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A NOTE ON QUASI-ISOMETRIES

S. M. PATEL
Sardar Patel University, India.

ABSTRACT. The paper aims at investigating some basic properties of
a quasi isometry which is defined to be a bounded linear operator T on a
Hilbert space such that T*272 = T*T.

1. INTRODUCTION

Partial isometries provide an extensively studied extension of isometries.
They have played significant role in structural study of Hilbert space oper-
ators. Agler and Stankus [1] studied another extension called m-isometries.
In the present note, we study quasi-isometries the definition of which is given
below.

DEFINITION 1.1. A bounded linear operator T is called a quasi-isometry
if T*2T2% = T*T.

Clearly every isometry is a quasi-isometry; whereas an idempotent oper-
ator is a quasi-isometry but need not be an isometry. On the other hand,
a quasi-isometry which is an m-isometry turns out to be an isometry. Thus
the classes of partial isometries, m-isometries and quasi-isometries which are
extensions of the class of isometries are independent.

1.1. Notation and terminologies. For a bounded linerar operator Ton a
complex Hilbert space H, we write o(T'), a(T) and o,(T) to designate
the spectrum, the approximate point spectrum and the point spectrum of
T respectively. Notations N(T), R(T) and r(T') are used for the null space,
the range space, and the spectral readius of T respectively. An operator 7T'is
called

1. quasinormal if T'commutes with 17T

2000 Mathematics Subject Classification. 47A62, 47A63,47B20.
Key words and phrases. Hilbert space, bounded oprators, isometry, spectrum.

307



308 S. M. PATEL

hyponormal if T*T > TT*;

k-paranormal if || T%z|| |z]|*™" > | Tx||* for all z € H;
k-quasihyponormal if HT’“HxH > HT*T’“&:H for every x in H;
m-isometry if

Ol LN

i(_l)k { Z :|T*m—kTm—k

k=0

6. dominant if R(T — ol) C R(T* — al) for all complex numbers a.

2. RESULTS

THEOREM 2.1. Let T be an operator with the right-handed polar decompo-
sition T = UP. Then T is a quasi-isometry iff PU is a partial isometry with
N(PU)=N(U).

PROOF. Suppose T'is a quasi-isometry. Then PU*PU*UPUP = P? or
PU*P?UP = P?. Since N(P) = N(U), UU*P?UP = UP. A premultiplica-
tion by U* yields U* P2UP = P or PU*P?U = P. Another application of the
relation N(P) = N(U) gives UU*P?U = U or U*P?U = U*U. This shows
that PU is a partial isometry with N(PU) = N(U). Conversely, assume that
PU is a partial isometry and N(PU) = N(U). Then U*P?U = U*U because

U*P2U and U*U are projections having the common range space. Clearly,
U =UU*P?U or P?2 = PU*P2UP; thus T'is a quasi-isometry.

For a quasi-isometry, the inequality ||T’|| > 1 is obvious. Further improve-
ment is not possible as can be seen from the following result.

THEOREM 2.2. If Tis a quasi-isometry and if |T|| = 1, then Tis hy-
ponormal.

PrOOF. By hypothesis,

|Ta — T*T%|* = |Tal” + |T*T2||* - 2Re (Tw, T*T?z)
— || + || T*T2||” - 2| T=|?
< | Tz + |72 = 2||T=|* = 0
Thus
(2.1) T =T*T>

Hence T* = T**T. This gives N(T) C N(T*) or N(U) C N(U*). Clearly
U*U > UU*. Since P2 < I, we find U*P?U = U*U > UU* > UP?U*. This
leads to

(2.2) PU*(T*T)UP > P(TT*)P
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Since P2(TT*) = TT* by (2.1), P commutes with 77*. This along with (2.2)
will yield

T*T = T**T? > P(TT*)P = P*(TT*) = TT".
Thus T'is hyponormal.

COROLLARY 2.3. Let T be a quasi-isomery. Then T is quasi-normal iff it
is a partial isometry.

PROOF. The result follows from Theorem 2.1 and Theorem 2.2.
COROLLARY 2.4. If T'is a quasi-isometry and quasiniplotent then T = 0.

PROOF. As r(T) = 0, ||T™]] < 1 for some positive integer n. Since T™
is also a quasi-isometry, |T™|| = 1. By Theorem 2, T™ is hyponormal. The
desired assertion follows from the relation [|T"|| = r(T™).

In the next theorem, we collect some spectral properties of quasi-
isometries.

THEOREM 2.5. Let T be a quasi-isometry. Then

1. a(T) ~ {0} is a subset of the unit circle,

2. & € 0,(T*) whenever a € op(T),

3. a € a(T*) whenever o € a(T),

4. the eigenspaces corresponding to distinct non-zero eigenvalues of T are
mutually orthogonal,

5. isolated points of o(T') are eigen values of T .

PROOF. (1) A simple calculation proves the assertion.

(2) Let a € 0p(T'). Supoose first that o = 0. If 0 € C\ 0,(T™), then from
T*T? = T*T, T*T? = T or T*>T = T*. Consequently T turns out to be
an isometry. But this will contradict the fact that 0 € o,(T). Now consider
the case when « is non-zero. Choose a non-zero vector = such that Tz = ax.
Since T**T? = T*T, we find aT*z = o?*T*?z. In view of (1), |a| = 1 and
therefore (I'™* — aI)T*z = 0. To establish that & € o,(T™*), we need to show
that T*z is non zero. If T*z = 0 then 0 = (z,T*z) = (Tx,x) = a(z,z) and
hence a = 0 because z is nonzero. This contradicts the fact that |a| = 1.

(3) Let a € a(T). If @ = 0, then as argued above, one can show that 0 € a(T*).
Assume that « is non-zero. Choose a sequence (z,,) of unit vectors such that
(T — al)x, — 0. Then

—o*T*? 2, + oT*x,, = T**(T?x,, — o*x,) — T*(Txy, — ) — 0
asn — oo or (aT* — INT*x,, — 0. Since
a=1lim (Txy,,x,) = lim(x,, T x,)

and a # 0, (T*z,,) does not converge to zero. Choose a subsequence (T*x,, )
of (T*x,) so that
1Tz, || = M
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for some positive number M. Set

y T*z,,
k= T T

1T, |
Then (yi) is a sequence of unit vectors such that (a7 — Iy — 0 or (T™* —
al)yr — 0 as |af = 1.
(4) Let o and 3 be distinct nonzero eigen-values of T'. If Tx = ax and
Ty = By then 0 = (T?%z, T?y) — (Tz,Ty) = af(af — 1) (z,y). Since a # 0
and B # 0 af # 0 and |3| = 1. Also, o # 3. Therefore, all these will give

1 _
o # E or aff = 1. Thus we infer that (z,y) = 0. This proves the assertion.

(5) Let zo be an isolated point of o(T"). Then there exists R > 0 such that
{z:]z— 20| <R} No(T) ={z}. Define

1

2 |z—z0|=R

(21 —T) 'dz.

Then E is a non-zero idempotent operator commuting with T'and E(H) is
invariant under T'. Also T/E(H) is a quasi-isometry and o(T/E(H)) = {z0}.
If zo = 0, then T/E(H) = 0 by Corollary 2. If zy # 0, then T/E(H) is an
invertible quasi-isometry and so must be unitary. Consequently T/E(H) =
20l /E(H). In either case, zg € 0,(T") which completes the proof.

It is easy to show that if T'is an idemepotent operator with N(T*) c N(T')
then T'is a projection. The following gives a partial extension of this to quasi-
isometries.

THEOREM 2.6. If T'is a quasi-isometry for which N(T*) C N(T), then
T is a normal partial isometry.

PROOF. By hypothesis, TT*T? = T? or T*? = T*>TT* and so (TT*) =
(TT*)2. This shows that T'is a partial isometry. By Corollary 1, T must
be quasinormal. This alongwith the given condition N(T*) C N(T') forces
N(T) = N(T*) or R(T*T) = R(TT*). Using the fact that T'is a partial
isometry, one can conclude that 7T'is normal.

REMARK 2.7. The above theorem raises the following question: Is a quasi-
isometry T normal if N(T) C N(T%*)? In case T'is idempotent, it is obvious
that T'is a projection.

COROLLARY 2.8. A quasi-isometry whose adjoint is a dominant operator
is a normal partial isometry.
THEOREM 2.9. Let T be a quasi-isometry. Then T is normal if either

1. T* is k-paranormal, or
2. T* is k-quasthyponormal



A NOTE ON QUASI-ISOMETRIES 311

PROOF. Suppose (1) holds. Then ||| = r(T). By Theorem 3, r(T) = 1;
thus | T']] = 1. As seen in the proof of Theorem 2, T = T*T? or T* = T*?T.
Since ||T**z|| [|a*~1]| > |T*||*, the relation T*"T™ = T*T, (n = 1,2,3,...)
yields

[T Tal Tl 2 e rte]
S
= |

I*
|T*Tx||”

Since T* = T*2T, above inequality gives ||T*z|| | T=|/* " > ||T*Tz||". In par-
ticular, N(T*) C N(T). Now the result follows from Theorem 4. Next we
assume (2). Then ||T** 1 T*z|| > ||TT**T*z|| for all # in H . Since T**T* =
T*T, we find ||T**Tx|| > |TT*Tx| or (T*T**Tx,Tz) > ((TT*)*Tz,Tx);
thus (T?*T*?Tz,z) > ((IT'T*)?z,z); for all x in R(T). Therefore, since
(T°T**z,2) = 0= ((TT*)*x,z) for x in N(T™*), we have

(2.3) (T*T*z,2) > (TT*)?x,z)

for all x in H . In particular, | T?|| = |T|I>. Combining the relation with the
assumption that T'is quasi-isometry, we find || T|| = 1. By Theroem 2, T turns
out to be hyponormal, and so N(T') C N(T™*). Now from (3), it is not difficult
to show that 7™ is hyponormal. This completes the arguments.

THEOREM 2.10. Let T = UP be a quasi-isometry. Let S = PUP. If
N(T) C N(T*) and if S is normal, then T is normal.

PROOF. As seen in the proof of Theroem 1. U*P?U = U*U. This will
imply that $*S = PU*UP = P2. Since PU is a partial isometry with
N(PU) = N(P), PUP turns out to be the polar decomposition of S. Now
the normality of S will give PUP = P?U and so (UP — PU)x € R(T*) for
each x in H. Thus we have UP = PU. Next we show that U is normal.
Since S is normal, PU turns out to be normal. Therefore if U*z = 0, then
PUz = U*Px = P*Uxz = 0 and hence Uz = 0 as N(PU) = N(U); thus
N(U*) ¢ N(U). Since UP = PU, T'is quasi-normal. Consequently, we have
N(@U*) = N(U) or R(U*U) = R(UU*). This shows that U is normal. From
this we derive T*T = P? = U*UP? = UU*P? = UP?U* = TT*. This
completes the proof.

REMARK 2.11. Above result need not hold unless N(T') C N(T*). To see
this, consider the operator
1 0
=13

on C2. Then Tis a quasi-isometry with polar decomposition
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=2 o0 0]
7 0 0 0

Although PUP is normal, T fails to be normal.
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