GLASNIK MATEMATIČKI Vol. 35(55)(2000), 307 – 312

A NOTE ON QUASI-ISOMETRIES

S. M. Patel

Sardar Patel University, India.

ABSTRACT. The paper aims at investigating some basic properties of a quasi isometry which is defined to be a bounded linear operator T on a Hilbert space such that $T^{*2}T^2 = T^*T$.

1. INTRODUCTION

Partial isometries provide an extensively studied extension of isometries. They have played significant role in structural study of Hilbert space operators. Agler and Stankus [1] studied another extension called m-isometries. In the present note, we study quasi-isometries the definition of which is given below.

DEFINITION 1.1. A bounded linear operator T is called a quasi-isometry if $T^{*2}T^2 = T^*T$.

Clearly every isometry is a quasi-isometry; whereas an idempotent operator is a quasi-isometry but need not be an isometry. On the other hand, a quasi-isometry which is an m-isometry turns out to be an isometry. Thus the classes of partial isometries, m-isometries and quasi-isometries which are extensions of the class of isometries are independent.

1.1. Notation and terminologies. For a bounded linear operator T on a complex Hilbert space H, we write $\sigma(T)$, a(T) and $\sigma_p(T)$ to designate the spectrum, the approximate point spectrum and the point spectrum of T respectively. Notations N(T), R(T) and r(T) are used for the null space, the range space, and the spectral readius of T respectively. An operator T is called

1. quasinormal if T commutes with T^*T ;

²⁰⁰⁰ Mathematics Subject Classification. 47A62, 47A63,47B20. Key words and phrases. Hilbert space, bounded oprators, isometry, spectrum.

³⁰⁷

S. M. PATEL

- 2. hyponormal if $T^*T \ge TT^*$; 3. k-paranormal if $||T^kx|| ||x||^{k-1} \ge ||Tx||^k$ for all $x \in H$;
- 4. k-quasihyponormal if $||T^{k+1}x|| \ge ||T^*T^kx||$ for every x in H;
- 5. m-isometry if

$$\sum_{k=0}^{m} (-1)^k \left[\begin{array}{c} n\\ k \end{array} \right] T^{*m-k} T^{m-k}$$

6. dominant if $R(T - \alpha I) \subset R(T^* - \overline{\alpha}I)$ for all complex numbers α .

2. Results

THEOREM 2.1. Let T be an operator with the right-handed polar decomposition T = UP. Then T is a quasi-isometry iff PU is a partial isometry with N(PU) = N(U).

PROOF. Suppose T is a quasi-isometry. Then $PU^*PU^*UPUP = P^2$ or $PU^*P^2UP = P^2$. Since N(P) = N(U), $UU^*P^2UP = UP$. A premultiplication by U^* yields $U^*P^2UP = P$ or $PU^*P^2U = P$. Another application of the relation N(P) = N(U) gives $UU^*P^2U = U$ or $U^*P^2U = U^*U$. This shows that PU is a partial isometry with N(PU) = N(U). Conversely, assume that PU is a partial isometry and N(PU) = N(U). Then $U^*P^2U = U^*U$ because U^*P^2U and U^*U are projections having the common range space. Clearly, $U = UU^*P^2U$ or $P^2 = PU^*P^2UP$; thus T is a quasi-isometry.

For a quasi-isometry, the inequality $||T|| \ge 1$ is obvious. Further improvement is not possible as can be seen from the following result.

THEOREM 2.2. If T is a quasi-isometry and if ||T|| = 1, then T is hyponormal.

PROOF. By hypothesis,

$$\begin{aligned} \left\| Tx - T^*T^2x \right\|^2 &= \left\| Tx \right\|^2 + \left\| T^*T^2x \right\|^2 - 2Re\left\langle Tx, T^*T^2x \right\rangle \\ &= \left\| Tx \right\|^2 + \left\| T^*T^2x \right\|^2 - 2\left\| Tx \right\|^2 \\ &\leq \left\| Tx \right\|^2 + \left\| Tx \right\|^2 - 2\left\| Tx \right\|^2 = 0 \end{aligned}$$

Thus

$$(2.1) T = T^*T^2$$

Hence $T^* = T^{*2}T$. This gives $N(T) \subset N(T^*)$ or $N(U) \subset N(U^*)$. Clearly $U^*U \ge UU^*$. Since $P^2 \le I$, we find $U^*P^2U = U^*U \ge UU^* \ge UP^2U^*$. This leads to

$$(2.2) PU^*(T^*T)UP \ge P(TT^*)P$$

308

Since $P^2(TT^*) = TT^*$ by (2.1), P commutes with TT^* . This along with (2.2) will yield

 $T^*T = T^{*2}T^2 \ge P(TT^*)P = P^2(TT^*) = TT^*.$

Thus T is hyponormal.

COROLLARY 2.3. Let T be a quasi-isomery. Then T is quasi-normal iff it is a partial isometry.

PROOF. The result follows from Theorem 2.1 and Theorem 2.2.

COROLLARY 2.4. If T is a quasi-isometry and quasiniplotent then T = 0.

PROOF. As r(T) = 0, $||T^n|| \le 1$ for some positive integer *n*. Since T^n is also a quasi-isometry, $||T^n|| = 1$. By Theorem 2, T^n is hyponormal. The desired assertion follows from the relation $||T^n|| = r(T^n)$.

In the next theorem, we collect some spectral properties of quasiisometries.

THEOREM 2.5. Let T be a quasi-isometry. Then

- 1. $a(T) \sim \{0\}$ is a subset of the unit circle,
- 2. $\bar{\alpha} \in \sigma_p(T^*)$ whenever $\alpha \in \sigma_p(T)$,
- 3. $\bar{\alpha} \in a(T^*)$ whenever $\alpha \in a(T)$,
- 4. the eigenspaces corresponding to distinct non-zero eigenvalues of T are mutually orthogonal,
- 5. isolated points of $\sigma(T)$ are eigen values of T.

PROOF. (1) A simple calculation proves the assertion.

(2) Let $\alpha \in \sigma_p(T)$. Suppose first that $\alpha = 0$. If $0 \in \mathbb{C} \setminus \sigma_p(T^*)$, then from $T^{*2}T^2 = T^*T$, $T^*T^2 = T$ or $T^{*2}T = T^*$. Consequently T turns out to be an isometry. But this will contradict the fact that $0 \in \sigma_p(T)$. Now consider the case when α is non-zero. Choose a non-zero vector x such that $Tx = \alpha x$. Since $T^{*2}T^2 = T^*T$, we find $\alpha T^*x = \alpha^2 T^{*2}x$. In view of (1), $|\alpha| = 1$ and therefore $(T^* - \bar{\alpha}I)T^*x = 0$. To establish that $\bar{\alpha} \in \sigma_p(T^*)$, we need to show that T^*x is non zero. If $T^*x = 0$ then $0 = \langle x, T^*x \rangle = \langle Tx, x \rangle = \alpha \langle x, x \rangle$ and hence $\alpha = 0$ because x is nonzero. This contradicts the fact that $|\alpha| = 1$. (3) Let $\alpha \in a(T)$. If $\alpha = 0$, then as argued above, one can show that $0 \in a(T^*)$. Assume that α is non-zero. Choose a sequence (x_n) of unit vectors such that

 $(T - \alpha I)x_n \to 0$. Then

$$-\alpha^2 T^{*2} x_n + \alpha T^* x_n = T^{*2} (T^2 x_n - \alpha^2 x_n) - T^* (T x_n - \alpha x_n) \to 0$$

as $n \to \infty$ or $(\alpha T^* - I) T^* x_n \to 0$. Since

$$\alpha = \lim \left\langle Tx_n, x_n \right\rangle = \lim \left\langle x_n, T^*x_n \right\rangle$$

and $\alpha \neq 0$, (T^*x_n) does not converge to zero. Choose a subsequence $(T^*x_{n_k})$ of (T^*x_n) so that

$$||T^*x_{n_k}|| \ge M$$

for some positive number M. Set

$$y_k = \frac{T^* x_{n_k}}{\|T^* x_{n_k}\|}$$

Then (y_k) is a sequence of unit vectors such that $(\alpha T^* - I)y_k \to 0$ or $(T^* - \bar{\alpha}I)y_k \to 0$ as $|\alpha| = 1$.

(4) Let α and β be distinct nonzero eigen-values of T. If $Tx = \alpha x$ and $Ty = \beta y$ then $0 = \langle T^2 x, T^2 y \rangle - \langle Tx, Ty \rangle = \alpha \overline{\beta} (\alpha \overline{\beta} - 1) \langle x, y \rangle$. Since $\alpha \neq 0$ and $\beta \neq 0$ $\alpha \overline{\beta} \neq 0$ and $|\beta| = 1$. Also, $\alpha \neq \beta$. Therefore, all these will give $\alpha \neq \frac{1}{\overline{\beta}}$ or $\alpha \overline{\beta} = 1$. Thus we infer that $\langle x, y \rangle = 0$. This proves the assertion. (5) Let z_0 be an isolated point of $\sigma(T)$. Then there exists R > 0 such that $\{z : |z - z_0| < R\} \cap \sigma(T) = \{z_0\}$. Define

$$E = \frac{1}{2\pi} \int_{|z-z_0|=R} (zI - T)^{-1} dz.$$

Then E is a non-zero idempotent operator commuting with T and E(H) is invariant under T. Also T/E(H) is a quasi-isometry and $\sigma(T/E(H)) = \{z_0\}$. If $z_0 = 0$, then T/E(H) = 0 by Corollary 2. If $z_0 \neq 0$, then T/E(H) is an invertible quasi-isometry and so must be unitary. Consequently $T/E(H) = z_0I/E(H)$. In either case, $z_0 \in \sigma_p(T)$ which completes the proof.

It is easy to show that if T is an idemepotent operator with $N(T^*) \subset N(T)$ then T is a projection. The following gives a partial extension of this to quasiisometries.

THEOREM 2.6. If T is a quasi-isometry for which $N(T^*) \subset N(T)$, then T is a normal partial isometry.

PROOF. By hypothesis, $TT^*T^2 = T^2$ or $T^{*2} = T^*TT^*$ and so $(TT^*) = (TT^*)^2$. This shows that T is a partial isometry. By Corollary 1, T must be quasinormal. This alongwith the given condition $N(T^*) \subset N(T)$ forces $N(T) = N(T^*)$ or $R(T^*T) = R(TT^*)$. Using the fact that T is a partial isometry, one can conclude that T is normal.

REMARK 2.7. The above theorem raises the following question: Is a quasiisometry T normal if $N(T) \subset N(T^*)$? In case T is idempotent, it is obvious that T is a projection.

COROLLARY 2.8. A quasi-isometry whose adjoint is a dominant operator is a normal partial isometry.

THEOREM 2.9. Let T be a quasi-isometry. Then T is normal if either

1. T^* is k-paranormal, or

2. T^* is k-quasihyponormal

310

PROOF. Suppose (1) holds. Then ||T|| = r(T). By Theorem 3, r(T) = 1; thus ||T|| = 1. As seen in the proof of Theorem 2, $T = T^*T^2$ or $T^* = T^{*2}T$. Since $||T^{*k}x|| ||x^{k-1}|| \ge ||T^*x||^k$, the relation $T^{*n}T^n = T^*T$, (n = 1, 2, 3, ...) yields

$$\begin{aligned} \|T^{*2}Tx\| \|Tx\|^{k-1} &\geq \|T^{*}T^{k-1}x\|^{k} \\ &\geq \|T^{*k-1}T^{k-1}x\|^{k} \\ &= \|T^{*}Tx\|^{k} \end{aligned}$$

Since $T^* = T^{*2}T$, above inequality gives $||T^*x|| ||Tx||^{k-1} \ge ||T^*Tx||^k$. In particular, $N(T^*) \subset N(T)$. Now the result follows from Theorem 4. Next we assume (2). Then $||T^{*k+1}T^kx|| \ge ||TT^{*k}T^kx||$ for all x in H. Since $T^{*k}T^k = T^*T$, we find $||T^{*2}Tx|| \ge ||TT^*Tx||$ or $\langle T^2T^{*2}Tx, \underline{Tx} \rangle \ge \langle (TT^*)^2Tx, Tx \rangle$; thus $\langle T^2T^{*2}Tx, x \rangle \ge \langle (TT^*)^2x, x \rangle$; for all x in $\overline{R(T)}$. Therefore, since $\langle T^2T^{*2}x, x \rangle = 0 = \langle (TT^*)^2x, x \rangle$ for x in $N(T^*)$, we have

(2.3)
$$\langle T^2 T^{*2} x, x \rangle \ge \langle (TT^*)^2 x, x \rangle$$

for all x in H. In particular, $||T^2|| = ||T||^2$. Combining the relation with the assumption that T is quasi-isometry, we find ||T|| = 1. By Theorem 2, T turns out to be hyponormal, and so $N(T) \subset N(T^*)$. Now from (3), it is not difficult to show that T^* is hyponormal. This completes the arguments.

THEOREM 2.10. Let T = UP be a quasi-isometry. Let S = PUP. If $N(T) \subset N(T^*)$ and if S is normal, then T is normal.

PROOF. As seen in the proof of Theroem 1. $U^*P^2U = U^*U$. This will imply that $S^*S = PU^*UP = P^2$. Since PU is a partial isometry with N(PU) = N(P), PUP turns out to be the polar decomposition of S. Now the normality of S will give $PUP = P^2U$ and so $(UP - PU)x \in R(T^*)$ for each x in H. Thus we have UP = PU. Next we show that U is normal. Since S is normal, PU turns out to be normal. Therefore if $U^*x = 0$, then $PUx = U^*Px = P^*Ux = 0$ and hence Ux = 0 as N(PU) = N(U); thus $N(U^*) \subset N(U)$. Since UP = PU, T is quasi-normal. Consequently, we have $N(U^*) = N(U)$ or $R(U^*U) = R(UU^*)$. This shows that U is normal. From this we derive $T^*T = P^2 = U^*UP^2 = UU^*P^2 = UP^2U^* = TT^*$. This completes the proof.

REMARK 2.11. Above result need not hold unless $N(T) \subset N(T^*)$. To see this, consider the operator

$$T = \left[\begin{array}{rr} 1 & 0 \\ 1 & 0 \end{array} \right]$$

on \mathbb{C}^2 . Then T is a quasi-isometry with polar decomposition

$$T = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0\\ 0 & 0 \end{bmatrix}.$$

$$P \text{ is normal } T \text{ fails to be normal.}$$

Although PUP is normal, T fails to be normal.

References

 J. Agler and M. Stankus, m-isometries transformations of Hilbert space, I, Integral Equations and Operator Theroy, 21 (1995), 383-427.

Department of Mathematics Sardar Patel University Vallabh Vidyanagar - 388 120. Gujarat, India.

Received: 18.06.1999. Revised: 22.02.2000

312