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Abstract: We define the bilinear integral of a measurable multi-

function with respect to a multimeasure and study the properties of

the resulting set-valued set function.

1. Introduction

The need for multimeasures first arised in mathematical economics when
Vind [28] studied equilibrium theory for exchange economies with production,
where the coalitions and not the individual agents are the basic economic
units. Since then the subject of multimeasures has received much attention
and, as it turned out, developed to be the set-valued analogue of the classical
theory of vector measures. Significant contributions to the theory and ap-
plications (control systems, statistics, mathematical economics, game theory,
etc) of multimeasures were made by, among others, Artstein [3], Debreu and
Schmeidler [10], Schmeidler [27], Wenxiu, Jifeng and Aijie [29] for IRn-valued
multimeasures, by Aló, de Korvin and Roberts [1,2], Costé [7], Hiai [16], Pa-
pageorgiou [22-25] and Kandilakis [18] for Banach space-valued multimeasures
and by Castaing [5], Costé and Pallu de la Barriére [8,9] and Godet-Thobie
[13,15] for multimeasures with values in a locally convex vector space.

Various developments in mathematical economics and optimal control
have led to the study of the measurability of multifunctions. Also, integrals
of multifunctions have been studied in connection with statistical problems
(see Kudō [19] and Richter [26]). Accordingly, many papers dealt with the
basic theory of integration of multifunctions and several approaches were es-
tablished. A beginning of what might be called a calculus of multifunctions
can be found in [4]. In [4], Aumann considered integration of selectors of the
multifunction and his integral turned out to be the appropriate analytic tool
in the applied fields mentioned before. However, when it comes to integration
with respect to a multimeasure, only two approaches can be distinguished.
Kandilakis [18] defined his integral in terms of the Bochner integral while
Papageorgiou [22] considered the bilinear integral of Dinculeanu [11]. It is
the purpose of this paper to study some of the properties of the set-valued
bilinear integral of a multifunction with respect to a multimeasure.
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2. Preliminaries

Let T be a non-empty point set on which no topological structure is
required and let X be a linear topological space with topological dual X ′.
We denote by P(X) the class of all nonempty subsets of X . Furthermore, by
Pf (X) (respectively, Pk(X)) we will denote the closed (respectively, compact)
sets in P(X). A c after f or k will mean that the set is in addition convex.
A w in front of f(b) (respectively, k) means that the closedness (respectively,
compactness) is with respect to the weak topology w(X,X ′).

We now let (X, d) be a metric space. Then the distance between a point
x ∈ X and a non-empty set A ⊆ X is defined as d(x,A) = inf{d(x, a) |
a ∈ A}. Furthermore, for any A,B ∈ Pk(X), we define their Hausdorff semi-
metric by d(A,B) = sup{d(a,B) | a ∈ A}, and their Hausdorff metric by
H(A,B) = max{d(A,B), d(B,A)}. In addition, we put ‖A‖ = H(A, {0})
(the norm of the set A). Whenever we refer to the metric space Pk(X), it
must be understood that Pk(X) is equipped with the Hausdorff metric H .

For A ∈ P(X), we let A denote the closure of A and coA denote the closed
convex hull of A. For all x′ ∈ X ′, we set σ(x′, A) = sup{(x′, x) | x ∈ A} (the
support function of A). Furthermore, if A,B ∈ P(X), then we put

A+B = {a+ b | a ∈ A, b ∈ B}.
For the rest of this section we consider (T,S) where S is a σ-ring of sub-

sets of T .

Definition 2.1. If Y is a linear topological space, then a set-valued set
function M : S → P(Y ) is called a multimeasure if

(a) M(∅) = {0} and M(A ∪ B) = M(A) +M(B) for every pair A,B ∈ S
of disjoint sets.

(b) for every yk ∈ M(Ak) the series Σ∞
k=1yk is unconditionally convergent

and

M

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

M(Ak) =

{
y ∈ Y | y =

∞∑

k=1

yk, yk ∈M(Ak)

}
.

As for single-valued measures we have the notion of total variation of a
multimeasure. Let Y be a normed space and suppose that M : S → P(Y ) is
a multimeasure. For every A ⊆ T we define the variation of M on A, denoted
by v(M,A), by

v(M,A) = sup
I

∑

i∈1

‖M(Ai)‖,

where the supremum is taken for all the families (Ai)i∈I ⊆ S of mutually
disjoint sets contained in A. The set function v(M) is called the variation
of M and the restriction of v(M) to the class S will again be denoted by
v(M). We say that M : S → P(Y ) is of bounded variation (with respect
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to S) if v(M,A) < ∞ for every A ∈ S. Note that the variation v(M) of a
multimeasure M is a positive measure (see Proposition 1.1 on page 98 of [16]).

A set A ∈ S is said to be an atom for a multimeasure M : S → P(Y )
if M(A) 6= {0} and if either M(B) = {0} or M(A\B) = {0} holds for every
B ⊆ A,B ∈ S. We say that M is atomic if there exists at least one atom in
S, and that M is non-atomic if there are no atoms in S. If µ : S → Y is a
positive measure on S, then we say that M is µ-continuous on S if and only
if for any A ∈ S with µ(A) = 0 we have that M(A) = {0}. We call a measure
m : S → Y a selector of M if m(A) ∈ M(A) for all A ∈ S. We denote by SM

the set of selectors of M .
Let Y be a fixed Banach space and let m : S → Y be a vector measure

with finite variation v(m). Then we denote by M(v(m)) the σ-ring of all
v(m)-measurable subsets of T and Σ(v(m)) is the δ-ring of all v(m)-integrable
subsets of T . The extensions of m and v(m) to Σ(v(m) will again be denoted
by m and v(m). Consider the class

EX(v(m)) =
{
f : T → X | f =

n∑

i=1

xiχAi
, xi ∈ X, Ai ∈ Σ(v(m)), i = 1, 2, . . . , n

}
,

let Z be another Banach space and suppose that (x, y) 7→ xy is a bilinear
mapping of X × Y into Z such that ‖xy‖ ≤ ‖x‖ ‖y‖. Then we say that
a function f : T → X is m-integrable if there exists a Cauchy sequence
(fn) ⊆ EX(v(m)) which converges to f v(m)-almost everywhere on T . The
integral of f with respect to m is the element

∫
f(t)m(dt) ∈ Z defined by

∫
f(t)m(dt) = lim

n→∞

∫
fn(t)m(dt).

We denote by L1
X(m) the space of all m-integrable functions f : T → X .

Furthermore, if f ∈ L1
X (m) and A ∈ M(v(m)), then fχA ∈ L1

X (m) and we
define ∫

A

f(t)m(dt) =

∫
f(t)χAm(dt).

Let now F : T → Pf (X) be a multifunction. Then we say that F is
v(m)-measurable if the set F−(C) = {t ∈ T | F (t) ∩ C 6= ∅} belongs to
M(v(m)) for every set C ∈ Pf (X) and if for every v(m)-integrable set A
there exists a v(m)-negligible set N ⊆ A and a countable set H ⊆ X such
that F (A\N) ⊆ H . Furthermore, F is said to be integrably bounded if there
exists a k ∈ L1

IR(m) such that

‖F (t)‖ ≤ k v(m) − a.e on T.

A function f : T → X is called a selector of F if f(t) ∈ F (t) v(m)-almost
everywhere on T . The set of all v(m) - measurable selectors of F will be
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denoted by SF . In addition, we put

S1
F (m) = {f ∈ L1

X(m) | f ∈ SF }.
Hence S1

F (m) denotes the class of all integrable selectors of F . It follows
clearly that S1

F (m) is a closed subset of L1
X (m).

3. Integration of multifunctions with respect to a multimeasure

Throughout this section we will assume that X , Y and Z are Banach
spaces, T will denote a non-empty point set on which no topological structure
is required and R is a ring of subsets of T .

Definition 3.1. If M : R → Pf (Y ) is a multimeasure and F : T →
P(X) is a multifunction, then for every set A ∈ M(v(M)) we define the
integral of F with respect to M , denoted by

∫
A F (t)M(dt), by the equality

∫

A

F (t)M(dt) =

{∫

A

f(t)m(dt) | f ∈ S1
F (m), m ∈ SM

}
.

We note that the integral of F with respect to M will always exist, even
if F is not v(M)-measurable. Moreover, if S1

F (m) = ∅ for all m ∈ SM , then∫
A
F (t)M(dt) = ∅. Also, if v(M,A) = 0 for A ∈ M(v(M)) and S1

F (m) 6= ∅
for m ∈ SM , then

∫
A
F (t)M(dt) = {0}.

Example 3.2.
Let T = [0, 1], Σ is the Lebesgue σ-algebra of subsets of T and λ is

the Lebesgue measure on Σ. If we define F : T → IR by F (t) = [0, 1] and
M : Σ → IR by M(A) = [0,∞), then

∫
A
F (t)M(dt) = [0,∞).

Theorem 3.3. If X is a separable Banach space, M : R → Pf (Y ) is
a multimeasure of bounded variation v(M) and if F : T → Pf (X) is an
integrably bounded v(M)-measurable multifunction, then

∫
A F (t)M(dt) 6= ∅

for every A ∈ M(v(M)).

Proof. From Theorem 2.5 of [16] we obtain a selector m : R → Y of
M . By the integrably boundedness of F , there exists a k ∈ L1

IR(m) such
that ‖F (t)‖ ≤ k v(m)-almost everywhere on T . Corollary 7.5 of [20] then
provides F with a v(m)-measurable selector f : T → X . Since ‖f(t)‖ ≤ k(t)
v(m)-almost everywhere on T , Proposition 19 on page 136 of [11] implies that
f ∈ L1

X(m) so that S1
F (m) 6= ∅ for every m ∈ SM ; therefore

∫
A F (t)M(dt) 6= ∅

for every A ∈ M(v(M)).

Theorem 3.4 ([20], p99, Theorem 10.5). Let X be a separable Banach
space, M : R → Pf (Y ) a multimeasure of bounded variation and let F : T →
P(X) be an integrably bounded multifunction such that GrF ∈ S(M(v(M))×
S(BX)).

(a) If T is a countable union of sets of R and if the bounding function k
belongs to L1

IR(v(M)), then
∫

A F (t)M(dt) 6= ∅ for every A ∈ M(v(M)).
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(b) If T ∈ R and if the bounding function k belongs to L1
IR(M), then∫

A F (t)M(dt) 6= ∅ for every A ∈ M(v(M)).

In our next two results we list some useful properties of the bilinear in-
tegral of a multifunction F with respect to a multimeasure M . The first
theorem is the set-valued version of the results of [11] on page 109. The sec-
ond result shows that if F and M are both positive, then the integral of F
with respect to M will also be positive, and vice versa. If X , Y and Z are
Banach lattices, then we denote by X+, Y+ and Z+ the positive cones of X ,
Y and Z respectively.

Theorem 3.5. Suppose that X, Y and Z are Banach lattices, let M :
Σ(v(M)) → P(Y ) be a multimeasure of bounded variation v(M) and let F :
T → P(X) be an integrably bounded v(M)-measurable multifunction.

(a) If Y = L(X,Z) and if M(A) ⊆ Y+ for all A ∈ Σ(v(M)), then for
all A ∈ Σ(v(M)) the mapping F 7→

∫
A
F (t)M(dt) of T into Z is

increasing.
(b) If M(A) ⊆ Y+ for all A ∈ Σ(v(M)) and if F (t) ⊆ X+ v(M)-almost

everywhere on T , then
∫

E

F (t)M(dt) ⊆
∫

F

F (t)M(dt),

for all E,F ∈ Σ(v(M)) with E ⊆ F .
(c) If N : Σ(v(N)) → P(Y ) is a multimeasure of bounded variation v(N)

such that M(A) ⊆ N(A) for all A ∈ Σ(v(N)) and if F (t) ⊆ X+ v(N)-
almost everywhere on T , then

∫

A

F (t)M(dt) ⊆
∫

A

F (t)N(dt).

(d) For all A ∈ Σ(v(M)) we have that

‖
∫

A

F (t)M(dt)‖ ≤
∫

A

‖F (t)‖v(M,dt).

Theorem 3.6. Suppose that X, Y and Z are Banach lattices, let M :
Σ(v(M)) → P(Y ) be a multimeasure of bounded variation v(M) and let F :
T → P(X) be an integrably bounded v(M)-measurable multifunction. If Y =
L(X,Z), M(A) ⊆ Y+ for all A ∈ Σ(v(M)) and if F (t) ⊆ X+ v(M)-almost
everywhere on T , then

∫
A F (t)M(dt) ⊆ Z+. Conversely, if X = L(Y, Z),

M(A) ⊆ Y+ for all A ∈ Σ(v(M)) and if
∫

A
F (t)M(dt) ⊆ Z+, then F (t) ⊆ X+

v(M)-almost everywhere on T .

Proof. Let M(A) ⊆ Y+ for all A ∈ Σ(v(M)) and let F (t) ⊆ X+ v(M)-
almost everywhere on T . From

M(A) = {m(A) | m ∈ SM},
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follows that (y′,m(A)) ≥ 0 for every y′ ∈ Y ′
+ and m ∈ SM . Consequently, for

y′ ∈ Y ′
+, m ∈ SM and f ∈ S1

F (m) we have that

(y′,

∫

A

f(t)m(dt)) =

∫

A

f(t)(y′,m(dt)) ≥ 0

so that
∫

A
F (t)M(dt) ⊆ Z+.

Conversely, by Lemma 1.1 of [17] we obtain a sequence (fk) ⊆ S1
F (v(M))

such that

F (t) = {fk(t) | k ∈ IN}
v(M)-almost everywhere on T . Since

∫
A F (t)M(dt) ⊆ Z+, it then follows

that
∫

A
fk(t)m(dt) ∈ Z+ for all m ∈ SM and k ∈ IN . Consequently, for all

z′ ∈ Z ′
+ and all A ∈ Σ(v(M)),

0 ≤
(
z′,

∫

A

fk(t)m(dt)

)
=

∫

A

(z′, fk(t))m(dt).

Since m(A) ∈ M(A) ⊆ Y+ it then follows that 0 ≤ (z′, fk(t)) and hence
fk(t) ∈ X+ for each k ∈ IN . We then conclude that F (t) ⊆ X+ v(M)-almost
everywhere on T .

The next theorem shows that the bilinear integral of a multifunction with
respect to a multimeasure is in fact a multimeasure.

Theorem 3.7. Let M : R → Pf (Y ) be a multimeasure of bounded varia-
tion v(M) and let F : T → Pf (X) be an integrably bounded v(M)-measurable
multifunction. If for each A ∈ Σ(v(M)) we define N(A) =

∫
A
F (t)M(dt),

then N : Σ(v(M)) → P(Z) is a multimeasure of bounded variation.

Proof. We first show that N is of bounded variation. So let (Ak) ⊆ T
be a sequence of mutually disjoint sets of Σ(v(M)). From

‖N(Ak)‖ ≤ ‖
∫

Ak

F (t)M(dt)‖ ≤
∫

T

‖F (t)‖ v(M,dt),

follows immediately that N is indeed of bounded variation.
To show that N is a multimeasure, let (Ak) be a sequence of mutually

disjoint sets in Σ(v(M)) and let A = ∪∞
k=1Ak. Then we need to prove that

N(A) =
∞∑

k=1

N(Ak).

For this purpose, let zk ∈ N(Ak) for k ∈ IN . Then there exist sequences
(mk) ⊆ SM and (fk) ⊆ S1

F (mk) such that zk =
∫

Ak
fk(t)mk(dt) for k ∈ IN.

Define f : T → X by

f(t) =

{
fk(t) if t ∈ Ak

f1(t) if t ∈ T\A
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and m : Σ(v(m)) → Y by

m = χA1
m1 + χA2

m2 + . . .+ χT\∪n−1

i=1
Ai
mn,

where χAmk(B) = mk(A ∩ B) for k = 1, 2, . . . , n. By the decomposability
of SF and SM we then have that f ∈ S1

F (m) and m ∈ SM , respectively.
Consequently, for z′ ∈ Z ′, we have that

(
z′,

n∑

k=1

zk

)
=

(
z′,

n∑

k=1

∫

Ak

f(t)mk(dt)

)

=

(
z′,

∫

∪n
k=1

Ak

f(t)m(dt)

)
→
(
z′,

∫

A

f(t)m(dt)

)

as n → ∞. This means that the series
∑∞

k=1 zk converges weakly to z =∫
A
f(t)m(dt) and a similar property holds for every subseries of

∑∞
k=1 zk. By

the Orlicz-Pettis theorem follows that the series
∑∞

k=1 zk converges uncondi-
tionally to z ∈ N(A). This means that the series

∑∞
k=1 N(Ak) is uncondition-

ally convergent and is contained in N(A).
To prove the inverse inclusion, let z ∈ N(A) with A ∈ Σ(v(M)). Then

z =
∫

A f(t)m(dt) for some m ∈ SM and f ∈ S1
F (m). Then, as before, the

series
∑∞

k=1

∫
Ak
f(t)m(dt) converges to z. This shows that z ∈ Σ∞

k=1N(Ak),

which concludes the proof.

We have seen from the previous theorem that if N(A) =
∫

A
F (t)M(dt),

where M is a closed-valued multimeasure of bounded variation v(M) and F
is an integrably bounded v(M)-measurable multifunction with closed values,
then N is a multimeasure. We now investigate the relationship between SM ,
the selectors of M , and SN , the selectors of N .

Proposition 3.8. Let M : Σ(v(M)) → Pk(Y ) be a multimeasure of
bounded variation v(M), let F : T → Pk(X) be an integrably bounded
v(M)-measurable multifunction and for each A ∈ Σ(v(M)) let N(A) =∫

A
F (t)M(dt).

(a) If m ∈ SM and f ∈ S1
F (m), then the measure defined by n(A) =∫

A f(t)m(dt) is a selector of N .

(b) If n ∈ SN , then there exist an m ∈ SM and an f ∈ S1
F (m) such that

n(A) =
∫

A f(t)m(dt), A ∈ Σ(v(M)).

Proof. (a) Let m ∈ SM (which exists by Theorem 2.5 of [16]) and let
f ∈ S1

F (m) (whose existence is guaranteed by Proposition 3.1 of [21]). Then
the measure n : Σ(v(m)) → Y defined by n(A) =

∫
A
f(t)m(dt) is clearly a

selector of N .
(b) Since N is a compact-valued multimeasure of bounded variation (by

Theorem 3.6), it follows from Theorem 2.5 of [16] that SN 6= ∅. Let n ∈
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SN . From Theorem 1 of [13] follows that N(A) = {n(A) | n ∈ SN}. But
Proposition 3.1 of [21] implies that

∫
A F (t)M(dt) 6= ∅, that is, there exist an

m ∈ SM and an f ∈ S1
F (m) such that

∫
A
f(t)m(dt) ∈

∫
A
F (t)M(dt) = N(A).

Consequently, if n ∈ SN , then n(A) =
∫

A f(t)m(dt), A ∈ Σ(v(M)).

Let ca(Y ) denote the space of all Y -valued measures on Σ(v(m)). We now
discuss the topology of pointwise weak convergence on ca(Y ). If we consider
EIR(v(m)) ⊗ Y ′, then EIR(v(m)) ⊗ Y ′ and ca(Y ) can be put into duality as
follows:

(m, y) =

(
m,

n∑

k=1

χAk
⊗ y′k

)
=

n∑

k=1

(y′k,m(Ak)),

where {A1, . . . , An} is a finite v(m)-measurable partition of T and y′k ∈ Y ′,
k = 1, 2, . . . , n. Then it follows that the topology of pointwise weak conver-
gence on ca(Y ) is in fact the w(ca(Y ), EIR(v(m)) ⊗ Y ′)-topology.

Theorem 3.9. Suppose that X is a separable Banach space and Z is
finite-dimensional. Let M : Σ(v(M)) → Pwk(Y ) be a multimeasure of bounded
variation v(M) and suppose that F : T → Pwk(X) is an integrably bounded
v(M)-measurable multifunction. If for each A ∈ Σ(v(M)) we define N(A) =∫

A
F (t)M(dt), then N : Σ(v(M)) → Pwk(Z) is a multimeasure of bounded

variation.

Proof. The fact that N is of bounded variation follows just like before.
By making use of the facts that SM is w(ca(Y ), EIR(v(m))⊗Y ′)-compact and
S1

F (m) is weakly compact in L1
X(m), it follows that N is closed-valued.

We will now make use of Theorem 1 of [29] in order to show that N
is a multimeasure. Let A,B ∈ Σ(v(M)) with A ∩ B = ∅. To prove that
N(A ∪ B) = N(A) + N(B), we only need to show that N(A) + N(B) ⊆
N(A ∪ B) because the inverse inclusion follows from the definition of N . So,
if z ∈ N(A)+N(B), then z =

∫
A
f1m1(dt)+

∫
B
f2m2(dt), where fi ∈ S1

F (mi)
and mi ∈ SM , for i = 1, 2. Put f = χAf1 + χBf2 and m = χAm1 + χBm2.
Then f ∈ S1

F (m) and m ∈ SM because both SF and SM are decomposable,
and therefore z =

∫
A∪B

f dm ∈ N(A ∪B).
Finally, let (Ak) be an increasing sequence in Σ(v(M)) and put A =

∪∞
k=1Ak. Then

H(N(A), N(Ak)) = H(N(Ak) +N(A\Ak), N(Ak))

≤ ‖N(A\Ak)‖

≤
∫

A\Ak

‖F (t)‖ v(M,dt) −→ 0

as k → ∞. This shows that N is indeed a strong multimeasure.
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We now investigate the convexity of
∫

A
F (t)M(dt). In particular, we will

see that if Z is finite dimensional, then
∫

A F (t)M(dt) is convex. The convex-
ity fails in the infinite dimensional case; in fact, as it turns out, the closure
of the integral will be convex (see Example 3.2 below). For results on the
convexity of the integral of a multifunction with respect to a vector measure,
see [6], [17] and [4]. Central to our proofs is the Lyapunov convexity theorem.

Theorem 3.10. Suppose that X is a separable Banach space and Z is
finite-dimensional. If M : Σ(v(M)) → Pf (Y ) is a non-atomic multimeasure
of bounded variation v(M) and F : T → Pwf (X) is an integrably bounded
v(M)-measurable multifunction, then

∫
A F (t)M(dt) is a convex set for each

A ∈ Σ(v(M)).

Proof. If for A ∈ Σ(v(M)) we put N(A) =
∫

A
F (t)M(dt), then from

Theorem 4.2 of [3] follows that we only need to show that N is a bounded non-
atomic multimeasure. The fact that N is a strong multimeasure of bounded
variation follows from Theorem 3.6. Therefore it only remains to show that
N is non-atomic. For this purpose, if m ∈ SM , let f ∈ S1

F (m) and define the
set functions n : Σ(v(m)) → Z and ν : Σ(v(M)) → IR+ by

n(A) =

∫

A

f(t)m(dt) and ν(A) =

∫

A

‖f(t)‖ v(M,dt)

for each A ∈ Σ(v(M)), respectively. By Proposition 3.7(a) we have that
n ∈ SN , and ν is v(M)-continuous. We now proceed by showing that n is ν-
continuous, because then N will be v(M)-continuous, and hence non-atomic).
Indeed, let A ∈ Σ(v(M)) and let {Aj | j ∈ J} be an arbitrary finite partition
of A into mutually disjoint sets Aj ∈ Σ(v(M)). Then

∑

j∈J

‖n(Aj)‖ =
∑

j∈J

‖
∫

Aj

f(t)m(dt))‖

≤
∑

j∈J

∫

Aj

‖f(t)‖ v(M,dt)

=
∑

j∈J

ν(Aj)

= ν(A).

Then, since v(n,A) = supJ

∑
j∈J ‖n(Aj)‖, it follows that v(n) ≤ ν and

consequently n is ν-continuous; therefore n is v(M)-continuous. But from
N(A) = {n(A) | n ∈ SN} follows immediately that N is v(M)-continuous.

Example 3.11.
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(i) The following example shows that Theorem 3.9 fails if Z is infinite-
dimensional: Let T = [0, 1], suppose that Σ is the Lebesgue σ-algebra of
subsets of T and λ is the Lebesgue measure on Σ. Put Z = L1

IR(T,Σ, λ)
and define F : T → IR by F (t) = {0, 1} and M : Σ → L1

IR(T,Σ, λ) by
M(A) = {χA}. Then
∫

A

F (t)M(dt) =

{∫

A

F (t)m(dt) | m ∈ SM

}
= {R(m) | m ∈ SM} = {0, 1},

which is not convex.
(ii) The following example shows that Theorem 3.9 fails if the multimea-

sure M is atomic: Let T = {t0} and Σ = {∅, T}. Define F : T → IR by
F (t) = {0, 1} and M : Σ → IR by M(∅) = {0} and M(T ) = {1}. Then M is
atomic and

∫
A
F (t)M(dt) = {0, 1}, which is not convex.

Theorem 3.12. Suppose that X and Z are separable Banach spaces. If
M : Σ(v(M)) → Pf (Y ) is a non-atomic multimeasure of bounded variation
v(M) and F : T → Pf (X) is an integrably bounded v(M)-measurable multi-

function, then
∫

A
F (t)M(dt) is a convex subset of Z for each A ∈ Σ(v(M)).

Proof. Let z1, z2 ∈
∫

A F (t)M(dt) for A ∈ Σ(v(M)), let ε > 0 and let
α ∈ [0, 1]. Then we need to establish the existence of an m ∈ SM and an
f ∈ S1

F (m) such that

‖αz1 + (1 − α)z2 −
∫

A

f(t)m(dt)‖ < ε.

Since z1, z2 ∈
∫

A
F (t)M(dt), there exist mi ∈ SM and fi ∈ S1

F (mi), i = 1, 2,
such that

‖z1 −
∫

A

f1(t)m1(dt)‖ <
ε

2
and ‖z2 −

∫

A

f2(t)m2(dt)‖ <
ε

2
.

Define the set functions ni : Σ(v(M)) → Z (i = 1, 2) by

ni(A) =

∫

A

fi(t)mi(dt), i = 1, 2.

In the same way as in the proof of the previous theorem we can prove that
each ni is a non-atomic measure. Consider now the Banach space Z×Z with
norm defined by ‖(z1, z2)‖ =

√
‖x1‖2 + ‖x2‖2 and define the set function

n : Σ(v(M)) → Z × Z by

n(A) = (n1(A), n2(A)) =

(∫

A

f1(t)m1(dt),

∫

A

f2(t)m2(dt)

)
.

Then n is a non-atomic measure with finite variation. Indeed, suppose, on
the contrary that E is a atom for n. Then, for all E ′ ⊂ E, E′ ∈ Σ(A, v(m)),
we have that either n(E ′) = 0 or n(E\E′) = 0. This in turn implies that
either n1(E

′) = 0 = n2(E
′) or n1(E\E′) = 0 = n2(E\E′), contradicting
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the fact that both n1 and n2 is non-atomic. From the Lyapunov convexity
theorem, it follows that the closure of the range R(n) of n is convex in Z×Z.
Consequently, if A ∈ Σ(v(M)), then

αn(A) + (1 − α)n(∅) = αn(A) ∈ R(n).

This means that there exists a set Aα ⊆ A such that

‖αn(Aα) − n(Aα)‖ < ε

4
and ‖(1 − α)n(A) − n(A\Aα)‖ < ε

4
,

that is

‖α
∫

A

fi(t)mi(dt) −
∫

Aα

fi(t)mi(dt)‖ <
ε

4

and

‖(1 − α)

∫

A

fi(t)mi(dt) −
∫

A\Aα

fi(t)mi(dt)‖ <
ε

4

for i = 1, 2. If we put

f = f1χAα
+ f2χT\Aα

and m = χAα
m1 + χT\Aα

m2,

then m ∈ SM , f ∈ S1
F (m) and m(A) = m1(Aα) + m2(A\Aα) for all A ∈

Σ(v(M)). The result then follows from the fact that

‖αz1 + (1 − α)z2 −
∫

A

f(t)m(dt)‖

≤ ‖αz1 − α

∫

A

f1(t)m1(dt)‖ + ‖α
∫

A

f1(t)m1(dt) −
∫

Aα

f1(t)m1(dt)‖ +

‖(1 − α)z2 − (1 − α)

∫

A

f2(t)m2(dt)‖ +

‖(1 − α)

∫

A

f2(t)m2(dt) −
∫

A\Aα

f2(t)m2(dt)‖

< α
ε

2
+
ε

4
+ (1 − α)

ε

2
+
ε

4
= ε

By making use of the facts that that SM is w(ca(Y ), EIR(v(m)) ⊗ Y ′)-
compact and S1

F (m) is weakly compact in L1
X(m), we have

Theorem 3.13. Let T be a countable union of sets of the ring R and
suppose that Y = Z is a separable reflexive Banach space. If F : T →
Pkc(IR

n) is an integrably bounded v(M)-measurable multifunction and M :
Σ(v(M)) → Pwkc(Y ) is a multimeasure of bounded variation v(M), then for
each A ∈ Σ(v(M)) the set

∫
A
F (t)M(dt) is a convex and w(Y, Y ′)-compact

subset of Y .
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In [3] Artstein discussed Radon-Nikodým derivatives of multimeasures
whose values are convex sets in IRn while Castaing [5] and Godet-Thobie [14]
gave Radon-Nikodým theorems for multimeasures with compact and convex
values in a locally convex topological space. Note that Theorem 9.1 on page
120 in [3] has been shown in [9, pp. 305, 308] to be false. Costé [7] and Hiai
[16] discussed Radon-Nikodým theorems for multimeasures whose values are
closed, bounded and convex sets in a separable Banach space. Papageorgiou
[24] proved two set-valued Radon-Nikodým theorems for transition multimea-
sures, and the results were recently ([25]) extended to the case where the
dominating control measure is a transition measure. We now continue by es-
tablishing Radon-Nikodým-type theorems for our bilinear set-valued integral.
In our first result the range spaces of the multimeasure and multifunction are
finite-dimensional while in the results thereafter we take the range spaces to
be arbitrary Banach spaces.

Theorem 3.14 (Radon-Nikodým). Let T be a countable union of sets of
the ring R, µ is a scalar measure on R and let M : Σ(v(M)) → Pkc(IR

n) be
a multimeasure of bounded variation v(M). If M is µ-continuous on R, then
there exists an integrably bounded v(M)-measurable multifunction F : T →
Pkc(IR

n) such that

M(A) =

∫

A

F (t)µ(dt)

for each A ∈ Σ(v(M)).

Proof. From Theorem 6 on page 67 of [15] follows that

M(A) = {m(A) | m ∈ SM}

for all A ∈ R. This means that every m ∈ SM is µ-continuous on R. Since µ
has the direct sum property, from Theorem 5 on page 182 of [11] follows that
for each m ∈ SM there exists a locally µ-integrable function fm : T → IRn

such that

m(A) =

∫

A

fm(t)µ(dt), A ∈ R.

Put

K = {fmχA ∈ L1
IRn(µ) | A ∈ R,m ∈ SM}.

We first show that K is a closed subset of L1
IRn(µ). So let fmk

χA ∈ K and let
f be such that fmk

χA → f in L1
IRn(µ). Since SM is compact for the topology

of pointwise convergence, there exists an m′ ∈ SM such that mk(A) → m′(A)
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for all A ∈ R. But

lim
k→∞

∫
(fmk

χA)(t)µ(dt) = lim
k→∞

∫

A

fmk
(t)µ(dt)

=

∫

A

fm′(t)µ(dt)

=

∫
(fm′χA)(t)µ(dt)

so that f = fm′χA ∈ K.
Evidently, K is convex, and by Theorem 3.1 of [17] we obtain an integrably

bounded µ-measurable multifunction F : T → Pkc(IR
n) such thatK = S1

F (µ).
Then, for each A ∈ R,

M(A) = {m(A) | m ∈ SM} =

{∫

A

fm(t)µ(dt) | m ∈ SM

}

=

{∫
(fmχA)(t)µ(dt) | fmχA ∈ K

}

=

{∫

A

fm(t)µ(dt) | fm ∈ S1
F (µ)

}

=

∫

A

F (t)µ(dt).

Corollary 3.15. Under the hypotheses of Theorem 3.12 follows that
there exists a unique integrably bounded v(M)-measurable multifunction F :
T → Pkc(IR

n) such that

M(A) =

∫

A

F (t)µ(dt)

for each A ∈ Σ(v(M)).

Proof. Let G : T → Pkc(IR
n) be a multifunction such that M(A) =∫

AG(t)µ(dt) for each A ∈ Σ(v(M)). Define φ : SM → S1
F (µ) by

φ(m) =
m(dt)

µ(dt)
.

Then it follows that φ is a linear isometric bijection and

S1
F (µ) = φ(SM ) = S1

G(µ).

From Corollary 1.2 of [17] follows then that F (t) = G(t) v(M)-almost every-
where on T .
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Corollary 3.16. Let T be a countable union of sets of the ring R and let
µ be a scalar measure on R. If M : Σ(v(M)) → Pkc(IR

n) is a µ-continuous
multimeasure of bounded variation v(M), then

SM =

{∫

(·)
f(t)µ(dt) | f ∈ S1

F (µ),M(dt) = F (t)µ(dt)

}
.

Proof. Let m ∈ SM . Then for all A ∈ Σ(v(M)) we have that m(A) ∈
M(A) so that m is also µ-continuous. From Theorem 5 on page 182 of [11]
we obtain an f ∈ L1

IR(µ) such that m(A) =
∫

A f(t)µ(dt) for every A ∈ Σ(µ).

Then
∫

A f(t)µ(dt) ∈
∫

A F (t)µ(dt) for all A ∈ Σ(µ). This shows that f ∈
S1

F (µ) and consequently

SM ⊆
{∫

(·)
f(t)µ(dt) | f ∈ S1

F (µ),M(dt) = F (t)µ(dt)

}
.

For the inverse inclusion, let f ∈ S1
F (µ) and considerm(A) =

∫
A f(t)µ(dt),

A ∈ Σ(µ). Then Proposition 3.7(a) implies that m ∈ SM , and
{∫

(·)
f(t)µ(dt) | f ∈ S1

F (µ),M(dt) = F (t)µ(dt)

}
⊆ SM .

Corollary 3.17. Let T be a countable union of sets of the ring R, µ is
a scalar measure on R and for i = 1, 2 let Mi : Σ(v(Mi)) → Pkc(IR

n) be a
µ-continuous multimeasure of bounded variation v(Mi). If M1(A) ⊆ M2(A)
for every A ∈ Σ(v(M2)), then for i = 1, 2 there exists an integrably bounded
v(Mi)-measurable multifunction Fi : T → Pkc(IR

n) such that F1(t) ⊆ F2(t).

Proof. From Theorem 3.12 we obtain an integrably bounded v(Mi)-
measurable multifunction Fi : T → Pkc(IR

n) such that

M(Ai) =

∫

A

Fi(t)µ(dt), i = 1, 2.

Since M1(A) ⊆M2(A) for every A ∈ Σ(v(M2)), it follows that σ(p,M1(A)) ≤
σ(p,M2(A)) for p ∈ IRn. Consequently, for p ∈ IRn,

∫

A

σ(p, F1(t))µ(dt) = σ(p,

∫

A

F1(t)µ(dt))

≤ σ(p,

∫

A

F2(t)µ(dt)) =

∫

A

σ(p, F2(t))µ(dt)

and we deduce that σ(p, F1(t)) ≤ σ(p, F2(t)). Since both F1 and F2 are convex
and compact-valued, it then follows that F1(t) ⊆ F2(t).
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Corollary 3.18. Let T be a countable union of sets of the ring R and
µ is a non-atomic scalar measure on R. If M : Σ(v(M)) → Pkc(IR

n) is
a µ-continuous multimeasure of bounded variation v(M), then there exists
a multimeasure N : Σ(v(M)) → Pkc(IR

n) of bounded variation such that
coM(A) = N(A) for each A ∈ Σ(v(M)).

Proof. From Theorem 3.12 follows that there exists an integrably
bounded v(M)-measurable multifunction F : T → Pkc(IR

n) such that
M(A) =

∫
A F (t)µ(dt) for each A ∈ Σ(v(M)). But then

coM(A) = co

∫

A

F (t)µ(dt) =

∫

A

F (t)µ(dt) =

∫

A

co F (t)µ(dt),

where the last equality follows from the fact that
∫

A F (t)µ(dt) is a convex
set, and

σ(p,

∫

A

F (t)µ(dt)) =

∫

A

σ(p, F (t))µ(dt)

=

∫

A

σ(p, co F (t))µ(dt)

= σ(p,

∫

A

co F (t)µ(dt))

for every p ∈ IRn. If we put N(A) =
∫

A co F (t)µ(dt), then N is the desired
multimeasure. Indeed, by Lemma 8.3 of [20] follows that co F is µ-measurable.
According to Theorem 3.6 we then only need to show that co F is integrably
bounded. To start with, first note that from the integrably boundedness of
F we obtain a k ∈ L1

IR(µ) such that ‖F (t)‖ ≤ k(t) for every t ∈ T\N ,
where N is some µ-negligible subset of T . Let x(t) ∈ co F (t) for t ∈ T . Then

x(t) =
∑n+1

j=1 αj(t)xj(t), where xj(t) ≥ 0,
∑n+1

j=1 αj(t) = 1 and xj(t) ∈ F (t)

for j = 1, 2, . . . , n+ 1. If t ∈ T\N , then it follows easily that ‖x(t)‖ ≤ k(t) so
that co F is indeed integrably bounded.

Theorem 3.19. Let T be a countable union of sets of the ring R and let X
and Z be separable Banach spaces such that Y ⊆ L(X,Z) and Z = W ′, where
W is a norming subspace of Z ′. If M : Σ(v(M)) → Pk(Y ) is a multimeasure
of bounded variation v(M) and F : T → Pf (X) is an integrably bounded
v(M)-measurable multifunction, then there exists an integrably bounded v(M)-
measurable multifunction G : T → Pk(Z) such that

∫

A

F (t)M(dt) =

∫

A

G(t) v(M,dt)

for each A ∈ Σ(v(M)).
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Proof. From Theorem 3.2 we have that
∫

A
F (t)M(dt) 6= ∅ for A ∈

Σ(v(M)). Then
∫

A

F (t)M(dt) =

{∫

A

f(t)m(dt) | f ∈ S1
F (m),m ∈ SM

}

=

{∫

A

Umf(t) v(m, dt) | f ∈ S1
F (m),m ∈ SM

}
,

where Um : T → L(Y, Z) is the function whose existence is guaranteed by
Theorem 4 on page 263 of [11]. If, for each t ∈ T , we define

G(t) = {(Umf)(t) | f ∈ S1
F (m),m ∈ SM},

then G is the desired multifunction. Indeed, first note that G(t) ∈ Pk(Z)
because both SM and S1

F are compact for the topology of pointwise conver-
gence. To prove the integrably boundedness of G, let z ∈ G(t) for all t ∈ T .
Then there exist m′ ∈ SM and f ′ ∈ S1

F (m′) such that z = Um′(t)f ′(t) for all
t ∈ T . Therefore

‖z‖ = ‖Um′(t)f ′(t)‖ ≤ ‖Um′(t)‖ ‖f ′(t)‖ = ‖f ′(t)‖,
which implies that G is indeed integrably bounded.

Furthermore, since the mapping t 7→ (Umf)(t) is v(m)-measurable for
each m ∈ SM and f ∈ S1

F (m), it follows immediately that G is also v(M)-
measurable. Obviously, for each A ∈ Σ(v(M)) we have that

∫

A

F (t)M(dt) =

∫

A

G(t) v(M,dt).

By making use of Theorem 5 on page 269 of [11] and the remarks on page
271 of [11] we now have the following corollary, the proof of which is similar
to the previous theorem.

Corollary 3.20. Let T be a countable union of sets of the ring R and
let X and Z be separable Banach spaces such that Y ⊆ L(X,Z) and Z = W ′,
where W is a norming subspace of Z ′. Suppose that M : Σ(v(M)) → Pk(Y )
is a multimeasure of bounded variation v(M) and let F : T → Pf (X) be an
integrably bounded v(M)-measurable multifunction. If µ is a scalar measure
on R with the direct sum property such that M is µ-continuous, then there
exists an integrably bounded v(M)-measurable multifunction G : T → Pk(Z)
such that ∫

A

F (t)M(dt) =

∫

A

G(t)µ(dt)

for each A ∈ Σ(v(M)).
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Theorem 3.21. Let T be a countable union of sets of the ring R and let
µ be a scalar measure on R. If M : Σ(v(M)) → Pkc(IR

n) is a multimeasure of
bounded variation v(M) such that M is µ-continuous and if F : T → Pf (X)
is an integrably bounded v(M)- measurable multifunction, then there exists an
integrably bounded v(M)-measurable multifunction G : T → Pkc(IR

n) such
that ∫

A

F (t)M(dt) =

∫

A

F (t)G(t)µ(dt)

for all A ∈ Σ(v(M)).

Proof. By Theorem 3.12 we obtain an integrably bounded v(M)-
measurable multifunction G : T → Pkc(IR

n) such that M(A) =
∫

AG(t)µ(dt)

for all A ∈ Σ(v(M)). Therefore, for m ∈ SM , there exists a g ∈ S1
G(µ) such

that

m(A) =

∫

A

g(t)µ(dt).

Then, since m(dt) = g(t)µ(dt), we have that
∫

A

f(t)m(dt) =

∫

A

f(t)g(t)µ(dt) ∈
∫

A

F (t)G(t)µ(dt),

for every f ∈ S1
F (m) and therefore

∫
A
F (t)M(dt) ⊆

∫
A
F (t)G(t)µ(dt) for all

A ∈ Σ(v(M)). The inverse inclusion follows similarly.

Theorem 3.22. Let T be a countable union of sets of the ring R and let X
and Z be separable Banach spaces such that Y ⊆ L(X,Z) and Z = W ′, where
W is a norming subspace of Z ′. Suppose that M : Σ(v(M)) → Pwkc(Y )
is a multimeasure of bounded variation v(M) and let F : T → Pwkc(X)
be an integrably bounded v(M)-measurable multifunction. If µ is a scalar
measure on R with the direct sum property such that M is µ-continuous,
then

∫
A F (t)M(dt) is a convex and w(Z,Z ′)-compact subset of Z for every

A ∈ Σ(v(M)).

Proof. From Corollary 3.18 we obtain an integrably bounded v(M)-
measurable multifunction G : T → Pwkc(Z) such that

∫
A F (t)M(dt) =∫

A
G(t)µ(dt) for each A ∈ Σ(v(M)). If we put N(A) =

∫
A
G(t)µ(dt), then we

know that N : Σ(v(M)) → Pwkc(Z) is a multimeasure of bounded variation
and SN 6= ∅. Let n ∈ SN and define ψ : L1

Z(µ) → Z and φ : SN → Z by

ψ([g]) =

∫
g(t)µ(dt), g ∈ [g] and φ(n) =

n(dt)

µ(dt)
.

Then ψ is continuous with respect to the norm topologies of the spaces L1
Z(µ)

and Z. Also, since φ is a linear isometric bijection, it is continuous with re-
spect to the norm topologies of the spaces ca(Z) and L1

Z(µ). Theorem 15 on
page 422 of [12] asserts that ψ is continuous with respect to the topologies
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w(L1
Z(µ), L∞

Z′(µ)) and w(Z,Z ′) of the spaces L1
Z(µ) and Z, while φ is continu-

ous with respect to the topologies w(ca(Z), EIR(µ)⊗Z ′) and w(L1
Z(µ), L∞

Z′(µ))
of the spaces ca(Z) and L1

Z(µ). We then have that

(ψ ◦ φ)(SN ) = ψ(φ(SN )) = ψ(S1
G(µ)) =

∫

A

G(t)µ(dt) =

∫

A

F (t)M(dt).

Since ψ◦φ is continuous with respect the topologies w(ca(Z), EIR(µ)⊗Z ′) and
w(Z,Z ′) of ca(Z) and Z, and since SN is a convex and w(ca(Z), EIR(µ)⊗Z ′)-
compact subset of ca(Z), we then have that

∫
A F (t)M(dt) is a convex and

w(Z,Z ′)-compact subset of Z.

Corollary 3.23. Under the conditions of the previous theorem we have
that

∫
A
F (t)M(dt) is a convex and closed subset of Z for every A ∈ Σ(v(M)).

Proof. By the previous theorem,
∫

A F (t)M(dt) is a convex and w(Z,Z ′)-
compact subset of Z; therefore

∫
A
F (t)M(dt) is also w(Z,Z ′)-closed. The

result then follows from page 422 of [12].

The following corollary is a result of the fact that the weak and strong
topologies coincide on finite-dimensional spaces.

Corollary 3.24. Let T be a countable union of sets of the ring R and let
µ be a scalar measure on R with the direct sum property. If M : Σ(v(M)) →
Pkc(IR

n) is a µ-continuous multimeasure of bounded variation v(M) and F :
T → Pkc(IR

m) is an integrably bounded v(M)-measurable multifunction, then∫
A F (t)M(dt) is a convex and compact subset of IRnm for every A ∈ Σ(v(M)).

Proof. If we put Z = IRnm, W = IRnm and consider IRn ⊆
L(IRm, IRnm), then it follows immediately that Z = W ′ and W is a norming
subspace of Z ′. By Theorem 3.20 follows then that

∫
A
F (t)M(dt) is convex

and w(IRnm, (IRnm)′)-compact, and therefore convex and compact in IRnm.

Theorem 3.25. Let T be a countable union of sets of the ring R and let
µ be a non-atomic scalar measure on R. If M : Σ(v(M)) → Pkc(IR

n) is a
multimeasure of bounded variation v(M) such that M is µ-continuous, and if
F : T → Pkc(IR

n) is an integrably bounded v(M)-measurable multifunction,
then ∫

A

F (t)M(dt) =

∫

A

F (t) extM(dt)

for all A ∈ Σ(v(M)).

Proof. We only need to prove that
∫

A F (t)M(dt) ⊆
∫

A F (t) extM(dt)
because the inverse inclusion follows obviously. By Theorem 3.19 we have
that

∫
A F (t)M(dt) =

∫
A F (t)G(t)µ(dt), where G : T → Pkc(IR

n) is an



INTEGRATION OF MULTIFUNCTIONS 331

integrably bounded v(M)-measurable multifunction. But since F (t)G(t) =
co ext F (t)G(t), we then have that

∫

A

F (t)G(t)µ(dt) =

∫

A

co ext F (t)G(t)µ(dt) =

∫

A

ext F (t)G(t)µ(dt).

Then we only need to show that
∫

A ext F (t)G(t)µ(dt) ⊆
∫

A F (t)extM(dt).

For this purpose, let h ∈ S1
FG(µ) and m ∈ SM . Then the proof will be

complete if we can show that
∫

A h(t)µ(dt) =
∫

A f(t)m(dt) for f ∈ S1
F (m)

because then∫

A

h(t)µ(dt) =

∫

A

f(t)m(dt) ∈ co

∫

A

f(t) extM(dt) ∈
∫

A

F (t) extM(dt).

But if g ∈ S1
G(µ) and f ∈ S1

F (m), then
∫

A
h(t)µ(dt) =

∫
A
f(t)g(t)µ(dt) =∫

A f(t)m(dt) and the proof is complete.

Theorem 3.26. Let T be a countable union of sets of the ring R, and
suppose that M : Σ(v(M)) → Pkc(IR

p) is a multimeasure of bounded varia-
tion v(M) and F : T → Pf (IRn) is an integrably bounded v(M)-measurable
multifunction. If µ is a non-atomic scalar measure on R such that M is
µ-continuous and if Z = IRnp, then∫

A

F (t)M(dt) =

∫

A

F (t) coM(dt)

for all A ∈ Σ(v(M)).

Proof. By Theorem 3.19 follows that there is an integrably bounded
v(M)-measurable multifunction G : T → Pkc(IR

p) such that
∫

A
F (t)M(dt) =∫

A F (t)G(t)µ(dt) for all A ∈ Σ(v(M)). Since
∫

A F (t)G(t)µ(dt) =∫
A
co F (t)G(t)µ(dt) for all A ∈ Σ(v(M)), we only need to prove that

∫

A

co F (t)G(t)µ(dt) =

∫

A

F (t)coM(dt)

for all A ∈ Σ(v(M)). So let m ∈ Sco M . Then m(A) ∈ coM(A) for all
A ∈ Σ(v(M)). But

coM(A) =

∫

A

F (t)µ(dt) =

∫

A

co F (t)µ(dt),

that is, there is a g ∈ S1
co F (µ) such that m(A) =

∫
A g(t)µ(dt). Then

since m(dt) = g(t)µ(dt), it follows immediately that
∫

A f(t)m(dt) =∫
A
f(t)g(t)µ(dt) and the proof is complete.

Theorem 3.27. Let T be a countable union of sets of the ring R and let X
and Y be separable Banach spaces. Suppose that M : Σ(v(M)) → Pf (Y ) is a
multimeasure of bounded variation v(M) and F : T → Pf (X) is an integrably
bounded v(M)-measurable multifunction. Then

(a)
∫

A F (t) coM(dt) = co
∫

A F (t)M(dt) for all A ∈ Σ(v(M)).
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(b) If M is in addition non-atomic, then
∫

A
F (t) coM(dt) =

∫
A
F (t)M(dt)

for all A ∈ Σ(v(M)).

Proof. Since Sco M = coSM (by Theorem 4.2 of [23]), statement (a) then
follows from the fact that

∫

A

F (t) coM(dt) =

{∫

A

f(t)m(dt) | f ∈ S1
F (m),m ∈ Sco M

}

= co

{∫

A

f(t)m(dt) | f ∈ S1
F (m),m ∈ SM

}

= co

∫

A

F (t)M(dt)

for all A ∈ Σ(v(M)). To prove the second statement, assume that M is

non-atomic. Since
∫

A
F (t)M(dt) is convex, we have that

∫
A
F (t) coM(dt) =

co
∫

A
F (t)M(dt) =

∫
A
F (t)M(dt) for all A ∈ Σ(v(M)).

Note that instead of assuming that M is non-atomic in the second state-
ment of the above theorem, we may let M be convex-valued. Indeed, if this is

the case, then SM = coSM = Sco M so that
∫

A F (t) coM(dt) =
∫

A F (t)M(dt)
for all A ∈ Σ(v(M)).

Theorem 3.28. Let T be a countable union of sets of the ring R and let X
and Y be separable Banach spaces. Suppose that M : Σ(v(M)) → Pk(Y ) is a
multimeasure of bounded variation v(M) and F : T → Pk(X) is an integrably
bounded v(M)-measurable multifunction. Then

(a)
∫

A
F (t)M(dt) =

∫
A
F (t) extM(dt) for all A ∈ Σ(v(M)).

(b) If M is in addition convex, then
∫

A F (t)M(dt) =
∫

A F (t) extM(dt)
for all A ∈ Σ(v(M)).

Proof. (a) By the Krein-Milman theorem follows that coM = co extM .
Consequently, by applying the previous theorem twice, we have

∫

A

F (t)M(dt) =

∫

A

F (t) coM(dt)

=

∫

A

F (t) co extM(dt)

=

∫

A

F (t) extM(dt)

for all A ∈ Σ(v(M)). For statement (b), note that since M is convex-valued,
we have that SM = co ext SM and the result follows immediately.
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