A NOTE ON QUASI-ISOMETRIES

S. M. Patel
Sardar Patel University, India.

Abstract

The paper aims at investigating some basic properties of a quasi isometry which is defined to be a bounded linear operator T on a Hilbert space such that $T^{* 2} T^{2}=T^{*} T$.

1. Introduction

Partial isometries provide an extensively studied extension of isometries. They have played significant role in structural study of Hilbert space operators. Agler and Stankus [1] studied another extension called m-isometries. In the present note, we study quasi-isometries the definition of which is given below.

Definition 1.1. A bounded linear operator T is called a quasi-isometry if $T^{* 2} T^{2}=T^{*} T$.

Clearly every isometry is a quasi-isometry; whereas an idempotent operator is a quasi-isometry but need not be an isometry. On the other hand, a quasi-isometry which is an m-isometry turns out to be an isometry. Thus the classes of partial isometries, m-isometries and quasi-isometries which are extensions of the class of isometries are independent.
1.1. Notation and terminologies. For a bounded linerar operator T on a complex Hilbert space H, we write $\sigma(T), a(T)$ and $\sigma_{p}(T)$ to designate the spectrum, the approximate point spectrum and the point spectrum of T respectively. Notations $N(T), R(T)$ and $r(T)$ are used for the null space, the range space, and the spectral readius of T respectively. An operator T is called

1. quasinormal if T commutes with $T^{*} T$;

[^0]2. hyponormal if $T^{*} T \geq T T^{*}$;
3. k-paranormal if $\left\|T^{k} x\right\|\|x\|^{k-1} \geq\|T x\|^{k}$ for all $x \in H$;
4. k-quasihyponormal if $\left\|T^{k+1} x\right\| \geq\left\|T^{*} T^{k} x\right\|$ for every x in H ;
5. m-isometry if
\[

\sum_{k=0}^{m}(-1)^{k}\left[$$
\begin{array}{l}
n \\
k
\end{array}
$$\right] T^{* m-k} T^{m-k}
\]

6. dominant if $R(T-\alpha I) \subset R\left(T^{*}-\bar{\alpha} I\right)$ for all complex numbers α.

2. Results

Theorem 2.1. Let T be an operator with the right-handed polar decomposition $T=U P$. Then T is a quasi-isometry iff $P U$ is a partial isometry with $N(P U)=N(U)$.

Proof. Suppose T is a quasi-isometry. Then $P U^{*} P U^{*} U P U P=P^{2}$ or $P U^{*} P^{2} U P=P^{2}$. Since $N(P)=N(U), U U^{*} P^{2} U P=U P$. A premultiplication by U^{*} yields $U^{*} P^{2} U P=P$ or $P U^{*} P^{2} U=P$. Another application of the relation $N(P)=N(U)$ gives $U U^{*} P^{2} U=U$ or $U^{*} P^{2} U=U^{*} U$. This shows that $P U$ is a partial isometry with $N(P U)=N(U)$. Conversely, assume that $P U$ is a partial isometry and $N(P U)=N(U)$. Then $U^{*} P^{2} U=U^{*} U$ because $U^{*} P^{2} U$ and $U^{*} U$ are projections having the common range space. Clearly, $U=U U^{*} P^{2} U$ or $P^{2}=P U^{*} P^{2} U P$; thus T is a quasi-isometry.

For a quasi-isometry, the inequality $\|T\| \geq 1$ is obvious. Further improvement is not possible as can be seen from the following result.

Theorem 2.2. If T is a quasi-isometry and if $\|T\|=1$, then T is hyponormal.

Proof. By hypothesis,

$$
\begin{aligned}
\left\|T x-T^{*} T^{2} x\right\|^{2} & =\|T x\|^{2}+\left\|T^{*} T^{2} x\right\|^{2}-2 \operatorname{Re}\left\langle T x, T^{*} T^{2} x\right\rangle \\
& =\|T x\|^{2}+\left\|T^{*} T^{2} x\right\|^{2}-2\|T x\|^{2} \\
& \leq\|T x\|^{2}+\|T x\|^{2}-2\|T x\|^{2}=0
\end{aligned}
$$

Thus

$$
\begin{equation*}
T=T^{*} T^{2} \tag{2.1}
\end{equation*}
$$

Hence $T^{*}=T^{* 2} T$. This gives $N(T) \subset N\left(T^{*}\right)$ or $N(U) \subset N\left(U^{*}\right)$. Clearly $U^{*} U \geq U U^{*}$. Since $P^{2} \leq I$, we find $U^{*} P^{2} U=U^{*} U \geq U U^{*} \geq U P^{2} U^{*}$. This leads to

$$
\begin{equation*}
P U^{*}\left(T^{*} T\right) U P \geq P\left(T T^{*}\right) P \tag{2.2}
\end{equation*}
$$

Since $P^{2}\left(T T^{*}\right)=T T^{*}$ by (2.1), P commutes with $T T^{*}$. This along with (2.2) will yield

$$
T^{*} T=T^{* 2} T^{2} \geq P\left(T T^{*}\right) P=P^{2}\left(T T^{*}\right)=T T^{*}
$$

Thus T is hyponormal.
Corollary 2.3. Let T be a quasi-isomery. Then T is quasi-normal iff it is a partial isometry.

Proof. The result follows from Theorem 2.1 and Theorem 2.2.
Corollary 2.4. If T is a quasi-isometry and quasiniplotent then $T=0$.
Proof. As $r(T)=0,\left\|T^{n}\right\| \leq 1$ for some positive integer n. Since T^{n} is also a quasi-isometry, $\left\|T^{n}\right\|=1$. By Theorem $2, T^{n}$ is hyponormal. The desired assertion follows from the relation $\left\|T^{n}\right\|=r\left(T^{n}\right)$.

In the next theorem, we collect some spectral properties of quasiisometries.

Theorem 2.5. Let T be a quasi-isometry. Then

1. $a(T) \sim\{0\}$ is a subset of the unit circle,
2. $\bar{\alpha} \in \sigma_{p}\left(T^{*}\right)$ whenever $\alpha \in \sigma_{p}(T)$,
3. $\bar{\alpha} \in a\left(T^{*}\right)$ whenever $\alpha \in a(T)$,
4. the eigenspaces corresponding to distinct non-zero eigenvalues of T are mutually orthogonal,
5. isolated points of $\sigma(T)$ are eigen values of T.

Proof. (1) A simple calculation proves the assertion.
(2) Let $\alpha \in \sigma_{p}(T)$. Supoose first that $\alpha=0$. If $0 \in \mathbb{C} \backslash \sigma_{p}\left(T^{*}\right)$, then from $T^{* 2} T^{2}=T^{*} T, T^{*} T^{2}=T$ or $T^{* 2} T=T^{*}$. Consequently T turns out to be an isometry. But this will contradict the fact that $0 \in \sigma_{p}(T)$. Now consider the case when α is non-zero. Choose a non-zero vector x such that $T x=\alpha x$. Since $T^{* 2} T^{2}=T^{*} T$, we find $\alpha T^{*} x=\alpha^{2} T^{* 2} x$. In view of (1), $|\alpha|=1$ and therefore $\left(T^{*}-\bar{\alpha} I\right) T^{*} x=0$. To establish that $\bar{\alpha} \in \sigma_{p}\left(T^{*}\right)$, we need to show that $T^{*} x$ is non zero. If $T^{*} x=0$ then $0=\left\langle x, T^{*} x\right\rangle=\langle T x, x\rangle=\alpha\langle x, x\rangle$ and hence $\alpha=0$ because x is nonzero. This contradicts the fact that $|\alpha|=1$.
(3) Let $\alpha \in a(T)$. If $\alpha=0$, then as argued above, one can show that $0 \in a\left(T^{*}\right)$. Assume that α is non-zero. Choose a sequence $\left(x_{n}\right)$ of unit vectors such that $(T-\alpha I) x_{n} \rightarrow 0$. Then

$$
-\alpha^{2} T^{* 2} x_{n}+\alpha T^{*} x_{n}=T^{* 2}\left(T^{2} x_{n}-\alpha^{2} x_{n}\right)-T^{*}\left(T x_{n}-\alpha x_{n}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ or $\left(\alpha T^{*}-I\right) T^{*} x_{n} \rightarrow 0$. Since

$$
\alpha=\lim \left\langle T x_{n}, x_{n}\right\rangle=\lim \left\langle x_{n}, T^{*} x_{n}\right\rangle
$$

and $\alpha \neq 0,\left(T^{*} x_{n}\right)$ does not converge to zero. Choose a subsequence $\left(T^{*} x_{n_{k}}\right)$ of $\left(T^{*} x_{n}\right)$ so that

$$
\left\|T^{*} x_{n_{k}}\right\| \geq M
$$

for some positive number M. Set

$$
y_{k}=\frac{T^{*} x_{n_{k}}}{\left\|T^{*} x_{n_{k}}\right\|}
$$

Then $\left(y_{k}\right)$ is a sequence of unit vectors such that $\left(\alpha T^{*}-I\right) y_{k} \rightarrow 0$ or $\left(T^{*}-\right.$ $\bar{\alpha} I) y_{k} \rightarrow 0$ as $|\alpha|=1$.
(4) Let α and β be distinct nonzero eigen-values of T. If $T x=\alpha x$ and $T y=\beta y$ then $0=\left\langle T^{2} x, T^{2} y\right\rangle-\langle T x, T y\rangle=\alpha \bar{\beta}(\alpha \bar{\beta}-1)\langle x, y\rangle$. Since $\alpha \neq 0$ and $\beta \neq 0 \alpha \bar{\beta} \neq 0$ and $|\beta|=1$. Also, $\alpha \neq \beta$. Therefore, all these will give $\alpha \neq \frac{1}{\bar{\beta}}$ or $\alpha \bar{\beta}=1$. Thus we infer that $\langle x, y\rangle=0$. This proves the assertion.
(5) Let z_{0} be an isolated point of $\sigma(T)$. Then there exists $R>0$ such that $\left\{z:\left|z-z_{0}\right|<R\right\} \cap \sigma(T)=\left\{z_{0}\right\}$. Define

$$
E=\frac{1}{2 \pi} \int_{\left|z-z_{0}\right|=R}(z I-T)^{-1} d z
$$

Then E is a non-zero idempotent operator commuting with T and $E(H)$ is invariant under T. Also $T / E(H)$ is a quasi-isometry and $\sigma(T / E(H))=\left\{z_{0}\right\}$. If $z_{0}=0$, then $T / E(H)=0$ by Corollary 2. If $z_{0} \neq 0$, then $T / E(H)$ is an invertible quasi-isometry and so must be unitary. Consequently $T / E(H)=$ $z_{0} I / E(H)$. In either case, $z_{0} \in \sigma_{p}(T)$ which completes the proof.

It is easy to show that if T is an idemepotent operator with $N\left(T^{*}\right) \subset N(T)$ then T is a projection. The following gives a partial extension of this to quasiisometries.

THEOREM 2.6. If T is a quasi-isometry for which $N\left(T^{*}\right) \subset N(T)$, then T is a normal partial isometry.

Proof. By hypothesis, $T T^{*} T^{2}=T^{2}$ or $T^{* 2}=T^{* 2} T T^{*}$ and so $\left(T T^{*}\right)=$ $\left(T T^{*}\right)^{2}$. This shows that T is a partial isometry. By Corollary 1, T must be quasinormal. This alongwith the given condition $N\left(T^{*}\right) \subset N(T)$ forces $N(T)=N\left(T^{*}\right)$ or $R\left(T^{*} T\right)=R\left(T T^{*}\right)$. Using the fact that T is a partial isometry, one can conclude that T is normal.

REMARK 2.7. The above theorem raises the following question: Is a quasiisometry T normal if $N(T) \subset N\left(T^{*}\right)$? In case T is idempotent, it is obvious that T is a projection.

Corollary 2.8. A quasi-isometry whose adjoint is a dominant operator is a normal partial isometry.

Theorem 2.9. Let T be a quasi-isometry. Then T is normal if either

1. T^{*} is k-paranormal, or
2. T^{*} is k-quasihyponormal

Proof. Suppose (1) holds. Then $\|T\|=r(T)$. By Theorem 3, $r(T)=1$; thus $\|T\|=1$. As seen in the proof of Theorem $2, T=T^{*} T^{2}$ or $T^{*}=T^{* 2} T$. Since $\left\|T^{* k} x\right\|\left\|x^{k-1}\right\| \geq\left\|T^{*} x\right\|^{k}$, the relation $T^{* n} T^{n}=T^{*} T, \quad(n=1,2,3, \ldots)$ yields

$$
\begin{aligned}
\left\|T^{* 2} T x\right\|\|T x\|^{k-1} & \geq\left\|T^{*} T^{k-1} x\right\|^{k} \\
& \geq\left\|T^{* k-1} T^{k-1} x\right\|^{k} \\
& =\left\|T^{*} T x\right\|^{k}
\end{aligned}
$$

Since $T^{*}=T^{* 2} T$, above inequality gives $\left\|T^{*} x\right\|\|T x\|^{k-1} \geq\left\|T^{*} T x\right\|^{k}$. In particular, $N\left(T^{*}\right) \subset N(T)$. Now the result follows from Theorem 4. Next we assume (2). Then $\left\|T^{* k+1} T^{k} x\right\| \geq\left\|T T^{* k} T^{k} x\right\|$ for all x in H. Since $T^{* k} T^{k}=$ $T^{*} T$, we find $\left\|T^{* 2} T x\right\| \geq\left\|T T^{*} T x\right\|$ or $\left\langle T^{2} T^{* 2} T x, T x\right\rangle \geq\left\langle\left(T T^{*}\right)^{2} T x, T x\right\rangle$; thus $\left\langle T^{2} T^{* 2} T x, x\right\rangle \geq\left\langle\left(T T^{*}\right)^{2} x, x\right\rangle$; for all x in $\overline{R(T)}$. Therefore, since $\left\langle T^{2} T^{* 2} x, x\right\rangle=0=\left\langle\left(T T^{*}\right)^{2} x, x\right\rangle$ for x in $N\left(T^{*}\right)$, we have

$$
\begin{equation*}
\left\langle T^{2} T^{* 2} x, x\right\rangle \geq\left\langle\left(T T^{*}\right)^{2} x, x\right\rangle \tag{2.3}
\end{equation*}
$$

for all x in H. In particular, $\left\|T^{2}\right\|=\|T\|^{2}$. Combining the relation with the assumption that T is quasi-isometry, we find $\|T\|=1$. By Theroem $2, T$ turns out to be hyponormal, and so $N(T) \subset N\left(T^{*}\right)$. Now from (3), it is not difficult to show that T^{*} is hyponormal. This completes the arguments.

Theorem 2.10. Let $T=U P$ be a quasi-isometry. Let $S=P U P$. If $N(T) \subset N\left(T^{*}\right)$ and if S is normal, then T is normal.

Proof. As seen in the proof of Theroem 1. $U^{*} P^{2} U=U^{*} U$. This will imply that $S^{*} S=P U^{*} U P=P^{2}$. Since $P U$ is a partial isometry with $N(P U)=N(P), P U P$ turns out to be the polar decomposition of S. Now the normality of S will give $P U P=P^{2} U$ and so $(U P-P U) x \in R\left(T^{*}\right)$ for each x in H. Thus we have $U P=P U$. Next we show that U is normal. Since S is normal, $P U$ turns out to be normal. Therefore if $U^{*} x=0$, then $P U x=U^{*} P x=P^{*} U x=0$ and hence $U x=0$ as $N(P U)=N(U)$; thus $N\left(U^{*}\right) \subset N(U)$. Since $U P=P U, T$ is quasi-normal. Consequently, we have $N\left(U^{*}\right)=N(U)$ or $R\left(U^{*} U\right)=R\left(U U^{*}\right)$. This shows that U is normal. From this we derive $T^{*} T=P^{2}=U^{*} U P^{2}=U U^{*} P^{2}=U P^{2} U^{*}=T T^{*}$. This completes the proof.

Remark 2.11. Above result need not hold unless $N(T) \subset N\left(T^{*}\right)$. To see this, consider the operator

$$
T=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

on \mathbb{C}^{2}. Then T is a quasi-isometry with polar decomposition

$$
T=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 0
\end{array}\right] .
$$

Although $P U P$ is normal, T fails to be normal.

References

[1] J. Agler and M. Stankus, m-isometries transformations of Hilbert space, I, Integral Equations and Operator Theroy, 21 (1995), 383-427.

Department of Mathematics
Sardar Patel University
Vallabh Vidyanagar - 388120.
Gujarat, India.
Received: 18.06.1999.
Revised: 22.02. 2000

[^0]: 2000 Mathematics Subject Classification. 47A62, 47A63,47B20.
 Key words and phrases. Hilbert space, bounded oprators, isometry, spectrum.

