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ON ISOGENIES OF ELLIPTIC CURVES

Ivica Gusić

University of Zagreb, Croatia

Abstract. We give a characterization of elliptic curves which are
isogenous over two different quadratic extensions of a fixed number field.

1. Main Result

Let k be a number field and let A,B be elliptic curves over k. An isogeny
between A and B is a nonzero morphism f : A→ B which is a homomorphism
of groups. We say that A,B are isogenous if there is an isogeny f : A → B.
If f is defined over an extension field K/k then we say that the elliptic curves
are isogenous over K (or K-isogenous). The set of isogenies from A to itself,
including the zero map, form a ring End(A) which is called the endomorphism
ring of A. An elliptic curve A is said to have complex multiplication (CM
for short) if its endomorphism ring End(A) is strictly larger then Z. If an
elliptic curve A defined over a number field has CM, then the algebra K0 =
End(A)⊗ZQ is a quadratic imaginary field over rationals. For basic definitions
and results on elliptic curves see [1] and [3].

Let A be an elliptic curve over k defined by a Weierstrass equation y2 =
f(x) and let d ∈ k be a nonsquare. By Ad we denote the elliptic curve with
equation dy2 = f(x). It is easy to see that A and Ad are isomorphic over

k(
√
d).
Let k be a number field and let A,B be elliptic curves over k without

complex multiplication. Then there exists quadratic extension K/k such that
every isogeny f : A → B is defined over K (see [2, Remark 5.8]). Therefore,
if A,B are isogenous over two different quadratic extensions of k, than A,B
are isogenous over k. The following example shows that this is not true for
elliptic curves with complex multiplication.
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Example 1.1. Let A be the elliptic curve with Weierstreiss equation
y2 = x3 + 1 and let A3 be the elliptic curve with equation 3y2 = x3 + 1.
These elliptic curves have complex multiplication with the field of complex
multiplication K0 = Q(

√
−3).

Put α(x, y) = (x, y√
3
). Then α : A → A3 is an isomorphism defined

over Q(
√

3). Similarly β : A → A, β(x, y) = (ρx, y), where ρ is a nontrivial
third root of unity, is an isogeny defined over Q(

√
−3). By [3, III, sect.9]

the ring End(A) is an order in a quadratic imaginary field. Since Z[β] is a
maximal order in Q(

√
−3), we see that End(A) is generated as Z-module by

1 and β, so any endomorphism of A is defined over Q(
√
−3). Let σ be the

nontrivial automorphism of Q(
√

3,
√
−3) over Q(

√−1). Then (α◦(2β+1))σ =

−α ◦ (−2β − 1) = α ◦ (2β + 1), so A and A3 are isogenous both over Q(
√

3)
and over Q(

√
−1).

Let φ : A→ A3 be an isogeny. Then φ = α ◦ (α−1 ◦φ). Since α is defined

over Q(
√

3), and α−1 ◦ φ is defined over Q(
√
−3), we see that φ is defined

over Q(
√
−3,

√
3). Let σ be the nontrivial automorphism of Q(

√
3,
√
−3) over

Q(
√
−3). Then φσ = (α◦(α−1◦φ))σ = −α◦(α−1◦φ) = −φ. Therefore, A and

A3 are not isogenous over Q (in fact they are not isogenous over Q(
√
−3)).

We will show that the example is typical.

Theorem 1.2. Let k be a number field, let K = k(
√
d), M = k(

√
D) be

different quadratic extension fields of k, for d,D ∈ k. Then:

(a) If A,B are elliptic curves over k such that A,B are isogenous both
over K and over M and such that they are not isogenous over k, then:

(i) B and Ad are isogenous over k.
(ii) A and B have complex multiplication.

(iii) k(
√
dD) = kK0, where K0 is the corresponding field of complex

multiplication.
(b) If k(

√
dD) = kK0, where K0 is a quadratic imaginary field over Q, and

if A is an elliptic curve over k with the field of complex multiplication
K0, then A,Ad are isogenous both over K and over M , but they are
not isogenous over k.

Proof. a) (i) Assume A is defined by a Weierstrass equation y2 = f(x).
Let φ : B → A be an isogeny defined over K and not defined over k, and let
σ be the nontrivial automorphism of K over k. Then φ − φσ : B → A is an
isogeny. Therefore α ◦ (φ − φσ) : B → Ad, where α : A → Ad is defined by
α(x, y) = (x, y√

d
), is an isogeny defined over k.

(ii) Follows directly from [2, Remark 5.8]
(iii) Let φd : A → B be a K-isogeny and let φD : B → A be an M -isogeny.

Then ψ = φD ◦ φd : A → A, is defined over KM . By [1, 5.1.3] ψ is defined
over kK0. Denote by σ the nontrivial automorphism of KM/k which is trivial
on M and by τ the nontrivial automorphism of KM/k which is trivial on K.
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By the proof of a) (i), we see that φd,φD can be chosen such that φd
σ = −φd

and φD
τ = −φD. Therefore ψσ = −ψ, so ψ is not defined over M . Since ψ is

defined over kK0, we see that kK0 is quadratic over k, and since ψ is defined
over KM , we see that kK0 ⊆ KM (in contrary ψ would be defined over k).
Also, ψτ = −ψ, so ψ is not defined over K nor over M . Since ψ is defined
over kK0 we see that kK0 is different both from K and from M . Therefore
kK0 = k(

√
dD).

b) Let α be as above, let σ be the nontrivial automorphism of KM/k
which is trivial on M and let τ be the nontrivial automorphism of KM/k
which is trivial on K. Choose any Φ ∈ EndA \Z. By [1, 5.1.3 and 5.1.1] Φ is
defined over kK0, but Φ is not defined over k. Since σ is nontrivial on kK0,
Ψ = α ◦ (Φ − Φσ) : A → Ad is an isogeny defined over KM . In fact, Ψ is
defined over M , because Ψσ = (−α) ◦ (Φσ −Φ) = Ψ. Therefore A and Ad are
isogenous both over K and over M .

Let us prove that A and Ad are not isogenous over k. Moreover, we
will prove that A and Ad are not isogenous over kK0. Let θ : A → Ad

be any isogeny. Then θ = α ◦ (α−1 ◦ θ). By [1, 5.1.3] α−1 ◦ θ is defined
over kK0, so since kK0 ⊆ KM we see that θ is defined over KM . Since
θστ = (−α) ◦ (α−1 ◦ θ) = −θ, θ is not defined over kK0.

Corollary 1.3. Let A,B be elliptic curves defined over a number field
k. If A and B are isogenous over three different quadratic extensions over k,
then they are isogenous over k.

Remark 1.4. In the first version of the paper, the proof of the theorem
has been based on the Faltings theorem on isogenies of abelian varieties. The
present proof is more elementary and is suggested by the referee.
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