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A NOTE ON QUASI-ISOMETRIES

S. M. Patel

Sardar Patel University, India.

Abstract. The paper aims at investigating some basic properties of
a quasi isometry which is defined to be a bounded linear operator T on a
Hilbert space such that T ∗2T 2 = T ∗T .

1. Introduction

Partial isometries provide an extensively studied extension of isometries.
They have played significant role in structural study of Hilbert space oper-
ators. Agler and Stankus [1] studied another extension called m-isometries.
In the present note, we study quasi-isometries the definition of which is given
below.

Definition 1.1. A bounded linear operator T is called a quasi-isometry
if T ∗2T 2 = T ∗T .

Clearly every isometry is a quasi-isometry; whereas an idempotent oper-
ator is a quasi-isometry but need not be an isometry. On the other hand,
a quasi-isometry which is an m-isometry turns out to be an isometry. Thus
the classes of partial isometries, m-isometries and quasi-isometries which are
extensions of the class of isometries are independent.

1.1. Notation and terminologies. For a bounded linerar operator T on a
complex Hilbert space H , we write σ(T ), a(T ) and σp(T ) to designate
the spectrum, the approximate point spectrum and the point spectrum of
T respectively. Notations N(T ), R(T ) and r(T ) are used for the null space,
the range space, and the spectral readius of T respectively. An operator T is
called

1. quasinormal if T commutes with T ∗T ;
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2. hyponormal if T ∗T ≥ TT ∗;
3. k-paranormal if

∥∥T kx
∥∥ ‖x‖k−1 ≥ ‖Tx‖k

for all x ∈ H ;

4. k-quasihyponormal if
∥∥T k+1x

∥∥ ≥
∥∥T ∗T kx

∥∥ for every x in H;
5. m-isometry if

m∑

k=0

(−1)k

[
n
k

]
T ∗m−kTm−k

6. dominant if R(T − αI) ⊂ R(T ∗ − ᾱI) for all complex numbers α.

2. Results

Theorem 2.1. Let T be an operator with the right-handed polar decompo-
sition T = UP . Then T is a quasi-isometry iff PU is a partial isometry with
N(PU) = N(U).

Proof. Suppose T is a quasi-isometry. Then PU ∗PU∗UPUP = P 2 or
PU∗P 2UP = P 2. Since N(P ) = N(U), UU∗P 2UP = UP . A premultiplica-
tion by U∗ yields U∗P 2UP = P or PU∗P 2U = P . Another application of the
relation N(P ) = N(U) gives UU∗P 2U = U or U∗P 2U = U∗U . This shows
that PU is a partial isometry with N(PU) = N(U). Conversely, assume that
PU is a partial isometry and N(PU) = N(U). Then U ∗P 2U = U∗U because
U∗P 2U and U∗U are projections having the common range space. Clearly,
U = UU∗P 2U or P 2 = PU∗P 2UP ; thus T is a quasi-isometry.

For a quasi-isometry, the inequality ‖T‖ ≥ 1 is obvious. Further improve-
ment is not possible as can be seen from the following result.

Theorem 2.2. If T is a quasi-isometry and if ‖T‖ = 1, then T is hy-
ponormal.

Proof. By hypothesis,

∥∥Tx− T ∗T 2x
∥∥2

= ‖Tx‖2
+
∥∥T ∗T 2x

∥∥2 − 2Re
〈
Tx, T ∗T 2x

〉

= ‖Tx‖2
+
∥∥T ∗T 2x

∥∥2 − 2 ‖Tx‖2

≤ ‖Tx‖2
+ ‖Tx‖2 − 2 ‖Tx‖2

= 0

Thus

(2.1) T = T ∗T 2

Hence T ∗ = T ∗2T . This gives N(T ) ⊂ N(T ∗) or N(U) ⊂ N(U∗). Clearly
U∗U ≥ UU∗. Since P 2 ≤ I , we find U∗P 2U = U∗U ≥ UU∗ ≥ UP 2U∗. This
leads to

(2.2) PU∗(T ∗T )UP ≥ P (TT ∗)P
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Since P 2(TT ∗) = TT ∗ by (2.1), P commutes with TT ∗. This along with (2.2)
will yield

T ∗T = T ∗2T 2 ≥ P (TT ∗)P = P 2(TT ∗) = TT ∗.

Thus T is hyponormal.

Corollary 2.3. Let T be a quasi-isomery. Then T is quasi-normal iff it
is a partial isometry.

Proof. The result follows from Theorem 2.1 and Theorem 2.2.

Corollary 2.4. If T is a quasi-isometry and quasiniplotent then T = 0.

Proof. As r(T ) = 0, ‖T n‖ ≤ 1 for some positive integer n. Since T n

is also a quasi-isometry, ‖T n‖ = 1. By Theorem 2, T n is hyponormal. The
desired assertion follows from the relation ‖T n‖ = r(Tn).

In the next theorem, we collect some spectral properties of quasi-
isometries.

Theorem 2.5. Let T be a quasi-isometry. Then

1. a(T ) ∼ {0} is a subset of the unit circle,
2. ᾱ ∈ σp(T

∗) whenever α ∈ σp(T ),
3. ᾱ ∈ a(T ∗) whenever α ∈ a(T ),
4. the eigenspaces corresponding to distinct non-zero eigenvalues of T are

mutually orthogonal,
5. isolated points of σ(T ) are eigen values of T .

Proof. (1) A simple calculation proves the assertion.
(2) Let α ∈ σp(T ). Supoose first that α = 0. If 0 ∈ C \ σp(T

∗), then from
T ∗2T 2 = T ∗T , T ∗T 2 = T or T ∗2T = T ∗. Consequently T turns out to be
an isometry. But this will contradict the fact that 0 ∈ σp(T ). Now consider
the case when α is non-zero. Choose a non-zero vector x such that Tx = αx.
Since T ∗2T 2 = T ∗T , we find αT ∗x = α2T ∗2x. In view of (1), |α| = 1 and
therefore (T ∗ − ᾱI)T ∗x = 0. To establish that ᾱ ∈ σp(T

∗), we need to show
that T ∗x is non zero. If T ∗x = 0 then 0 = 〈x, T ∗x〉 = 〈Tx, x〉 = α 〈x, x〉 and
hence α = 0 because x is nonzero. This contradicts the fact that |α| = 1.
(3) Let α ∈ a(T ). If α = 0, then as argued above, one can show that 0 ∈ a(T ∗).
Assume that α is non-zero. Choose a sequence (xn) of unit vectors such that
(T − αI)xn → 0. Then

−α2T ∗2xn + αT ∗xn = T ∗2(T 2xn − α2xn) − T ∗(Txn − αxn) → 0

as n→ ∞ or (αT ∗ − I)T ∗xn → 0. Since

α = lim 〈Txn, xn〉 = lim 〈xn, T
∗xn〉

and α 6= 0, (T ∗xn) does not converge to zero. Choose a subsequence (T ∗xnk
)

of (T ∗xn) so that
‖T ∗xnk

‖ ≥M
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for some positive number M . Set

yk =
T ∗xnk

‖T ∗xnk
‖

Then (yk) is a sequence of unit vectors such that (αT ∗ − I)yk → 0 or (T ∗ −
ᾱI)yk → 0 as |α| = 1.
(4) Let α and β be distinct nonzero eigen-values of T . If Tx = αx and
Ty = βy then 0 =

〈
T 2x, T 2y

〉
− 〈Tx, Ty〉 = αβ̄(αβ̄ − 1) 〈x, y〉. Since α 6= 0

and β 6= 0 αβ̄ 6= 0 and |β| = 1. Also, α 6= β. Therefore, all these will give

α 6= 1

β̄
or αβ̄ = 1. Thus we infer that 〈x, y〉 = 0. This proves the assertion.

(5) Let z0 be an isolated point of σ(T ). Then there exists R > 0 such that
{z : |z − z0| < R} ∩ σ(T ) = {z0}. Define

E =
1

2π

∫

|z−z0|=R

(zI − T )−1dz.

Then E is a non-zero idempotent operator commuting with T and E(H) is
invariant under T . Also T/E(H) is a quasi-isometry and σ(T/E(H)) = {z0}.
If z0 = 0, then T/E(H) = 0 by Corollary 2. If z0 6= 0, then T/E(H) is an
invertible quasi-isometry and so must be unitary. Consequently T/E(H) =
z0I/E(H). In either case, z0 ∈ σp(T ) which completes the proof.

It is easy to show that if T is an idemepotent operator withN(T ∗) ⊂ N(T )
then T is a projection. The following gives a partial extension of this to quasi-
isometries.

Theorem 2.6. If T is a quasi-isometry for which N(T ∗) ⊂ N(T ), then
T is a normal partial isometry.

Proof. By hypothesis, TT ∗T 2 = T 2 or T ∗2 = T ∗2TT ∗ and so (TT ∗) =
(TT ∗)2. This shows that T is a partial isometry. By Corollary 1, T must
be quasinormal. This alongwith the given condition N(T ∗) ⊂ N(T ) forces
N(T ) = N(T ∗) or R(T ∗T ) = R(TT ∗). Using the fact that T is a partial
isometry, one can conclude that T is normal.

Remark 2.7. The above theorem raises the following question: Is a quasi-
isometry T normal if N(T ) ⊂ N(T ∗)? In case T is idempotent, it is obvious
that T is a projection.

Corollary 2.8. A quasi-isometry whose adjoint is a dominant operator
is a normal partial isometry.

Theorem 2.9. Let T be a quasi-isometry. Then T is normal if either

1. T ∗ is k-paranormal, or
2. T ∗ is k-quasihyponormal
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Proof. Suppose (1) holds. Then ‖T‖ = r(T ). By Theorem 3, r(T ) = 1;
thus ‖T‖ = 1. As seen in the proof of Theorem 2, T = T ∗T 2 or T ∗ = T ∗2T .

Since
∥∥T ∗kx

∥∥ ∥∥xk−1
∥∥ ≥ ‖T ∗x‖k

, the relation T ∗nTn = T ∗T, (n = 1, 2, 3, ...)
yields

∥∥T ∗2Tx
∥∥ ‖Tx‖k−1 ≥

∥∥T ∗T k−1x
∥∥k

≥
∥∥T ∗k−1T k−1x

∥∥k

= ‖T ∗Tx‖k

Since T ∗ = T ∗2T , above inequality gives ‖T ∗x‖ ‖Tx‖k−1 ≥ ‖T ∗Tx‖k
. In par-

ticular, N(T ∗) ⊂ N(T ). Now the result follows from Theorem 4. Next we
assume (2). Then

∥∥T ∗k+1T kx
∥∥ ≥

∥∥TT ∗kT kx
∥∥ for all x in H . Since T ∗kT k =

T ∗T , we find
∥∥T ∗2Tx

∥∥ ≥ ‖TT ∗Tx‖ or
〈
T 2T ∗2Tx, Tx

〉
≥
〈
(TT ∗)2Tx, Tx

〉
;

thus
〈
T 2T ∗2Tx, x

〉
≥
〈
(TT ∗)2x, x

〉
; for all x in R(T ). Therefore, since〈

T 2T ∗2x, x
〉

= 0 =
〈
(TT ∗)2x, x

〉
for x in N(T ∗), we have

(2.3)
〈
T 2T ∗2x, x

〉
≥
〈
(TT ∗)2x, x

〉

for all x in H . In particular,
∥∥T 2

∥∥ = ‖T‖2
. Combining the relation with the

assumption that T is quasi-isometry, we find ‖T‖ = 1. By Theroem 2, T turns
out to be hyponormal, and so N(T ) ⊂ N(T ∗). Now from (3), it is not difficult
to show that T ∗ is hyponormal. This completes the arguments.

Theorem 2.10. Let T = UP be a quasi-isometry. Let S = PUP . If
N(T ) ⊂ N(T ∗) and if S is normal, then T is normal.

Proof. As seen in the proof of Theroem 1. U ∗P 2U = U∗U . This will
imply that S∗S = PU∗UP = P 2. Since PU is a partial isometry with
N(PU) = N(P ), PUP turns out to be the polar decomposition of S. Now
the normality of S will give PUP = P 2U and so (UP − PU)x ∈ R(T ∗) for
each x in H . Thus we have UP = PU . Next we show that U is normal.
Since S is normal, PU turns out to be normal. Therefore if U ∗x = 0, then
PUx = U∗Px = P ∗Ux = 0 and hence Ux = 0 as N(PU) = N(U); thus
N(U∗) ⊂ N(U). Since UP = PU , T is quasi-normal. Consequently, we have
N(U∗) = N(U) or R(U∗U) = R(UU∗). This shows that U is normal. From
this we derive T ∗T = P 2 = U∗UP 2 = UU∗P 2 = UP 2U∗ = TT ∗. This
completes the proof.

Remark 2.11. Above result need not hold unless N(T ) ⊂ N(T ∗). To see
this, consider the operator

T =

[
1 0
1 0

]

on C2. Then T is a quasi-isometry with polar decomposition
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T =

[
1√
2

0
1√
2

0

] [ √
2 0

0 0

]
.

Although PUP is normal, T fails to be normal.
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