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THE NUMBER OF DIOPHANTINE QUINTUPLES

Yasutsugu Fujita

College of Industrial Technology, Nihon University, Japan

Abstract. A set {a1, . . . , am} of m distinct positive integers is called
a Diophantine m-tuple if aiaj + 1 is a perfect square for all i, j with
1 ≤ i < j ≤ m. It is known that there does not exist a Diophantine
sextuple and that there exist only finitely many Diophantine quintuples.
In this paper, we first show that for a fixed Diophantine triple {a, b, c}
with a < b < c, the number of Diophantine quintuples {a, b, c, d, e} with
c < d < e is at most four. Using this result, we further show that the
number of Diophantine quintuples is less than 10276, which improves the
bound 101930 due to Dujella.

1. Introduction

Diophantus posed the problem of finding a set of four (positive ra-
tional) numbers which has the property that the product of any two
numbers in the set increased by one is a square, and found such a set
{1/16, 33/16, 68/16, 105/16}. A set {a1, . . . , am} of m distinct positive in-
tegers is called a Diophantine m-tuple if aiaj + 1 is a perfect square for all
i, j with 1 ≤ i < j ≤ m. Fermat found the first example of a Diophantine
quadruple, which was the set {1, 3, 8, 120}.

Euler found that for any Diophantine pair {a, b} the set {a, b, a+b+2r} is a
Diophantine triple, where r =

√
ab + 1. We call such a triple regular. In 1979,

Arkin-Hoggatt-Strauss ([1]) found that for any Diophantine triple {a, b, c} the
set {a, b, c, d+} is a Diophantine quadruple, where d+ = a+b+c+2abc+2rst
and r =

√
ab + 1, s =

√
ac + 1, t =

√
bc + 1, and conjectured the following.

Conjecture 1.1. If {a, b, c, d} is a Diophantine quadruple with a < b <
c < d, then d = d+.
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We say that a Diophantine quadruple {a, b, c, d} with a < b < c < d is
regular if d = d+. Conjecture 1.1 immediately implies a folklore conjecture,
which says that there does not exist a Diophantine quintuple. It is known
that there does not exist a Diophantine sextuple and that there does not exist
only finitely many Diophantine quintuples ([8]). Recently, we ([12]) showed
that if {a, b, c, d, e} is a Diophantine quintuple with a < b < c < d < e, then
d = d+ (note that all the quadruples contained in the quintuple, other than
{a, b, c, d}, are irregular; see Section 1 in [12]).

The first result supporting Conjecture 1.1 is due to Baker and Davenport
([2]), which asserts that if {1, 3, 8, d} is a Diophantine quadruple, then d =
120. This result has been generalized and it is known that the Diophantine
quadruples containing the pairs {k − 1, k + 1} with k ≥ 2 (cf. [4, 5, 10, 11])
or the triples {F2k, F2k+2, F2k+4} with k ≥ 1 (cf. [6]), where Fν is the ν-
th Fibonacci number, are always regular. Besides them, the Diophantine
quadruples containing the following triples are regular:

{1, 8, 15}, {1, 8, 120}, {1, 15, 24}, {1, 24, 35}, {2, 12, 24} (by Kedlaya [13]),

{4, 12, 30} (by Dujella [8, p. 213]).

Thus, one may easily check that if {a, b, c, d, e} is a Diophantine quintuple
with a < b < c < d < e, then b ≥ 8, d ≥ 6440 and

ad ≥ 6888 (coming from {1, 35, 48, 6888}),
bd ≥ 16 · 6440 (coming from {3, 16, 33, 6440}).

The last two lower bounds play important roles in proving Theorem 1.2.
We are interested in bounding the number of Diophantine quintuples.

We first consider the number of Diophantine quintuples {a, b, c, d, e} with
a < b < c < d < e for a fixed triple {a, b, c}. Since the above-mentioned result
([12]) implies that d is unique, it suffices to bound the number of the e’s. The
essential tool to do this is an exponential gap principle between the solutions
due to Okazaki (cf. [3, Lemma 2.2]), which we may apply if there exist five
such e’s. Thus, we obtain the following.

Theorem 1.2. Fix a Diophantine triple {a, b, c} with a < b < c. Then

the number of Diophantine quintuples {a, b, c, d, e} with c < d < e is at most

four.

Using Theorem 1.2, one may easily improve the bound 101930 due to
Dujella ([9]) for the number of Diophantine quintuples. In fact, we reduce it
to about the one-seventh power further by improving the upper bounds for b
and d (in particular, for b).

Theorem 1.3. The number of Diophantine quintuples is less than 10276.

This paper is organized as follows. In Section 2, we rephrase the assump-
tion that {a, b, c, d, e} is a Diophantine quintuple in terms of a system of three
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Diophantine equations, which induces binary recurrent sequences. Then, we
completely determine the initial terms of the sequences. In Section 3, using
some congruence relations we give lower bounds for the solutions. In Section
4, using Baker’s theory we give upper bounds for the solutions and for b and
d. It is to be noted that its proof tells that any regular Diophantine triple
{a, b, c} with c = a+b+2r > 1050 cannot be extended to a Diophantine quin-
tuple (cf. Corollary 4.5). In Section 5, we give an exponential gap principle
between the solutions. Combining it with the upper bound for the solutions
we prove Theorem 1.2. Finally, in Section 6 using the bounds for b and d and
Theorem 1.2, we prove Theorem 1.3 along the same lines as Theorem 4 in [9].

2. The fundamental solutions of the system of Diophantine

equations

In this section, we transform the problem into solving a system of
three Diophantine equations, which induces binary recurrent sequences
{ul}, {vm}, {wn}. Then, we determine the initial terms of the sequences,
which we call the fundamental solutions of the system. We also examine the
relationship between l, m and n in the case of ul = vm = wn.

Let {a, b, c} be a Diophantine triple with a < b < c, and r, s, t positive
integers such that

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2.

Furthermore, suppose that {a, b, c, d, e} is a Diophantine quintuple with c <
d < e, and put

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2

with positive integers x, y, z. Then there exist integers α, β, γ, δ such that

ae + 1 = α2, be + 1 = β2, ce + 1 = γ2, de + 1 = δ2,

from which, by eliminating e, we obtain the system of Diophantine equations.

aδ2 − dα2 = a − d,(2.1)

bδ2 − dβ2 = b − d,(2.2)

cδ2 − dγ2 = c − d.(2.3)

Note that by Theorem 2.1 in [12] we know that d = d+ = a+b+c+2abc+2rst.

Lemma 2.1. (cf. [8, Lemma 1],[12, Lemma 2.1]) Let (δ, α), (δ, β), (δ, γ) be

positive solutions of (2.1), (2.2), (2.3), respectively. Then there exist solutions
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(δ0, α0) of (2.1), (δ1, β1) of (2.2) and (δ2, γ2) of (2.3) in the ranges

1 ≤ α0 ≤
√

x + 1

2
< 0.76

4
√

ad, 1 ≤ |δ0| ≤

√

d
√

d

2
√

a
< 0.269d,

1 ≤ β1 ≤
√

y + 1

2
< 0.723

4
√

bd, 1 ≤ |δ1| ≤

√

d
√

d

2
√

b
< 0.148d,

1 ≤ γ2 ≤
√

z + 1

2
< 0.723

4
√

cd, 1 ≤ |δ2| ≤

√

d
√

d

2
√

c
< 0.148d

such that

δ
√

a + α
√

d = (δ0

√
a + α0

√
d)(x +

√
ad)l,(2.4)

δ
√

b + β
√

d = (δ1

√
b + β1

√
d)(y +

√
bd)m,(2.5)

δ
√

c + γ
√

d = (δ2

√
c + γ2

√
d)(z +

√
cd)n(2.6)

for some integers l, m, n ≥ 0.

Proof. This immediately follows from Lemma 2.1 in [12].

By (2.4), (2.5) and (2.6), we may write δ as follows:

• δ = ul, where
u0 = δ0, u1 = xδ0 + dα0, ul+2 = 2xul+1 − ul;

• δ = vm, where
v0 = δ1, v1 = yδ1 + dβ1, vm+2 = 2yvm+1 − vm;

• δ = wn, where
w0 = δ2, w1 = zδ2 + dγ2, wn+2 = 2zwn+1 − wn.

Lemma 2.2. If δ = ul = vm = wn, then l ≡ m ≡ n ≡ 0 (mod 2) and

δ0 = δ1 = δ2 = ±1.

Proof. If l is odd, then by Lemma 8 in [8] we have |δ0| = y and |δ0| = z,
which are contradictions. Similarly, if m is odd, then |δ1| = x, |δ1| = z, and
if n is odd, then |δ2| = x, |δ2| = y; in any case, we arrive at contradictions.
It follows that l, m, n must be all even. Then Lemma 3 in [7] implies that
δ0 = δ1 = δ2.

Put e0 = (δ2
0 − 1)/d. Then

ae0 + 1 = α2, be0 + 1 = β2, ce0 + 1 = γ2, de0 + 1 = δ2
0 .

If δ2
0 6= 1, then {a, b, c, d, e0} is a Diophantine quintuple with e0 < d, which

contradicts d = d+ (cf. Section 1). Therefore, we obtain |δ0| = 1.

Lemma 2.3. If δ = ul = vm = wn, then 4 ≤ n ≤ m ≤ l ≤ 2n.
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Proof. From Lemma 3 in [8] we see that

n − 1 ≤ m ≤ 2n + 1, n − 1 ≤ l ≤ 2n + 1 and m − 1 ≤ l ≤ 2m + 1,

that is,
n − 1 ≤ m ≤ 2n + 1 and m − 1 ≤ l ≤ 2n + 1,

which together with Lemma 2.2 imply that n ≤ m ≤ l ≤ 2n.
The first inequality n ≥ 4 follows from Lemmas 2.4 to 2.7 in [12] (see also

[12, p. 7]).

We need the following lemma in order to prove Theorem 1.2.

Lemma 2.4. If δ = ul = vm = wn, then m ≥ 6.

Proof. It suffices to show that u4 6= v4 and u6 > v4. The latter immedi-
ately follows from Lemma 2.10 (1) in [12] and its proof, in view of δ0 = δ1 = ±1
and d > 4abc > b2. Suppose that u4 = v4. By Lemma 2.2 we have

±2a(ad + 1) + (2ad + 1)x = ±2b(bd + 1) + (2bd + 1)y.

Since 2(by − ax)d + y − x > 0, we have

2(b − a) {(b − a)d + 1} = 2(by − ax)d + y − x.

However, d > 4abc > b2 implies that (b−a)d+1 < yd and by−ax > (b−a)y,
which are contradictions.

3. Lower bounds for solutions

In this section, we first introduce the notion of “standard triples”. Then,
we give lower bounds for m in terms of d.

Definition 3.1. Let {a, b, c} be a Diophantine triple with a < b < c. We
call {a, b, c} a Diophantine triple of

(i) the first kind if c > b5;
(ii) the second kind if b > 4a and c ≥ b2;
(iii) the third kind if b > 12a and b5/3 < c < b2.

A Diophantine triple is called standard if it is of the first, the second or the
third kind.

Remark 3.2. The definition of standard triples in [8] differs from the one
above in the following:

• The condition for the first kind in [8] is c > b4.5;
• The second and the fourth kind in [8] correspond to the second kind

above.

We modified the first kind in order to get better upper bounds for b and d,
and combined the second and the fourth kind because dividing those cases
does not affect the bounds (see the proof of Proposition 4.3).

Lemma 3.3. Any Diophantine quadruple contains a standard triple.
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Proof. Let {a, b, c, d} be a Diophantine quadruple. In view of the proof
of Proposition 2 in [8], we may assume that {a, b, c, d} is regular and b < 4a.
If c > b3, then d > 4abc > b5, whence {a, b, d} is of the first kind. Assume
that c ≤ b3. Then, from the same argument as in the proof of Proposition 2
in [8] we see that either

(i) c = a + b + 2r or (ii) c > 4ab + 2a + 2b,

and that in the case of (i), {a, c, d} is of the second kind; in the case of (ii),
d < c2 and d > 4abc > b2c ≥ c5/2, whence {a, c, d} is of the third kind.

Remark 3.4. It follows from the proof of Lemma 3.3 that any Diophan-
tine quadruple {a, b, c, d} with a < b < c < d contains a standard triple
{A, B, C} with A < B < C = d.

Lemma 3.5. Suppose that {a, b, c, d, e} is a Diophantine quintuple with

a < b < c < d < e. Assume that d > 10100.

(i) If {a, b, c, d} contains a triple of the first kind, then m > d0.025.

(ii) If {a, b, c, d} contains a triple of the second kind, then m > d0.24.

(iii) If {a, b, c, d} contains a triple of the third kind, then m > d0.19.

Proof. Let {A, B, C} be a standard triple with A < B < C contained
in {a, b, c, d}, and {Vj} and {Wk}, which are two of {ul}, {vm} and {wn},
the attached sequences with 4 ≤ k ≤ j ≤ 2k. Put S =

√
AC + 1 and

T =
√

BC + 1. It suffices to show that

(i) k > C0.025, (ii) k > C0.24, (iii) k > C0.19.

(i) Suppose that k ≤ C0.025. By Lemma 9 in [8] and Lemma 2.2, we have

±Aj2 + Sj ≡ ±Bk2 + Tk (mod 4C).

Since Aj2 < C0.2 · 4C0.05 < C, Sj <
√

C1.2 + 1 · 2C0.025 < C, Bk2 <
C0.2C0.05 < C, Tk <

√
C1.2 + 1C0.025 < C, we have

±Aj2 + Sj = ±Bk2 + Tk.(3.1)

Squaring (3.1) twice, we have
{

(Aj2 − Bk2)2 − j2 − k2
}2 ≡ 4j2k2 (mod C).(3.2)

Since k ≤ C0.025 yields
{

(Aj2 − Bk2)2 − j2 − k2
}2

< (Bk2)4 < C0.8C0.2 = C,

4j2k2 ≤ 16k4 ≤ 16C0.1 < C,

the congruence (3.2) is in fact an equation, that is,

Aj2 − Bk2 = ∓(j + k).(3.3)
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By (3.1) and (3.3), we have j(S ∓ 1) = k(T ± 1), which together with (3.1)
implies that

±
{

A

(

T ± 1

S ∓ 1

)2

− B

}

k = T − S(T ± 1)

S ∓ 1
.

It follows from C = d > 10100 that

k =
(S + 1)(T + S)

2(AT + BS − A + B)
>

AC

B(2S + 1)
> 0.49C0.3 > C0.025,

which contradicts the assumption. Therefore, we obtain k > C0.025.
(ii) Note that in this case Lemma 4 in [8] and k ≥ 4 together im-

ply that j ≤ 3k/2 + 1/2 ≤ 1.625k. Suppose that k ≤ C0.24. Since

Aj2 < 1
4C0.5

(

1.625C0.24
)2

< C, Sj <
√

1
4C1.5 + 1 · 1.625C0.24 < C,

Bk2 < C0.5
(

C0.24
)2

< C, Tk <
√

C1.5 + 1C0.24 < C, we have the equa-
tion (3.1). We now have

Aj

S
<

j
√

A√
C

<
1.625C0.24 · 0.5C0.25

C0.5
= 0.8125C−0.01 < 0.08125,

Bk

T
<

k
√

B√
C

<
C0.24C0.25

C0.5
= C−0.01 < 0.1.

It follows from (3.1) that 1.08125Sj > 0.9Tk, that is,

j

k
>

0.9

1.08125
· T

S
> 0.832

√

B

A
> 1.664,

which contradicts j ≤ 1.625k. Therefore, we obtain k > C0.24.
(iii) Note that in this case Lemma 4 in [8] and k ≥ 4 together im-

ply that j ≤ 8k/5 + 3/5 ≤ 1.75k. Suppose that k ≤ C0.19. Since

Aj2 < 1
12C0.6

(

1.75C0.19
)2

< C, Sj <
√

1
12C1.6 + 1 · 1.75C0.19 < C,

Bk2 < C0.6
(

C0.19
)2

< C, Tk <
√

C1.6 + 1C0.19 < C, we have the equa-
tion (3.1). In the same way as (ii), we see that

Aj

S
< 0.05052,

Bk

T
< 0.1,

and that 1.05052Sj > 0.9Tk, that is, j/k > 2.965, which contradicts j ≤
1.75k. Therefore, we obtain k > C0.19. This completes the proof of Lemma
3.5.

4. Upper bounds for b and d

In this section, combining Lemma 3.5 with a theorem of Matveev ([14])
we give upper bounds for b and d. In its proof, it emerges that if d > 10100,
then d > b5, which implies that any regular Diophantine triple {a, b, c} with
c = a + b + 2r > 1050 cannot be extended to a Diophantine quintuple.
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We begin by quoting the theorem of Matveev.

Theorem 4.1 ([14]). Let Λ be a linear form in logarithms of N mul-

tiplicatively independent totally real algebraic numbers α1, . . . , αN with ra-

tional integer coefficients b1, . . . , bN (bN 6= 0). Let h(αj) denote the abso-

lute logarithmic height of αj for 1 ≤ j ≤ N . Define the numbers D, Aj

(1 ≤ j ≤ N) and E by D = [Q(α1, . . . , αN ) : Q], Aj = max{Dh(αj), | log αj |},
E = max {1, max{|bj |Aj/AN ; 1 ≤ j ≤ N}}. Then,

log |Λ| > −C(N)C0W0D
2Ω,

where

C(N) =
8

(N − 1)!
(N + 2)(2N + 3)(4e(N + 1))N+1,

C0 = log(e4.4N+7N5.5D2 log(exD)),

W0 = log(1.5exED log(exD)), Ω = A1 · · ·AN .

Proposition 4.2. Suppose that {a, b, c, d, e} is a Diophantine quintuple

with a < b < c < d < e. Then,

m

log(351m)
< 2.786 · 1012(log d)2

with m as in the equation (2.5).

Proof. Let A, B, C, S, T and Vj , Wk be as in the proof of Lemma 3.5.

We may assume that C(= d) > B5/3 and C ≥ 6440 > 103 (cf. Section 1). Put

Λ = j log ξ − k log η + log µ,

where

ξ = S +
√

AC, η = T +
√

BC, µ =

√
B(

√
C ±

√
A)√

A(
√

C ±
√

B)
.

Then, by (60) in [8] we know that

0 < Λ <
8

3
ACξ−2j .(4.1)

We apply Theorem 4.1 with N = 3, D = 4, α1 = ξ, α2 = η, α3 = µ. We have

A1 = 2 logα1 < 2 log(2
√

AC + 1) < 2 log(2.0001C0.8) < 1.8007 logC,

A2 = 2 logα2 < 2 log(2
√

BC + 1) < 2 log(2.0001C0.8) < 1.8007 logC.

Since the minimal polynomial of µ is

A2(C − B)2X4 + 4A2B(C − B)X3 + 2AB(3AB − AC − BC − C2)X2

+ 4AB2(C − A)X + B2(C − A)2



THE NUMBER OF DIOPHANTINE QUINTUPLES 23

up to a multiple of a constant, the leading coefficient a0 of the minimal poly-
nomial of µ satisfies

1

4

(

C

B
− 1

)

≤ a0 ≤ A2(C − B)2.

Since
√

B

A
<

√
B(

√
C ±

√
A)√

A(
√

C −
√

B)
<

√
B(

√
C +

√
B)2√

A(C − B)

<

√
B(1 +

√

B/C)2√
A(1 − B/C)

< 1.6709

√

B

A
,

√

B

A
>

√
B(

√
C ±

√
A)√

A(
√

C +
√

B)
>

√
B(

√
C −

√
B)2√

A(C − B)

>

(

1 −
√

B

C

)2√

B

A
> 0.5607

√

B

A
,

we have

A3 = 4h(µ) < log
(

1.67092B2(C − B)2
)

< 3.3489 logC,

and noting that {A, B, C} is a standard triple with C > 103 we have

A3 > log

(

0.56072B(C − B)

4A2

)

> log(C1/5) = 0.2 logC.

Since k ≤ j, we have

E <
jA1

A3
< 9.0035j.

Hence we obtain the following:

C(3) =
8

2
· 5 · 9(16e)4 < 6.4407 · 108,

C0 = log
(

e20.2 · 35.5 · 16 log(4e)
)

< 29.8847,

W0 = log (6exE log(4e)) < log(351j),

Ω = A1A2A3 < 10.8583(logC)3.

Since

log
8

3
ACξ−2j < log

8

3
C(4C)−j < −1.2006j log C,

Theorem 4.1 and (4.1) together yield

1.2006j log C < 6.4407 · 108 · 29.8847 · 16 · 10.8583(logC)3 log(351j),

whence we obtain
j

log(351j)
< 2.786 · 1012(log C)2.

Proposition 4.2 now follows from j ≥ m and C = d.
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Proposition 4.3. Suppose that {a, b, c, d, e} is a Diophantine quintuple

with a < b < c < d < e. Then, d < 10830 and b < 10166. Moreover, if

d > 10100, then d > b5.

Proof. We may assume that d > 10100. In case {a, b, c, d} contains a
triple of the first kind, by Lemma 3.5 we have m > d0.025, which together
with Proposition 4.2 implies that

f(m) :=
m

log(351m)(logm)2
< 4.458 · 1015.

Hence we have m < 5.45 · 1020. It follows that d < m40 < 10830 and b <
d0.2 < m8 < 10166.

In case {a, b, c, d} contains a triple of the second or the third kind, m >
d0.19 and Proposition 4.2 together imply that f(m) < 7.718·1013, which yields
m < 7.2 · 1018. On the other hand, the assumption d > 10100 implies that
m > d0.19 > 1019, which is a contradiction. Therefore, we obtain d < 10830

and b < 10166. In addition, we have proved that {a, b, c, d} cannot contain a
triple of either the second or the third kind. Hence {a, b, c, d} has to contain
a triple of the first kind, which yields d > b5.

Corollary 4.4. Suppose that {a, b, c, d, e} is a Diophantine quintuple

with a < b < c < d < e. Then, l < 1.1 · 1021.

Proof. If l ≥ 1.1 · 1021, then by Lemma 2.3 we have m ≥ 5.5 · 1020, and
Proposition 4.2 implies that

d > exp

√

m

2.786 · 1012 log(351m)
> 2 · 10833,

which contradicts Proposition 4.3.

Corollary 4.5. Let {a, b, c} be a Diophantine triple with c = a + b +
2r, where r =

√
ab + 1. If c > 1050, then {a, b, c} cannot be extended to a

Diophantine quintuple.

Proof. Suppose that {a, b, c, d, e} is a Diophantine quintuple. We may
assume that c < d = d+ < e by Theorem 1.2 in [12]. Since c > 1050 means
d > c2 > 10100, we see from Proposition 4.3 that d > b5. On the other
hand, since d < 4b2c and b ≥ 8, we have c > b3/4 ≥ 16b, which contradicts
c = a + b + 2r < 4b.

5. Proof of Theorem 1.2

Let {A, B, C} be a Diophantine triple with A < B < C and let S =√
AC + 1, T =

√
BC + 1. In this section, we first give an exponential gap

principle for the solutions of

AZ2 − CX2 = A − C, BZ2 − CY 2 = B − C,(5.1)
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using Okazaki’s idea (cf. [3, Lemma 2.2]). Then we prove Theorem 1.2 com-
bining the gap principle with Corollary 4.4. We may express the solutions of
(5.1) as Z = Vj = Wk (j ≥ 0, k ≥ 0) with some binary recurrent sequences
{Vj} and {Wk} (cf. Section 2).

Lemma 5.1. Suppose that V0 = W0 = ±1 and that there exist three pos-

itive solutions (Xi, Yi, Zi) (1 ≤ i ≤ 3) of (5.1) with Z1 < Z2 < Z3 that come

from the same fundamental solution Z = V0 = W0. Put Zi = Vji
= Wki

(1 ≤ i ≤ 3) with j1 < j2 < j3. Then we have

j3 − j2 >
3

8AC
∆ξ2j1 log η,(5.2)

where

ξ = S +
√

AC, η = T +
√

BC, ∆ =

∣

∣

∣

∣

k2 − k1 k3 − k2

j2 − j1 j3 − j2

∣

∣

∣

∣

> 0.

Proof. The proof proceeds along the same lines as that of Lemma 2.2
in [3]. Let ǫ = V0 = W0. By Z = Vj = Wk, we have

Z =
1

2
√

A

{

(
√

C + ǫ
√

A)ξj − (
√

C − ǫ
√

A)ξ−j
}

=
1

2
√

B

{

(
√

C + ǫ
√

B)ηk − (
√

C − ǫ
√

B)η−k
}

,

whence we can find three points

(pi, qi) = (ji log ξ, ki log η) (1 ≤ i ≤ 3)

on the curve

F (p, q) =(
√

C + ǫ
√

B)eq − (
√

C − ǫ
√

B)e−q

−
√

B

A

{

(
√

C + ǫ
√

A)ep − (
√

C − ǫ
√

A)e−p
}

= 0.(5.3)

Since

Fq(p, q) = (
√

C + ǫ
√

B)eq + (
√

C − ǫ
√

B)e−q > 0

for all p and q, we may implicitly differentiate (5.3) to obtain

{

(
√

C + ǫ
√

B)eq + (
√

C − ǫ
√

B)e−q
} dq

dp

=

√

B

A

{

(
√

C + ǫ
√

A)ep + (
√

C − ǫ
√

A)e−p
}

,(5.4)
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which yields

dq

dp
=

√

√

√

√

√

√

√

{

(
√

C + ǫ
√

A)ep − (
√

C − ǫ
√

A)e−p
}2

+ 4(C − A)

A/B

[

{

(
√

C + ǫ
√

B)eq − (
√

C − ǫ
√

B)e−q
}2

+ 4(C − B)

]

=

√

√

√

√

√

√

{

(
√

C + ǫ
√

A)ep − (
√

C − ǫ
√

A)e−p
}2

+ 4(C − A)
{

(
√

C + ǫ
√

A)ep − (
√

C − ǫ
√

A)e−p
}2

+ 4(AC/B − A)
> 1.(5.5)

Similarly, we may implicitly differentiate (5.4) to obtain

{

(
√

C + ǫ
√

B)eq + (
√

C − ǫ
√

B)e−q
} d2q

dp2

+
{

(
√

C + ǫ
√

B)eq − (
√

C − ǫ
√

B)e−q
}

(

dq

dr

)2

= (
√

C + ǫ
√

B)eq − (
√

C − ǫ
√

B)e−q,

which yields

d2q

dp2
=

{

1 −
(

dq

dp

)2
}

(
√

C + ǫ
√

B)eq − (
√

C − ǫ
√

B)e−q

(
√

C + ǫ
√

B)eq + (
√

C − ǫ
√

B)e−q
< 0.(5.6)

From (5.5) and (5.6) we see that

0 <
q2 − q1

p2 − p1
− q3 − q2

p3 − p2
<

q2 − q1

p2 − p1
− 1.(5.7)

On the other hand, we may transform Vji
= Wki

(i = 1, 2) into inequalities
for linear forms in three logarithms of algebraic numbers

0 < pi − qi + log µ <
8

3
ACξ−2ji (i = 1, 2),

where

µ =

√
B(

√
C + ǫ

√
A)√

A(
√

C + ǫ
√

B)

(cf. (4.1)). Hence we have

0 < p2 − q2 + log µ < p1 − q1 + log µ <
8

3
ACξ−2j1 ,

which yields

0 < (q2 − q1) − (p2 − p1) <
8

3
ACξ−2j1 .(5.8)
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It follows from (5.7) and (5.8) that

0 <
q2 − q1

p2 − p1
− q3 − q2

p3 − p2
<

(q2 − q1) − (p2 − p1)

p2 − p1
<

8AC

3(p2 − p1)ξ2j1
.

Substituting pi = ji log ξ and qi = ki log η, we have

0 <
k2 − k1

j2 − j1
− k3 − k2

j3 − j2
<

8AC

3(j2 − j1)ξ2j1 log η
.

Therefore, we obtain

j3 − j2 >
3

8AC
∆ξ2j1 log η,

as desired.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that there exist five Diophantine
quintuples {a, b, c, d, e} (c < d < e) containing the fixed triple {a, b, c}. Since
d = d+ by Theorem 1.2 in [12], we have five such e’s, which yield five positive
solutions

δ = uli = vmi
= wni

(1 ≤ i ≤ 5)

with l1 < l2 < l3 < l4 < l5 of the system of Diophantine equations (2.1),
(2.2), (2.3). Let {A, B, C} be a standard triple with A < B < C contained
in {a, b, c, d} and Z = Vj = Wk the solutions of (5.1). Then, V0 = W0 = ±1
by Lemma 2.2 and we have three positive solutions (Xi, Yi, Zi) (1 ≤ i ≤ 3)
of (5.1) that come from the same fundamental solution. Hence, putting Zi =
Vji

= Wki
, we have the gap principle (5.2). Since we may assume that C = d,

we know that AC ≥ ad ≥ 6888 and BC ≥ bd ≥ 16 ·6440 (cf. Section 1), which
together with Lemma 2.4 imply that

ξ2j1

AC
>

(2
√

ad)2m1

ad
≥ 212(ad)5 > 6.35 · 1022,

log η > log(2
√

bd) > 6.46.

Moreover, since each of li, mi and ni is even by Lemma 2.2, we have ∆ ≡ 0
(mod 4), which yields ∆ ≥ 4. It follows from (5.2) that

l5 ≥ j3 > 1.5 · 6.35 · 1022 · 6.46 > 6.15 · 1023,

which contradicts Corollary 4.4. This completes the proof of Theorem 1.2.
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6. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 along the same lines as Theorem 4
in [9].

Proof of Theorem 1.3. Suppose that {a, b, c, d, e} is a Diophantine
quintuple with a < b < c < d < e. We know by Proposition 4.3 that d < 10830

and b < 10166. We first bound the number of the {a, b}’s. If b ≤ 10102, then
the number is at most 10204. Assume that 10102 < b < 10166. By (8) in [9]
we have

log b >
1

2
ω(b) log ω(b),(6.1)

where ω(b) denotes the number of distinct prime factors of b. If 2ω(b) ≥ b0.3,
then (6.1) implies that ω(b) < 101.6, which yields b < 10102, a contradiction.
Hence we have 2ω(b) < b0.3, and the number of corresponding {a, b}’s is less
than the following (see the proof of Theorem 1 in [9]):

10166
−1

∑

b=10102+1

2ω(b)+1 < 2

10166
−1

∑

b=10102+1

b0.3 < 2

∫ 10166

10102

b0.3 db < 10216.

Therefore, the number of the {a, b}’s is less than 10216.
Secondly, for a fixed {a, b} the number c such that {a, b, c} is a Diophan-

tine triple belongs to the union of finitely many binary recurrent sequences,
and the number of the sequences is less than or equal to the number of so-
lutions of the congruence z2

0 ≡ 1 (mod b) with −0.71b0.75 < z0 < 0.71b0.75

(cf. [7, Lemma 1]). If b ≤ 1058, then the number of the sequences is
2 · 0.71 · 1058·0.75 < 5 · 1043. Assume that 1058 < b < 10166. We see from
(6.1) that 2ω(b) < b1/3 in the same way as above. Hence, the number of the
sequences is less than 2 · 2ω(b)+1 < 4b1/3 < 9 · 1055 (cf. [9, Lemma 1]). More-
over, the number of elements contained in each of the sequences is less than
log32(10830) < 600 (see the proof of Theorem 4 in [9]). Therefore, the number
of the c’s is less than 9 · 1055 · 600 < 6 · 1058.

Consequently, we see from Theorem 1.2 that the number of Diophantine
quintuples is less than 10216 · 6 · 1058 · 4 < 10276, which completes the proof of
Theorem 1.3.
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