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GRAPHS AND SYMMETRIC DESIGNS CORRESPONDING

TO DIFFERENCE SETS IN GROUPS OF ORDER 96
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University of Split, Croatia

Abstract. Using the list of 2607 so far constructed (96,20,4) differ-
ence sets as a source, we checked the related symmetric designs upon iso-
morphism and analyzed their full automorphism groups. New (96,20,4,4)
and (96,19,2,4) regular partial difference sets are constructed, together with
the corresponding strongly regular graphs.

1. Introduction

There are 231 groups of order 96. Seven of them are abelian. These
groups will be referred to as in the ”SmallGroups” library of the software
package GAP ([9]). For instance, the group of order 96 with the catalogue
number (cn) 68 in that GAP library is denoted by [96, 68].

Definition 1.1. A (v, k, λ) difference set is a subset ∆ ⊆ G of size k in a
group G of order v with the property that the multiset

{

xy−1 | x, y ∈ ∆, x 6= y
}

contains each nonidentity element of G exactly λ times.

In case a set ∆ ⊆ G is a difference set in a group G, then its translate (or
”shift”) ∆x = {dx | d ∈ ∆} by any element x ∈ G is a difference set in G
as well. Depending on the respective property of G, a difference set is called
abelian, cyclic or nonabelian.

It is customary to view a group subset S ⊆ G as a group ring ZG element
S =

∑

s∈S

s and to put S(−1) = {s−1 | s ∈ S}. In that notation difference set

∆ ⊆ G is defined as a subset of G that satisfies the fundamental equation
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(1.1) ∆ · ∆(−1) = k{e} + λG \ {e} = (k − λ){e} + λG

in ZG; e denotes the group identity element.

The development of a difference set ∆ ⊆ G is the incidence structure
dev∆ whose points are the elements of the group G and whose blocks are
the translates {∆g | g ∈ G} . By this structure, difference sets are related to
symmetric designs.

Definition 1.2. A symmetric block design with parameters (v, k, λ) is a
finite incidence structure D = (V,B) consisting of |V| = v points and |B| = v
blocks, where each block is incident with k points and any two distinct points
are incident with exactly λ common blocks.

An automorphism of a symmetric block design D is a permutation on V
which sends blocks to blocks. The set of all automorphisms of D forms its full
automorphism group commonly denoted by AutD. If a subgroup H ≤ AutD
acts regularly on V (and B), then D is called regular and H is called a Singer
group of D.

Theorem 1.3 ([6]). Let G be a finite group of order v and ∆ a proper,
non-empty subset of G with k elements. Then ∆ is a (v, k, λ) difference set
in G if and only if dev∆ is a symmetric (v, k, λ) design on which G acts
regularly.

Definition 1.4. Two difference sets ∆1 in G1 and ∆2 in G2 are isomor-
phic if the designs dev∆1 and dev∆2 are isomorphic. ∆1 and ∆2 are equiva-
lent if there exists a group isomorphism ϕ : G1 → G2 such that ϕ(∆1) = ∆2g
for a suitable g ∈ G2.

It is easy to see that equivalent difference sets ∆1 and ∆2 give rise to
isomorphic symmetric designs dev∆1 and dev∆2. A difference set is said to be
genuinely nonabelian if its development has no abelian group acting regularly
on the point set.

2. Brief history of searching for (96,20,4) difference sets

Solving the problem of difference set existence in groups of order 96 has
lasted for more than four decades. The abelian case was considered first and
positive result was obtained in the case of three groups.

In groups [96,231] ∼= Z
4
2×Z6 and [96,220] ∼= Z

3
2×Z12 difference sets were

obtained by McFarland’s construction ([19]). Using vector spaces of dimension
d + 1 over finite fields of order q, that construction works for abelian groups
with an elementary abelian subgroup of order qd+1 and yields difference sets
of the so called McFarland series with parameters

(2.1) v = qd+1(1 +
qd+1 − 1

q − 1
), k = qd qd+1 − 1

q − 1
, and λ = qd qd − 1

q − 1
;
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here q = pf is a prime power and d is a positive integer. Putting d = 1 and
q = 4 in (2.1) gives the parameter set (96,20,4).

In group [96,161] ∼= Z2 × Z4 × Z12 a difference set was constructed by
Arasu and Sehgal in 1995 ([5]).

The abelian case was finally solved in 1996 by ruling out the existence of
difference sets in groups [96,46] ∼= Z4 ×Z24 and [96,176] ∼= Z2 ×Z2 ×Z24 by
Arasu, Davis, Jedwab, Ma and McFarland, ([4]). Groups [96,2] ∼= Z96 and
[96,59] ∼= Z2 × Z48 were ruled out long before by the result of Turyn ([24]).
A summary of the abelian case is obviously the following: an abelian group
G has a (96,20,4) difference set if and only if the exponent of G is not larger
than 12.

In the nonabelian case this exponent bound is violated. Precisely, non-
abelian groups [96,cn] for cn in {10, 14, 20, 51, 52, 54, 64, 177, 188, 190,
191} have difference sets and exponent 24. Major contributions to deciding
the existence status of difference sets in 224 nonabelian groups appeared as
follows.

In 1985 Dillon ([8]) generalized McFarland’s construction to work for a
larger set of groups, i.e., groups containing an elementary abelian normal
subgroup of order qd+1 in their center. In such a way difference sets in groups
[96,218] and [96,230] were constructed. Besides, [8] provided a result which
was used for ruling out groups [96,6], [96,81], [96,110] and [96,207].

In 1999, at the International Conference on Geometry in Haifa, Klin pre-
sented two nonisomorphic (96,20,4) difference sets in group [96,226] ([16]).

Afterwards the problem was solved partially, step by step, through results
of O. A. AbuGhneim and K. W. Smith ([1–3]) on one side, and our results
[11] and [12] on another side. By the beginning of 2006 exactly 20 nonabelian
cases remained undecided. On the opened cases of the groups [96,cn] for cn
in {3, 65, 66, 67, 68, 69, 73, 74, 187, 189, 191, 192, 193, 198, 199, 200, 201,
202, 203, 204} both teams continued working.

The record of AbuGhneim/Smith progress, a continuously updated
documentation, can be found on the web site [20]. Our approach to
the problem was through design construction and the use of Theorem
1.3. For symmetric (96,20,4) designs construction we used the well known
method of tactical decompositions ([15]) based on the assumption that a cer-
tain group acts on the design as its automorphism group. In that approach
the choice of an appropriate group is of great importance. In one such at-
tempt we managed to solve the problem of the existence of a difference set in
the group [96,68]. That construction we describe in Section 3.

Finally in May 2006, K. W. Smith put an end to the problem with the
conclusion that the group [96,cn] contains a difference set if and only if cn
belongs to the set A = {10, 13, 14, 20, 41, 51, 52, 54, 64, 68, 70, 71, 72, 75,
77, 78, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103,
105, 129, 130, 131, 133, 135, 136, 141, 142, 143, 144, 145, 146, 147, 151, 152,
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159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
177, 185, 186, 188, 190, 191, 194, 195, 196, 197, 202, 205, 206, 209, 210, 212,
218, 219, 220, 221, 223, 225, 226, 227, 228, 229, 230, 231}.

The procedure and the results are fully documented in [20]. Unlike our
approach, for majority of the groups the AbuGhneim/Smith construction is
exhaustive and the list of difference sets obtained is complete.

Smith put together all 2607 constructed inequivalent difference sets in the
list ’DS96’ available at [20]. The list is prepared for everyone else’s use (GAP
users) and reference. It contains 55 abelian and 2552 nonabelian difference
sets. Many of the latter are genuinely nonabelian. The list is exhaustive with
the following possible exceptions:

10 The groups [96,64], [96,70], [96,71], [96,72] and [96,227] do not have
normal subgroups of sizes 2 or 3 so that the search technique of AbuGh-
neim/Smith did not work. In this case the list contains difference sets
obtained by our non-exhaustive approach.

20 The groups [96,218], [96,220], [96,230] and [96,231] have large automor-
phism groups which ruins the feasibility of AbuGhneim/Smith com-
puter search.

3. A difference set in the group [96, 68]

This section gives an example of the construction of a (96, 20, 4) symmetric
design and a corresponding difference set in the group [96, 68]. For the design
construction we use the procedure described in our papers [11] and [12].

Let’s consider the automorphism group G0 = [48, 3] ∼= Z
2
4 · Z3,

(3.1) G0 = 〈a, b, c | a4 = b4 = c3 = 1, [a, b] = 1, ac = a3b3, bc = a〉

(for p, q arbitrary group elements pq = qpq−1), and its action in six orbits of
the length 16 on a (96, 20, 4) symmetric design. In such a case it is accustomed
to denote the points of design by I1,I2,. . .,I16, I = 1,2,. . .,6. Further, in the
course of design construction it is convenient to use a group G0 generators’
permutation representation of degree 16. Here we use the representation given
in (3.2).

(3.2) G0 · · ·







a = ( 1 2 3 4 ) ( 5 8 9 10 ) ( 6 13 14 15 ) ( 7 12 16 11 )
b = ( 1 5 6 7 ) ( 2 8 13 12 ) ( 3 9 14 16 ) ( 4 10 15 11 )
c = ( 2 5 11 ) ( 3 6 14 ) ( 4 7 8 ) ( 9 10 15 ) ( 12 13 16 )

The numbers 1, 2, . . . , 16 are then observed as points of point orbits and they
appear as indices of the points of our design.

The possible dispersion (cardinality) of the points lying on the blocks of
each block orbit into point orbits can be represented by orbit matrices. The
entries of these matrices satisfy the well-known equations ([15]). In our case,
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the corresponding calculations give a single orbit matrix (3.3).

(3.3)

16 16 16 16 16 16
0 4 4 4 4 4 16
4 0 4 4 4 4 16
4 4 0 4 4 4 16
4 4 4 0 4 4 16
4 4 4 4 0 4 16
4 4 4 4 4 0 16

Design construction is equivalent to the orbit matrix ”indexing”. Indexing
means determining precisely which points from every point orbit lie on a
representative block of each block orbit. As design representative blocks (six
of them, each representing one block orbit) we take blocks stabilized by the
subgroup 〈c〉 ≤ G0. Therefore, these blocks are to be composed from 〈c〉-
point orbits as a whole. The representation (3.2) implies that a selection
of 4 points in each point orbit is accomplished using the fixed point and
one of five 〈c〉-orbits of length three. From (3.3) and (3.2) we easily see
that there are 55 possibilities for a selection of 20 points of a representative
block. In the procedure of indexing, on each level, every possible selection of
orbit representative block is submitted to all the necessary λ-balance checking
(as required by the definition of a symmetric (v, k, λ) design), so indexing is
necessarily performed by computer.

The indexing procedure ends up successfully with a great number of sym-
metric designs constructed. After isomorphic structures reduction it turns
out that there are exactly 4 nonisomorphic symmetric designs admitting the
specified action of G0. Among them we point to this regular one, say D0 :

21222521131333631441444748515951051561612613616

11112113116313931031541434641451525551161646768

11131611421242728414245411515125135166169610615

11191101152123262143131231331651545758616265611

11141718212122132163132353114149410415616366614

11121511121292102153134373841412413416515356514

The subgroup 〈a, b〉 ≤ G0 generates all the blocks of the design.

Taking an incidence matrix of the design D0 as an input, the computer
program by V. Tonchev ([23]) gives out the order of the full automorphism
group Aut D0, as well as a permutation representation of degree 96 of AutD0

generators. The latter (given in Table 1) enables us to further analyse the
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properties of AutD0. Aut D0
∼= [576, 5550], in terms of generators and rela-

tions

Aut D0 = 〈a, b, c, d, e, f |a4 = b4 = [a, b] = c2 = [a, c] = [b, c] = 1, d3 = 1,

ad = a3b3, bd = a, [c, d] = 1, e3 = 1, ae = a3b3,

be = a, [c, e] = 1, [d, e] = f2 = 1, af = a3b2,

bf = a2b, [c, f ] = 1, df = e2d2, [e, f ] = 1〉,

acts transitively on the point set of D0. Therefore, once a permutation rep-
resentation of AutD0 generators of degree 96 has been chosen (Table 1) and
set {1,2,. . . ,96} taken as the point set of our design, D0 can be represented
by a single block, for instance
(3.4)

D0 := [1, 12, 13, 16, 33, 41, 42, 47, 49, 51, 54, 62, 65, 66, 69, 75, 81, 84, 87, 88].

r1:=(2,13)(4,15)(5,16)(7,9)(8,10)(11,12)(17,81)(18,93)(19,83)(20,95)(21,96)(22,86)(23,89)

(24,90)(25,87)(26,88)(27,92)(28,91)(29,82)(30,94)(31,84)(32,85)(34,45)(36,47)(37,48)(39,41)

(40,42)(43,44)(49,65)(50,77)(51,67)(52,79)(53,80)(54,70)(55,73)(56,74)(57,71)(58,72)(59,76)

(60,75)(61,66)(62,78)(63,68)(64,69)

r2:=(2,5,11)(3,6,14)(4,7,8)(9,10,15)(12,13,16)(18,21,27)(19,22,30)(20,23,24)(25,26,31)

(28,29,32)(34,37,43)(35,38,46)(36,39,40)(41,42,47)(44,45,48)(50,53,59)(51,54,62)(52,55,56)

(57,58,63)(60,61,64)(66,69,75)(67,70,78)(68,71,72)(73,74,79)(76,77,80)(82,85,91)(83,86,94)

(84,87,88)(89,90,95)(92,93,96)

r3:=(1,2,3,4)(5,8,9,10)(6,13,14,15)(7,12,16,11)(17,18,19,20)(21,24,25,26)(22,29,30,31)

(23,28,32,27)(33,34,35,36)(37,40,41,42)(38,45,46,47)(39,44,48,43)(49,50,51,52)(53,56,57,58)

(54,61,62,63)(55,60,64,59)(65,66,67,68)(69,72,73,74)(70,77,78,79)(71,76,80,75)(81,82,83,84)

(85,88,89,90)(86,93,94,95)(87,92,96,91)

r4:=(1,17)(2,29)(3,19)(4,31)(5,32)(6,22)(7,25)(8,26)(9,23)(10,24)(11,28)(12,27)(13,18)

(14,30)(15,20)(16,21)(33,49)(34,61)(35,51)(36,63)(37,64)(38,54)(39,57)(40,58)(41,55)(42,56)

(43,60)(44,59)(45,50)(46,62)(47,52)(48,53)(65,81)(66,93)(67,83)(68,95)(69,96)(70,86)(71,89)

(72,90)(73,87)(74,88)(75,92)(76,91)(77,82)(78,94)(79,84)(80,85)

Table 1. Generators of Aut D0, GAP-cn :[576,5550]

The inspection of AutD0 reveals its regular subgroups to be groups
[96, 68], [96, 83], [96, 130], and [96, 161]. If we express group [96, 68] in terms
of generators and relations as

[96, 68] ∼= H[96,68] = 〈x, y, z, w |x4 = y4 = [x, y] = 1, z2 = [x, z] = [y, z] = 1,

w3 = 1, xw = x3y3, yw = x, [z, w] = 1 〉 ,
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and put H[96,68] =
{

wlxpyjzk | l = 0, 1, 2; p, j = 0, . . . , 3; k = 0, 1
}

, then by
identifying the points of D0 with the elements of H[96,68] we obtain difference
set ∆[96,68] corresponding to the representative block (3.4) of D0:

∆[96,68] =1 + x + y + x3y3 + z + xyz + x3z + y3z

+ w(x + y + y2 + x3y + xz + x2y2z + x2y3z + x3y3z)

+ w2(xy + xy3 + x3y + x3y3).

More details on this identification can be found in [14] or [25].
Note that in the case of group [96, 68] McFarland’s (Dillon’s) construction

cannot be applied since Z([96, 68]) ∼= Z2.
The obtained difference set ∆[96,68] is not genuinely nonabelian because

abelian group [96, 161] acts regularly on D0.

4. Preliminaries on partial difference sets and strongly
regular graphs

The notion of a partial difference set (PDS for short) generalizes that of
a difference set.

Definition 4.1. Let H be a group of order v. A k-subset S ⊂ H is
called a (v, k, λ, µ) partial difference set if the multiset

{

xy−1 | x, y ∈ S, x 6= y
}

contains each nonidentity element of S exactly λ times and it contains each
nonidentity element of H \ S exactly µ times.

Using the notation of group ring ZH, a (v, k, λ, µ) partial difference set
S ⊂ H in group H can be described as a subset for which the equation

S · S(−1) = k{e} + λS \ {e} + µ(H \ S) \ {e}

holds.
It is obvious that any (v, k, λ) difference set is a (v, k, λ, λ) partial differ-

ence set.
There are different possibilities to define equivalency between partial dif-

ference sets. Here we will call partial differential sets S1 and S2 in groups
H1 and H2, respectively, equivalent if there exists a group isomorphism
ϕ : H1 → H2 which maps S1 onto S2.

A partial difference set S is reversible if S = S(−1). A reversible partial
difference set S is called regular if e /∈ S. It is easy to see (cf. [18]) that the
following assertions hold.

Proposition 4.2. Suppose that S is a reversible (v, k, λ, µ) PDS in a
group H such that e ∈ S. Then (S − e) is a regular (v, k − 1, λ− 2, µ) PDS in
H. Conversely, if S is a regular PDS in H, then (S + e ) is a reversible PDS
with the corresponding parameters.

Proposition 4.3. Suppose that ∆ is a (v, k, λ) difference set in H, x ∈ H.
Then
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(i) ∆x is a regular (v, k, λ, λ) PDS if and only if x−1 /∈ ∆ and ∆x is a
reversible set;

(ii) ∆x− e is a regular (v, k − 1, λ− 2, λ) PDS if and only if x−1 ∈ ∆ and
∆x is a reversible set.

Regular partial difference sets and strongly regular graphs are closely
related through the concept of Cayley graphs.

Definition 4.4. A strongly regular graph (SRG) with parameters
(v, k, λ, µ) is a graph with v vertices which is regular of valency k, i.e., every
vertex is incident with k edges, such that any pair of adjacent vertices have ex-
actly λ common neighbors and any pair of non-adjacent vertices have exactly
µ common neighbors.

Definition 4.5. For a group H and a set S ⊂ H with the property
that e /∈ S and S = S(−1), the Cayley graph Γ = Cay(H, S) over H with
connection set S is the graph with vertex set H so that the vertices x and y
are adjacent if and only if xy−1 ∈ S.

Accordingly, the edge set of a Cayley graph Γ = Cay(H, S) over H with
connection set S is E := {{x, sx} | x ∈ H, s ∈ S}. Γ is an undirected graph
without loops. Our construction of strongly regular graphs will be based on
the following important assertion about Cayley graphs, [6, p. 230] or [17].

Theorem 4.6. A Cayley graph Cay(H, S) is a (v, k, λ, µ) strongly regular
graph if and only if S is a (v, k, λ, µ) regular partial difference set in H.

Equivalent regular PDSs obviously correspond to isomorphic strongly reg-
ular Cayley graphs. Note that for two inequivalent partial difference sets S1

and S2 in a group H, the graphs Cay(H, S1) and Cay(H, S2) can be iso-
morphic. Similarly, for two inequivalent partial difference sets S1 and S2 in
groups H1 and H2 respectively, |H1| = |H2| , the graphs Cay(H1, S1) and
Cay(H2, S2) can be isomorphic. Several examples of both such cases occur in
our results.

For graph exploring we use GRAPE ([22]), a package which is a part of
GAP.

5. Structures corresponding to (96,20,4) difference sets

We ran an analysis of the ’DS96’ list to obtain combinatorial structures
corresponding to the difference sets in it. The documentation of the structures
obtained or structures themselves are available at the site

(5.1) http://www.pmfst.hr/~vucicic/DifSets96

in several files, each including helpful comments. The file names will be given
as they appear in the context of this section.
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5.1. Symmetric designs. Using the DESIGN package for GAP ([21]) we
checked that the number of nonisomorphic symmetric designs corresponding
to ’DS96’ list is 574. Consequently, the list contains 574 nonisomorphic dif-
ference sets. The file ’NISD96’ at (5.1) creates a list ’NISD’ in which NISD[i]
contains the i-th isomorphism class, i =1,. . . ,574. The entries of the list
NISD[i] have the form [cn, n1], which denotes that the underlying design is
the development of the difference set occupying the position ’n1’ on the list
DS96[cn].

The following list counts the number of elements in the isomorphism
classes NISD[i], i =1,. . . ,574.

[31, 24, 6, 38, 1, 10, 12, 12, 4, 30, 30, 3, 5, 2, 26, 25, 4, 20, 20, 8, 8, 20,
20, 8, 7, 11, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 5, 10, 17, 5, 5, 7, 1, 1, 1, 2, 3, 1, 1, 2,
8, 1, 1, 2, 3, 1, 8, 1, 2, 1, 8, 2, 1, 1, 3, 8, 2, 1, 1, 4, 4, 1, 2, 2, 2, 2, 3, 2, 1, 2,
1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 8, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 30,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1]

Our analysis of the 574 full automorphism groups of the designs is doc-
umented in the file ’AutSD96’ at (5.1). The file creates a list ’AutSD’ of
elements [cn, n1, n2]. An entry triple [cn, n1, n2] denotes that the develop-
ment of the difference set on position ’n1’ in the list DS96[cn] is a symmetric
design D with |AutD| = n2. The group [96,cn] is obviously a Singer subgroup
of AutD. ’cn’ takes all values from the set A.

Table 2 contains orders of the automorphism groups that appear in the
’AutSD’ list and the number of nonisomorphic designs having the full auto-
morphism group of the given order. As expected, nonisomorphic designs with
small automorphism groups are numerous, while few of them have large auto-
morphism groups. In cases of one sole design D with the group Aut D of the
given order, the number of corresponding inequivalent difference sets is given
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in the brackets. For instance, design D1 with |AutD1| = 552960 enabled us

|Aut D| No. of designs
96 250
192 236
288 15
384 31
576 6
768 9
864 1 (4)
1152 3
1536 8
1728 1 (12)

|Aut D| No. of designs
3072 3
3456 1 (12)
4608 1 (10)
6144 2
7680 1 (1)
9216 1 (38)
12288 2
138240 1 (6)
184320 1 (24)
552960 1 (31)

Table 2.

to construct 31 inequivalent difference set in 18 nonisomorphic Singer groups,
see [12].

5.2. Regular (96,20,4,4) and (96,19,2,4) partial difference sets. By the
results highlighted in Section 4 it can easily be verified ([13]) that one pro-
cedure for the search of regular partial difference sets, starting from a known
difference set ∆ ⊆ G, can be performed in the following two steps:

(i) construction of all shifts ∆x of ∆, x ∈ G,
(ii) selection of those shifts which are reversible sets in G.

Then, each reversible shift which does not contain e is a regular (v, k, λ, λ)
PDS, while each reversible shift that contains e yields a regular (v, k − 1, λ−
2, λ) PDS ∆x \ {e}.

To this procedure of ”surveyed shifting” we have submitted the differ-
ence sets in ’DS96’ list. At the end of the procedure we obtained 285
regular PDSs ∆x in 9 groups as detailed in the following table. The full

[96,cn]→ 64 70 71 186 190 195 197 226 227

No. of PDSs → 2 6 2 32 18 108 32 72 13

Table 3.

list ’RTID’ of ∆x identifiers of the form [cn, n1, n2] is in the file ”Re-
versible translates list.txt” at (5.1). An identifier [cn, n1, n2] stands for the
translate ∆x corresponding to the difference set ∆ occupying the position ’n1’
in the list DS96[cn]; ’n2’ is the position of element x as obtained in the GAP
command Elements(SmallGroup([96,cn]))output. ’cn’ takes values from
the set {64, 70, 71, 186, 190, 195, 197, 226, 227}.

After GAP-testing on group automorphism, final result boils down to 144
inequivalent regular PDSs in 9 groups. In the same manner their identifiers are
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given in the file ”Reversible translates list.txt”, forming the list ’IEQRTID’.
115 PDSs are of cardinality 20 and 29 of cardinality 19. It turns out that

[96, cn]→ 64 70 71 186 190 195 197 226 227

No. of inequivalent

(96,20,4,4) PDSs
1 3 1 14 8 48 14 23 3

No. of inequivalent

(96,19,2,4) PDSs
1 1 1 2 2 12 2 5 3

Table 4.

115 difference set shifts being (96,20,4,4) regular PDSs belong to 27 design-
equivalency classes. In the NISD list these are the classes NISD[i] for i in {1,
2, 3, 4, 5, 6, 9, 10, 11, 13, 15, 16, 17, 18, 19, 22, 23, 76, 81, 88, 250, 251, 252,
253, 333, 570, 571}.

5.3. Strongly regular graphs with parameters (96,20,4,4) and (96,19,2,4).
Regarding isomorphism of the corresponding strongly regular Cayley graphs,
our 144 PDSs split into 63 nonisomorphic SRG-classes (GRAPE-tested [22]).
52 graphs are with parameters (96,20,4,4) and 11 with parameters (96,19,2,4).
Table 5 covers the case of valency 20, i.e., parameters (96,20,4,4). Each table
row refers to nonisomorphic graphs Γ with |AutΓ| indicated in the first colon,
and the number of such graphs is given for each of the nine groups indicated
in the heading row. The entries of the last colon summarize the number of
nonisomorphic graphs with the full automorphism group of order cited in the
first colon. The last row contains the colon sum, whether it be the number
of nonisomorphic graphs for each observed group, or the total number of
nonisomorphic (96,20,4,4) graphs constructed.

In the second row note the example of inequivalent regular PDSs (in
different groups) giving isomorphic Cayley graphs. That situation does not
occur only in rows 1, 3, and 8. In case of groups [96,186], [96,195], [96,197],
and [96,226] the number of nonisomorphic graphs obtained is less than the
number of inequivalent PDSs, cf. Table 4.

Among the obtained graphs with parameters (96,20,4,4) there are some
graphs already known from the literature ([7] and [13]). The best known is a
collinearity graph of GQ(5, 3).

The case of valency 19, i.e., parameters (96,19,2,4), is described in Table 6.
In the case of groups [96,195] and [96,227] the number of nonisomorphic

graphs obtained is less than the number of inequivalent PDSs, cf. Table 4. So
far only four SRGs with parameters (96,19,2,4) have been known ([7] and [13]).
Their full automorphism groups are not of size 96, 786 or 1536, which means
that at least 9 of our (96,19,2,4) graphs are new. Strongly regular graphs
with parameters (96,19,2,4) are candidates for 5-chromatic SRGs ([10]). The
GRAPE checking gives that none of here constructed graphs is 5-chromatic.
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[96, cn]→
|Aut Γ| ↓

64 70 71 186 190 195 197 226 227 Nonisomorphic

96 12 9 21
192 6 6 6 6 6
384 4 4
576 1 1 1 1 1
768 1 4 4 10 4 4 12
1536 2 1 2
3072 1 2 2 1 2
7680 1 1
11520 2 1 2 2 2 2
138240 1 1 1 1 1 1 1

↑ |Aut Γ| 1 3 1 13 8 41 13 22 3 Total: 52

Table 5. Survey of SRGs with parameters (96,20,4,4)

[96, cn]→
|Aut Γ| ↓

64 70 71 186 190 195 197 226 227 Nonisomorphic

96 2 3 5
288 1 1 1
786 2 1 3 2 2 3
1536 1 1
9216 1 1 1 1 1 1 1

↑ |Aut Γ| 1 1 1 2 2 8 2 5 2 Total: 11

Table 6. Survey of SRGs with parameters (96,19,2,4)

The GRAPE-file ’63srg96v.txt’ containing records of our (96,20,4,4) and
(96,19,2,4) graphs can be found at the site (5.1).

Note that even 49 nonisomorphic graphs, 41 of valency 20 and 8 of valency
19, can be represented as PDSs in the group [96,195].
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[12] A. Golemac, J. Mandić and T. Vučičić, On the Existence of Difference Sets in Groups
of Order 96, Discrete Math. 307 (2007), 54–68.
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University of Split
Faculty of Science and Mathematics
Teslina 12/III, 21000 Split
Croatia
E-mail : sbraic@pmfst.hr

A. Golemac
University of Split
Faculty of Science and Mathematics
Teslina 12/III, 21000 Split
Croatia
E-mail : golemac@pmfst.hr

J. Mandić
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