?), and let fµ : Xf(µ) → Yµ be the restriction of the corresponding mapping
gµ0

: Z{µ0} ↪→ Yµ0
to subpolyhedra Xf(µ) = |Laa1

| ⊆ Z{µ0} and Yµ ⊆ Yµ0
. It

remains to verify the commutativity conditions, i.e., fµpf(µ)λ = qµµ′fµ′pf(µ′)λ

for some λ ≥ f(µ), f(µ′), µ ≤ µ′, and fµpf(µ) = qµf, µ ∈ M . If µ ∈
M0, the second equality holds by the definitions of pf(µ) and fµ. If µ ≤
µ′ belong to M0, fµ and fµ′ are the natural simplicial inclusions, and then
the first equality is a consequence of the naturality of the simplicial bonding
mappings. (Take a λ = (a, a) ∈ Λ0, such that s(a) = {µ, µ′}, i.e., Xλ =
Z∗

a = Z{µ,µ′} =
∣∣N(f−1(Vµ) ∧ f−1(Vµ′))

∣∣ =
∣∣N(f−1(Vµ ∧ Vµ′)

∣∣.) In all other
cases, the mappings which appear are the restrictions of the mappings which
appear in the case of M0. Hence, the commutativity follows. This completes
the proof of Lemma 2. �

Remark 3. (a) Note that in our construction of f , the whole set M0 is
”directly” lifted by f , while in the construction of f in [7], Theorem 11, only
the subset of all initial elements of M0 is ”directly” lifted by f (the rest is
lifted later - ”indirectly”). As a consequence, our f(M0) consists of (some)
initial elements for (C ≤), while in the compared case, it retains the ordering
of M0.

(b) Observe that the constructed function f : M → Λ preserves the special
subset M0, i.e., f(M0) ⊆ Λ0. Furthermore, the restriction function f |M0 is
injective, since we consider f(µ) 6= f(µ′), whenever µ 6= µ′, even though the
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case f−1(Vµ) = f−1(Vµ′) ∈ Cov(X) may occur. (As usually, Cov(Y ) and
Cov(X) should be treated as families.)

The proof of Lemma 2 yields the following generalization:
Lemma 3. Let (fj , j ∈ J) be a family of mappings fj : X → Yj and let,

for each j ∈ J, qj : Yj → Y j be a canonical resolution of Yj . Then there
exists a canonical resolution p : X → X of X and, for each j ∈ J , there
exists a map of systems f

j : X → Y j such that (p,f j , qj) is a canonical
resolution of fj .

Proof. Let M j
0 be the special subsets of the corresponding indexing

sets M j of Y j , j ∈ J . Let U ⊆ Cov(X) be a cofinal subfamily, and let

U0 = {U ∈ U | U 6= (fj)
−1(Vµj

), j ∈ J, µj ∈ M j
0} ⊆ U. Consider the disjoint

union U′ = U0 t ( t
j∈J

M j
0 ) and proceed as in the proof of Lemma 2. �

Remark 4. Completing Remark 3(b), we also consider f j(µj) 6= f j′(µj′ )
whenever j 6= j′.

Definition 3. Let fj : X → Yj and qj : Yj → Y j , j ∈ J, be as in Lemma

3. Then the above constructed resolutions p : X → X and f j : X → Y j , i.e.
(p,f j , qj), j ∈ J, are said to be obtained by a canonical construction with
respect to (fj , j ∈ J) and (qj , j ∈ J).

The following two lemmas solve the problem of composite mappings in a
canonical construction.

Lemma 4. Let f : X → Y and g : Y → Z be mappings and
let r = (rν) : Z → Z = (Zν , rνν′ , N) be a canonical resolution of Z.
Let q = (qµ) : Y → Y = (Yµ, qµµ′ ,M) and g = (g, gν) : Y → Z

be obtained by a canonical construction with respect to g and r, and let
p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) and f = (f, fµ) : X → Y be ob-
tained by a canonical construction with respect to f and q. Then there exists
a canonical construction with respect to h ≡ gf : X → Z and r producing the
same p : X → X and h = gf : X → Y .

Proof. First note that (gf)−1(W) = f−1(g−1(W)) ∈ Cov(X), W ∈
Cov(Z). Recall that g|N0 and f |M0 are the inclusion functions and
f(g(N0)) ⊆ f(M0) ⊆ Λ0, where N0, M0 and Λ0 are the special indexing
subsets. This implies that a canonical construction with respect to f and q

and a canonical construction with respect to gf and r can produce the same
indexing set Λ over Cov(X). Let us clarify some key details of the construc-
tion.
Consider a canonical construction of p and f with respect to f and q. Observe
that, if Vµ = g−1(Wν), ν ∈ N0 ⊆ N, then f−1(Vµ) ∈ Cov(X) has the partition
of unity determined by f, g and a given (χν

W ,W ∈ Wν). Every other covering
f−1(Vµ) ∈ Cov(X), where Vµ 6= g−1(Wν), ν ∈ N0, has the partition of
unity determined by f and a given (ψµ

V , V ∈ Vµ), µ ∈ M0 ⊆ M. Finally, a
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U ∈ U ⊆ Cov(X) which is not of the form f−1(Vµ), has a given partition of
unity (ϕU , U ∈ U). Therefore, in a desired canonical construction for p′(= p)
and h with respect to h(= gf) and r, one should choose the partitions of
unity (ϕU , U ∈ U) subordinated to normal coverings U ∈ U′ of X, such that:

ϕU ≡ ϕν
W = χν

W gf, U = (gf)−1(W ) ∈ (gf)−1(Wν) ≡ U , ν ∈ N0;
ϕU ≡ ϕµ

V = ψµ
V f, U = f−1(V ) ∈ f−1(Vµ) ≡ U , µ ∈ M0, where

Vµ 6= g−1(Wν), ν ∈ N0;
ϕU , U ∈ U , is the same as in the canonical construction of p and f

with respect to f and q, whenever U is not of the previous forms.
These data yield the same ”first step” with respect to f and q as well as with
respect to h and r. Then, obviously, the canonical construction can produce
p′ = p : X → X. Finally, to obtain h = (h, hν) : X → Z satisfying h = gf ,
one should put h ≡ fg : N → Λ, and then hν ≡ gνfg(ν) : Xfg(ν) → Zν ,
ν ∈ N , is well defined. �

Lemma 5. Let fj : X → Yj and gj : Yj → Z be mappings satisfying
gjfj ≡ h : X → Z, for every j ∈ {1, · · · , k}, k ∈ N. Let r = (rν) : Z →
Z = (Zν , rνν′ , N) be a canonical resolution of the space Z and let, for each
j ∈ {1, · · · , k}, (qj , gj , r) be a canonical resolution of the mapping gj. Then

there is a canonical construction producing canonical resolutions (p,f j , qj)
and (p,h, r) of the mappings fj and h respectively with the same p : X → X

and satisfying gjf j = h, j ∈ {1, · · · , k}.

Proof. Consider the simplest case k = 2, i.e., g′f ′ = h = gf : X → Z.
Clearly, it suffices to solve that case in order to understand the general
case. Observe that commutativity implies h−1(W) = f ′−1(g′−1(W)) =
f−1(g−1(W)) ∈ Cov(X), whenever W ∈ Cov(Z). Therefore, if U = h−1(Wν),
ν ∈ N0, let the corresponding partition of unity be (ϕU , U ∈ U), where ϕU ≡
ϕν

W = χν
Wh, W ∈ Wν , h

−1(W ) 6= ∅. Furthermore, if U = f−1(Vµ), µ ∈ M0

and Vµ 6= g−1(Wν), ν ∈ N0, (U = f ′−1(V ′
µ′ ), µ′ ∈ M ′

0 and V ′
µ′ 6= g′−1(Wν),

ν ∈ N0), let the corresponding partition of unity be (ϕU , U ∈ U), where

ϕU ≡ ϕµ
V = ψµ

V f, V ∈ Vµ, f
−1(V ) 6= ∅ (ϕU ≡ ϕµ′

V ′ = ψµ′

V ′f ′, V ′ ∈ V ′
µ′ ,

f ′−1(V ′) 6= ∅). Finally, if U ∈ U ⊆ Cov(X) is not of the previous forms, take
any locally finite partition of unity (ϕU , U ∈ U) subordinated to U . Now the
canonical construction proceeds in a unique way (up to the choice of Kaa′)
thus yielding p : X → X and the ”bases” of f = (f, fµ) : X → Y and
f ′ = (f ′, f ′

µ′) : X → Y ′, on M0 and M ′
0, for the desired canonical resolu-

tions (p,f , q) and (p,f ′, q′) of the mappings f and f ′, respectively. These
”bases” include indices µ = g(ν) ∈ M0 and µ′ = g′(ν) ∈ M ′

0, ν ∈ N0, for
which f ′(µ′) = f ′(g′(ν)) = f(g(ν)) = f(µ) ≡ λ ∈ Λ0 holds, and mappings
fµ and f ′

µ′ which are the natural simplicial inclusions of Xλ =
∣∣N(h−1(Wν))

∣∣
into Yg(ν) =

∣∣N(g−1(Wν))
∣∣ and Y ′

g′(ν) =
∣∣N(g′−1(Wν))

∣∣, respectively. Clearly,

gνfµ = g′νf
′
µ′ : Xλ ↪→ Zν , since g′f ′ = gf : X → Z. Also, for µ ∈ M0 r g(N0)
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and µ′ ∈ M ′
0 r g′(N0), the mappings fµ and f ′

µ′ are the corresponding nat-

ural simplicial inclusions of Xλ =
∣∣N(f−1(Vµ))

∣∣ and Xλ′ =
∣∣N(f ′−1(V ′

µ′))
∣∣

into Yµ = |N((Vµ))| and Y ′
µ′ =

∣∣N((V ′
µ′))
∣∣, respectively. Consider now a

µ = g(ν) ∈ M and a µ′ = g′(ν) ∈ M ′, where ν ∈ N r N0. Let ν0 ∈ N0,
ν0 ≤ ν, µ0 = g(ν0) ∈ M0, µ0 ≤ µ, and µ′

0 = g′(ν0) ∈ M ′
0, µ

′
0 ≤ µ′, be

chosen according to property (?). Then Yµ ⊆ Yµ0
and Y ′

µ′ ⊆ Y ′
µ′

0

, while

f(µ0) = f ′(µ′
0) ≡ λ0 ∈ Λ is already defined. By construction of p, there

exists a λ1 ∈ Λ, λ1 ≥ λ0, such that pλ0λ1
: Xλ1

↪→ Xλ0
is the inclusion

mapping (λ0 and λ1 have the same first coordinate) and fµ0
(Xλ1

) ⊆ Yµ. Sim-
ilarly, there exists a λ′1 ∈ Λ, λ′1 ≥ λ0, such that pλ0λ′

1
: Xλ′

1
↪→ Xλ0

is the
inclusion mapping and f ′

µ′

0

(Xλ′

1
) ⊆ Y ′

µ′ . Finally, choose a λ ∈ Λ, λ ≥ λ1, λ
′
1,

with the same first coordinate. Then gν0
fµ0

| Xλ = g′ν0
f ′

µ′

0

| Xλ : Xλ ↪→ Zν .

Therefore, in this case we put f(µ) = λ = f ′(µ′), and we can define fµ, f ′
µ′

as the corresponding restriction mappings of fµ0
, f ′

µ′

0

, respectively. Finally,

if µ ∈ M r g(N) (µ′ ∈ M ′ r g′(N)), define f(µ) ∈ Λ and fµ : Xf(µ) → Yµ

(f ′(µ′) ∈ Λ and f ′
µ′ : Xf ′(µ′) → Y ′

µ′) as in the proof of Lemma 2. The re-
quired commutativity conditions are obviously fulfilled since all the mappings
are restrictions of the ”first level” inclusions.
So we have obtained the desired canonical resolution p = (pλ) : X → X =
(Xλ, pλλ′ ,Λ) and mappings of systems f = (f, fµ) : X → Y , f ′ = (f ′, f ′

µ′) :

X → Y ′ such that (p,f , q) and (p,f ′, q′) are canonical resolutions of the
mappings f : X → Y and f ′ : X → Y ′, respectively. Moreover, the construc-
tion provides f ′g′ = fg : N → Λ, hence, we may define h ≡ fg : N → Λ.
Furthermore, for every ν ∈ N , g′νf

′
g′(ν) = gνfg(ν) holds, and we may define

hν ≡ gνfg(ν) : Xh(ν) → Zν . Consequently, g′f ′ = gf = h = (h, hν) : X → Y

and (p,h, r) is a canonical resolution of the mapping h = gf = g′f ′ : X → Z.
This completes the proof in the case k = 2. �

3. Application to inverse systems

In this section we will show how to apply our canonical construction
to an inverse system with the purpose of obtaining a ”system of canonical
resolutions”. The first theorem is a generalization of Lemmas 4 and 5 to
finite commutative diagrams with a unique maximal element.

Consider an inverse system X = (Xλ, pλλ′ ,Λ) of spaces and map-
pings, where Λ is cofinite and antisymmetric. For a fixed λ0 ∈ Λ, let
∆ = (Xλ, pλλ′ ,Λλ0), where Λλ0 = {λ ∈ Λ | λ ≤ λ0} ⊆ Λ. Then ∆ is a
finite commutative diagram. Moreover, ∆ has the space Xλ0

as the unique
maximal element (source). Also note that there is at most one mapping con-
necting a pair of spaces in ∆. For such a diagram ∆, we establish the following
theorem:
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Theorem 1. Let for all mappings pλλ′ : Xλ′ → Xλ of ∆, λ < λ′(<
λ0), there exist corresponding canonical resolutions with a unique canonical
resolution of each space, satisfying commutativity conditions according to ∆.
Then there is a canonical construction producing canonical resolutions of all
mappings pλλ0

: Xλ0
→ Xλ of ∆, λ < λ0, with a unique canonical resolution

of the source Xλ0
and satisfying commutativity conditions according to ∆.

Proof. Observe that such a diagram ∆ consists of finitely many finite
mapping loops (generated by those of Lemmas 4 and 5), finitely many finite
non-looping mapping chains (generated by those of Lemma 4) and finitely
many ”free” (indecomposable in ∆) mappings, all having the space Xλ0

as
the domain. We have to construct the desired canonical resolutions of the
mappings pλλ0

, where λ is an immediate predecessor of λ0 with a unique
canonical resolution of Xλ0

. In order to do it, we need to ”pull-back” (by the
mappings pλλ0

) the given normal coverings with the corresponding partitions
of unity of all the immediate predecessors of Xλ0

. For the remaining normal
coverings of Xλ0

, partitions of unity are chosen freely. Then the construction
proceeds as in the proof of Lemma 2 (3). However, to be more explicit, the
solution of the following simple ”general” case will be sufficient to confirm the
general case of ∆.

                      Z2     Z1

Y2Y1 Y3

X

Z3

Assume that all needed is constructed up to ”level Y ”. Let us exhibit a
desired canonical construction at the source X. Consider all the ”immediate
predecessors” of X in ∆, i.e., Z1, Y2, and Y3. The corresponding mappings of
∆, X → Z1, X → Y2, X → Y3, and the emphasized indexing subsets in the
assumed canonical resolutions, together with a cofinal U ⊆ Cov(X), determine
the set (C ≤) as before. Furthermore, for all the pull-backed (by X → Z1,
X → Y2, X → Y3) coverings in Cov(X), the corresponding partitions of unity
are determined by those on the codomain spaces and by the corresponding
mappings. For the remaining normal coverings of U choose arbitrary locally
finite partitions of unity on X. In the construction, we should be careful
only at the loop consisting of X → Y2 → Z2 and X → Y3 → Z2, but this
is solved by Lemma 5. (The canonical resolution of Y2 → Z2 is assumed
to be the composition of those of Y2 → Y1 and Y1 → Z2.) The rest of
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the proof is now a technical routine as before. Of course, by Lemmas 4
and 5, the resolutions of mappings of ∆ from X to the spaces which are
not its immediate predecessors (Y1, Z2 and Z3) should be the appropriate
compositions of assumed and constructed resolutions. This completes the
proof of the theorem. �

Consider now an inverse system X = (Xλ, pλλ′ ,Λ) of spaces Xλ and
mappings pλλ′ : Xλ′ → Xλ, λ ≤ λ′, where Λ is, in addition, cofinite and
partially ordered. (This is not an essential restriction since with every X

one can associate, by the ”Mardešić trick” [9], a closely related X ′, made of
the same ”material”, which satisfies those additional conditions.) Since Λ is
cofinite, i.e., each λ has at most finitely many predecessors, the construction
is by induction on the cardinal |λ| ∈ N0 of all predecessors of λ ∈ Λ. For each

λ ∈ Λ with |λ| = 0, choose a canonical resolution pλ = (pλ
ν ) : Xλ → Xλ =

(Xλ
ν , p

λ
νν′ , Nλ) of the space Xλ. Let n ∈ N. Suppose that, for every λ ∈ Λ with

|λ| < n, and for all pairs λ1 < λ2(≤ λ), canonical resolutions (pλ2 ,pλ1λ2 ,pλ1)
of the mappings pλ1λ2

are constructed, with a unique canonical resolution

pλ : Xλ → Xλ of each spaceXλ, such that pλ1λ2pλ2λ3 = pλ1λ3 whenever λ1 <
λ2 < λ3(≤ λ). (One may omit all the trivial cases λ2 = λ1, since each Xλ is
unique and pλλ is the identity mapping. However, it is convenient to put pλλ =
1Xλ .) Let λ ∈ Λ with |λ| = n, and let λ1, · · · , λn be all the predecessors of

λ. Then |λi| < n, i ∈ {1, · · · , n}. By the inductive assumption, for all pairs
λi ≤ λj(< λ), canonical resolutions (pλj ,pλiλj ,pλi) of the mappings pλiλj

are

already constructed, with a unique canonical resolution pλi : Xλi
→ Xλi of

each space Xλi
, such that pλiλj pλjλk = pλiλk whenever λi ≤ λj ≤ λk(< λ).

Apply now Theorem 1 to obtain a canonical resolution pλ : Xλ → Xλ of the
space Xλ as well as the maps of systems pλkλ : Xλ → Xλk for all immediate
predecessors λk of λ, such that (pλ,pλkλ,pλk ) are canonical resolutions of
the mappings pλkλ. Finally, if λi < λ is not an immediate predecessor of λ,
Lemmas 4 and 5 allow to put pλiλ ≡ pλiλkpλkλ.

Let us summarize the previous consideration in the following theorem:
Theorem 2. Let X = (Xλ, pλλ′ ,Λ) be an inverse system of topological

spaces and mappings, where Λ is, in addition, cofinite and antisymmetric.
Then there exists a ”system” of canonical resolutions (pλ′

,pλλ′

,pλ) of all
bonding mappings pλλ′ : Xλ′ → Xλ, λ ≤ λ′, with a unique canonical resolution
pλ : Xλ → Xλ of each space Xλ, λ ∈ Λ, and satisfying pλλ′′

= pλλ′

pλ′λ′′

,
whenever λ ≤ λ′ ≤ λ′′.

We shall use hereafter the phrase ”a system of canonical resolutions”
exactly in the sense of Theorem 2. Hence, we may reformulate Theorem 2 as
follows:

Theorem 2′. Every inverse system X = (Xλ, pλλ′ ,Λ) of topological
spaces and mappings, where Λ is cofinite and antisymmetric, admits a system
of canonical resolutions ((pλ′

,pλλ′

,pλ), λ ≤ λ′).
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4. Solution of the problem

We now establish the theorem which solves the stated problem.
Theorem 3. Every system of canonical resolutions can be naturally or-

ganized, without its projections , to obtain an inverse system. More precisely,
if ((pλ′

,pλλ′

,pλ), λ ≤ λ′) is a system of canonical resolutions over an inverse

system X = (Xλ, pλλ′ ,Λ), where pλ = (pλ
ν ) : Xλ → Xλ = (Xλ

ν , p
λ
νν′ , Nλ) and

pλλ′

= (pλλ′

, pλλ′

ν ) : Xλ′ → Xλ, then there exists a cofinite inverse system
Y = (Yµ, qµµ′ ,M) such that

(i) M = ∪
λ∈Λ

({λ} ×Nλ) = {µ = (λ, ν) | λ ∈ Λ, ν ∈ Nλ};
(ii) Yµ = Xλ

ν , µ = (λ, ν) ∈M ;

(iii) qµµ′ : Yµ′ → Yµ, µ ≤ µ′ = (λ′, ν′), is the composition of pλλ′

ν and

pλ′

pλλ′ (ν),ν′
.

Moreover, if the system X admits a resolution p = (pλ) : X → X of a
space X, then q = (qµ = pλ

νpλ) : X → Y is also a resolution of X.

Proof. We are to order (naturally) the setM = ∪
λ∈Λ

({λ}×Nλ) to obtain

a cofinite indexing set (M,≤) for a desired inverse system Y . Let us define

µ = (λ, ν) ≤ (λ′, ν′) = µ′ ⇐⇒





λ = λ′ and ν ≤ ν′ in Nλ

or
λ 6= λ′, λ ≤ λ′ and (∗)

,

where condition (∗) means:

(∀ν∗ ≤ ν in Nλ) pλλ′

(ν∗) ≤ ν′ in Nλ′

and pλ
ν∗νp

λλ′

ν pλ′

pλλ′ (ν),ν′
=

pλλ′

ν∗ pλ′

pλλ′ (ν∗),ν′
.

Since each set Nλ, λ ∈ Λ, is cofinite and each pλλ′

: Xλ′ → Xλ, λ ≤
λ′, is a map of systems, the relation ≤ on M is well defined. Clearly, ≤
on M is reflexive. The transitivity requires an easy analysis - first for the
special cases λ = λ′, λ′ = λ′′, and then for the general case. The verification
(using commutativity pλλ′

pλ′λ′′

= pλλ′′

) is straightforward and we omit it.
Furthermore, (M,≤) is cofinite since Λ and all Nλ are cofinite. To verify that
(M,≤) is directed and unbounded is also routine. Finally, observe that for

every µ = (λ, ν) ∈ M and every λ′ ≥ λ there exists an ν∗ ∈ Nλ′

such that,

for every ν′ ∈ Nλ′

, ν′ ≥ ν∗ implies (λ′, ν′) ≡ µ′ ∈M and µ ≤ µ′.
Consider now a triple µ ≤ µ′ ≤ µ′′ = (λ′′, ν′′) in M and the corresponding

bonding mappings, defined by
qµµ′ ≡ pλλ′

ν pλ′

pλλ′ (ν),ν′
: Yµ′ ≡ Xλ′

ν′ → Xλ
ν ≡ Yµ,

and similarly for qµ′µ′′ and qµµ′′ . Then the commutativity pλλ′

pλ′λ′′

= pλλ′′

in the canonical construction and the definition of the order ≤ on M, imply
qµµ′qµ′µ′′ = qµµ′′ . The verification is straightforward and is omitted. There-
fore, Y = (Yµ, qµµ′ ,M) is a cofinite inverse system as we claimed.
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Now assume that the inverse system X admits a resolution p = (pλ) :
X → X of a space X . Define, for each µ = (λ, ν) ∈ M, the mapping
qµ = pλ

νpλ : X → Yµ. An easy verification confirms that qµµ′qµ′ = qµ holds,
whenever µ ≤ µ′. Thus q = (qµ) : X → Y is a map of X to the system
Y . Furthermore, condition (B1) for q is obviously fulfilled by (B1) of p and
by (B1) of each pλ, λ ∈ Λ. It remains to verify condition (B2) for q. Let
a µ = (λ, ν) ∈ M and a V ∈ Cov(Yµ) be given. We have to prove that
there exists a µ′ ≥ µ such that qµµ′(Yµ′) ⊆ St(qµ(X),V). First choose a
V ′ ∈ Cov(Yµ) such that StV ′ ≤ V . Denote U ≡ (pλ

ν )−1(V ′) ∈ Cov(Xλ). By
(B2) of p, there exists a λ′ ≥ λ such that pλλ′(Xλ′ ) ⊆ St(pλ(X),U). Denote

W ≡ (pλλ′

ν )−1(V ′) ∈ Cov(Xλ′

pλλ′ (ν)
). By (B2) of pλ′

, there exists an ν∗ ∈ Nλ′

,

ν∗ ≥ pλλ′

(ν), such pλ′

pλλ′ (ν),ν′
(Xλ′

ν′ ) ⊆ St(pλ′

pλλ′ (ν)
(Xλ′ ),W) whenever ν′ ≥ ν∗

in Nλ′

. Choose such an ν′ ∈ Nλ′

satisfying also (λ′, ν′) ≡ µ′ ∈ M and µ′ ≥ µ.
Then

qµµ′ (Yµ′) = pλλ′

ν (pλ′

pλλ′ (ν),ν′
(Xλ′

ν′ )) ⊆ pλλ′

ν (St(pλ′

pλλ′ (ν)
(Xλ′),W)) =

pλλ′

ν (St(pλ′

pλλ′ (ν)
(Xλ′), (pλλ′

ν )−1(V ′))) ⊆ St(pλλ′

ν pλ′

pλλ′ (ν)
(Xλ′),V ′) =

St(pλ
νpλλ′(Xλ′ ),V ′) ⊆ St(pλ

ν (St(pλ(X),U)),V ′) =
St(pλ

ν (St(pλ(X), (pλ
ν )−1(V ′))),V ′) ⊆ St(St(pλ

νpλ(X),V ′),V ′) =
St(St(qµ(X),V ′),V ′) ⊆ St(qµ(X),V),

where we used the two following facts (general notation):
f(St(A, f−1(V))) ⊆ St(f(A),V) and StU ′ ≤ U ⇒ St(St(A,U ′),U ′) ⊆ St(A,U).
This completes the proof of the theorem. �

Corollary. Let p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) be an inverse limit
of compact Hausdorff spaces, where Λ is cofinite and antisymmetric. Then
there exist inverse limits pλ = (pλ

ν ) : Xλ → Xλ = (Xλ
ν , p

λ
νν′ , Nλ) of compact

polyhedra, λ ∈ Λ, and maps of systems pλλ′

= (pλλ′

, pλλ′

ν ) : Xλ′ → Xλ,

lim pλλ′

= pλλ′ , λ ≤ λ′, which can be naturally organized to yield the inverse
limit q = (qµ) : X → Y = (Yµ, qµµ′ ,M), where M = {µ = (λ, ν) | λ ∈ Λ,

ν ∈ Nλ}, Yµ = Xλ
ν , qµµ′ = pλλ′

ν pλ′

pλλ′ (ν),ν′
and qµ = pλ

νpλ.

Proof. In canonical constructions of all the resolutions pλ (by Theorems
1 and 2, i.e., Lemmas 1 - 5), one should use only cofinal subfamilies consisting
of all finite open coverings. Then the corollary follows by Theorem 3. �
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