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ABSTRACT. Existence and uniqueness of a weak solution for dynamical
frictional contact between an electro-viscoelastic body and a rigid electri-
cally non-conductive obstacle is established. The contact is modelled with
a simplified version of Coulomb’s law of dry friction in which the coefficient
of friction depends on the slip. The proof is based on the regularization
method, Faedo-Galerkin method, compactness and lower semicontinuity
arguments.

1. INTRODUCTION

Piezoelectric materials are advanced materials and have many applica-
tions due to their electromechanical coupling effect. It is an example of
phenomena where coupling two physical fields of different natures (namely
mechanical and electrical fields) is the key factor to be taken into account
in a variety of applications. The piezoelectricity can be described as follows:
when mechanical pressure is applied to a certain classes of crystalline materi-
als, the crystalline structure produces a voltage proportional to the pressure.
Conversely, when an electric field is applied, the structure changes his shape
producing dimensional modifications in the material. Actually, there is a big
interest into the study of piezoelectric materials, this type of materials being
used in radioelectronics, electroacoustics and measuring equipments. In the
same time, due to the fact that the parts of the equipments are in contact,
the interest for the contact problems is increasing. However, there are very
few mathematical results concerning contact problems involving piezoelectric
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materials and therefore there is a need to extend the results on the models for
contact with deformable bodies to models for piezoelectric contact. The lit-
erature concerning this topic is very rich, see from example [1,5,9-11,14-16]
for modelling in piezoelectricity or electro viscoelasticity. Some theoretical
results for contact models taking into account the interaction between the
electric and mechanic fields has been obtained in [2,8,12,13]. Recently, some
dynamic contact problems for piezoelectric body were considered in [4,7].

In this paper we study a dynamical frictional contact between a electro-
viscoelastic body which is acted upon by volume force and surface tractions,
and a rigid electrically non-conductive foundation. So, we assume that the
process is dynamic and use a simplified version of Coulomb’s law in which the
normal stress is prescribed and the coefficient of friction depends on the slip.
We present weak formulation of the model which consists in a system cou-
pling a variational inequality for the displacement field and a time-dependent
variational equation for the electric field and show the existence and unique-
ness of a weak solution to model. Such result extends the result obtained in
[7] in which the authors trait the case where the frictional coefficient doesn’t
depend on the slip.

The rest of the paper is structured as follows. The model of the contact
dynamic process of the linear electro viscoelastic body is presented in Section
2. In Section 3 we list the assumptions on the problem data, derive the vari-
ational formulation of the problem and state our main result, Theorem 3.1.
The proof of the Theorem 3.1 is presented in Section 4. It is based on a reg-
ularization method, Galerkin method, compactness and lower semicontinuity
arguments.

2. PROBLEM SETTING

We consider a linear piezoelectric body that initially occupies a bounded
domain © in R? (d = 2,3) with a smooth boundary I'. Let v = (v;) de-
note the unit outer normal on I" and [0, T'] be time interval of interest, where
T > 0. The indices %, j, k,l run between 1 and d. The summation convention
over repeated indices is adopted and the index that follows a comma indi-
cates a partial derivative with respect to the corresponding component of the
independent variable.

Everywhere below we use S? to denote the space of second order sym-
metric tensors on R? while “-” and | - | will represent the inner product and
the Euclidean norm on R? and S¢, that is: Vu,v € R¢, Vo,7 € S?

w-v=uw;, |v|= (v-v)1/2 and o-T=04Tj, |T|= (7-7)1/2.
We shall adopt the usual notations for normal and tangential components
of displacement vector and stress: w = u,v + u,, v, = u;V;, oV = o,V +
Or, Oy = 045VilVj.
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We write the equations of motion and Maxwell-Gauss’s law as follows:
(2.1) pt—Dive = f, in Qx(0,7),

(2.2) divD=¢qy, in Qx(0,7),

where o is the stress tensor, u denotes the displacement vector, D is the
dielectric displacement vector, p denotes the density of mass, f, represents
the density of body forces, qo is the volume density of free electric charges.

Notice also that Div and div represent the divergence operators for tensor
and vector valued functions, that is

Dive = (04,;), divD = D;;.
For linear piezoelectric material we have the following constitutive rela-
tions
(2.3) o = As(u) +Ce(u) — EE(p),

(2.4) D = €e(u) + BE(),

where A = (aiju), C = (cijrr), € = (k) and B = (B;;) are respectively the
(fourth-order) elasticity tensor, the (fourth-order) viscosity tensor, the (third-
order) piezoelectric tensor and the electric permittivity tensor. € and E are
respectively, the linearized strain tensor and the electric intensity vector. We
use £* to denote the transpose of the tensor £ given by:

Eo-v=0-&v, VoeS! VoveRL

The linearized strain tensor € and the electric intensity vector E are
related to the displacement vector w and the electric potential ¢ through the
following:

e(u) = %[Vu + (Vu)*] and E = —Vo.

Next, we need to prescribe the mechanical and electrical boundary con-
ditions. To this end, we consider first a partition of I' into three measurable
parts I'1, 'y, I's such that meas(I'y) > 0. We assume that the body is clamped
on I'; and surfaces tractions of density f, act on I's that is:

(2.5) u=0 on Ty x(0,T) and ov=f, on Iy x(0,T).

On I's the body can arrive in frictional contact with an obstacle, the so-called
foundation and the contact is given by:

(a) o, ==S5, S>0 on T'3x(0,7),
(26) { (b) o, = —SM(|uT|)|Z—T| if @, #0 on Ty x (0,T),
(¢) lo+| < Sp(Jur]) if 4,=0 on T3x(0,7).

These equations represent a simplified version of Coulomb’s law of dry friction
in which the coefficient of friction depends on the slip, i.e., the contact surface
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is given and we impose a non-positive normal stress —S. Relations (2.6) assert
that the tangential stress is bounded by the normal stress multiplied by the
value of the friction coeflicient p(|u,|). If such a limit is not attained, sliding
does not occur.

To describe the electric boundary conditions we assume that I' is divided
into two disjoints measurable parts I, and T, such that meas(T';) > 0. We
also assume, for simplicity, that the electrical potential vanishes on I'; and
the electric charge ¢o is prescribed on I'y:

(2.7) =0 on I'yx(0,T) and D-v=¢g2 on T, x(0,T).
Finally, we prescribe the initials conditions that is
(2.8) u = U, %(0) = vo in Q.

Our main goal here is to prove uniqueness and existence of weak solution
to the following problem.

PROBLEM P. Find a displacements field u : Q x [0,T] — R? and an
electric potential field v : Q x [0,T] — R such that (2.1)-(2.8) hold.

3. WEAK FORMULATION AND MAIN RESULT

In this section we derive a weak formulation of the problem P and inves-
tigate its solvability. Everywhere in what follows we use the classical notation
for the LP and Sobolev spaces associated to 2 and I'. Let X be a Banach space,
T a positive real number then for k = 1,2,..., we also use the classical nota-
tions for the W*»(0, T; X). We also introduce the following functional spaces:
L2(Q) = [L2(Q)])4, L3(I;) = [L*(Ty)]4, fori=1,2,3, HY(Q) = [H(Q)]".

We suppose that density p satisfy
(3.1) p€L>®(Q), 3 po>0 such that p(x) > po >0, ae.x e Q,

and introduce over L?(Q) the inner product
(w, v)12(0) == / w-vdr, Vu, v € L*(Q)
Q

and denote by |-|r2(q) the associated norm. We denote by H the space L*(Q2)
equipped with the inner product (-, )y defined by

(u,v)g :=/ pu-vdr, Vu,ve H
Q
and we denote the associated norm by |- | g, i.e,
1
ol = ([ plofdo)’.

Thus, the norms | - |r2(q) and | - | are equivalent over L?(Q).
Moreover, keeping in mind (2.5), we introduce the following space:

V={veH' (Q); v=0ae onl}.
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Next, for the stress field, we use the space
Q={7=(m) |7y =75 € L*(Q) }

which is real Hilbert space endowed with the inner product

(O',T)QZ/O‘ijTij dx
Q

and the associated norm | - ||g -

It follows from Korn’s inequality that the bilinear form defined over the
space V' by

(u, v)v = (e(u), E(U))Q

is an inner product, the associated norm is denoted by || - ||. Then (V, (-, )v)
is a real Hilbert space. Since V is dense in H, we identify H and its dual
and we write V < H = (H) < V'. We use (-,-)y+ v to denote the duality
between V' and V. Moreover, by the Sobolev trace theorem, there exists a
positive constant ¢; which depends on €2, I'y and I's such that

(3.2) lollzegs < allol Vo e V.

Everywhere below, we denote by ¢;, C; or C various positive constants which
are independent of time and whose value may change from line to line.
Next, for the electric potential we use the functional space

W={vecH'(Q); Yv=00n T, },

which is real Hilbert space with the inner product (¢, 9)w = (@, %) g1 (o) and
the associated norm || - ||y. Since W is dense in L?(Q2), we identify L?(Q)
and (L2(Q)) and write W — L3(Q) = (L2(Q)) — W'. We use (-, ywr.w
to denote the duality between W’ and W. Moreover, by the Sobolev trace
theorem, there exists a constant co, depending only on 2, I', and I's, such
that

(3.3) [Cllz2(ry) < caliCllw V¢ eW.

We suppose that the friction coefficient p : I's xR +— R is differentiable
with respect to the second variable and there exist My, o > 0 such that

(3.4) 0<ple,a)<py, aexels YVaeR,,

(3.5) [Oap(x, )| < My, a.e.x €T3, Va € Ry,

and the functions @ — p(x,a) and ¢ — Jyu(x, o) are measurable for all
o€ R+.

For the normal stress we suppose that
(3.6) S(s) >0 foralls €T's and S € L*™(I';3).

Assume that the body forces and the surface tractions satisfy:

(3.7) fo € WH(0,T;L%(Q)) and f, € WH2(0, T;L*(T'3)),
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and the volume and surface densities of the electric charges satisfy:

(3.8) qo € WH2(0,T; L*(Q)) and g2 € WH2(0,T; L*(T)).
The initial conditions will be supposed as follows:
(3.9) ug, vo €V .

Keeping in mind assumptions (3.7)—(3.8), it follows that the there exists f €
W12(0,T; V/) and ¢ € W12(0,T; Wl) such that next integrals are well-
defined

(3.10) (f(t),v)vfy:/ﬂfo(t)-vda:—i— [ pa0-vis— [ Soas voev,

I's
(3.11) (), ) wrw = /qu(t)wdx—/r Bty ds, Vi e W,
We define the functional j : V x V — R as follosvs:
(3.12) jlu,v) = g Sp(lur)|vs|ds, Yu,veV.
3

Finally, we denote by a: V xV — R, ¢c: VxV —R b:WxW —R
and e : V x W — R the following bilinear applications:

a(u,v) := (Ae(u),e(v))q, c(u,v) := (Ce(u),e(v))q,

b(@ﬂﬁ) = (IBVSD7V¢)L2(Q)7 e(u,go) = (EE(U), v()O)LQ(Q) = (g*V(paE(u))Q
Suppose that A, C, 3 and & satisfy the usual properties of symmetry, bound-
edness and ellipticity:

Qijel = rtij = Gjikt € L(),  cijrr = criij = cjim € (),
Bij = Bji € L™(Q), e = eirj € L7(Q),
and there exists m > 0 such that
aijmeiern > mlel?, Ve €S cijueijem > mlel?, Ve €87,
6ijEiEj Z m|E|2, VE € Rd.
It is easy to see that a and c are continuous, V-elliptic forms and b is contin-

uous and W-elliptic form and e is continuous on V' x W. The coercivity of
the form c(+,-) implies that

. > 0 such that c¢(v,v) > v|%, Vv e V.
3.13 3D > 0 such th D|v|? Vv €V.

Now, using integration by parts, it is straightforward to see that if (u, @) are
sufficiently regular functions satisfying (2.1)—(2.8) then, for all ¢t € [0,T], we
have

(@(t), w)m + (o(t), e(w))q

(3.14) = / o-(t) wrds+ (f(t),w)y v ,VweV,
I's
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Keeping in mind (2.6) we find

/F o (t) - (vr —ur(t) ds + j(u(t),v) — j(u(t), () > 0,Vv eV, t €0, T].
Therefore, by taking w = v — @(t) in (3.14) we have:

(@(t),v —a(t)m + (o(t),e(v) —e(iu(t))q + j(u(t), v) — j(u(t), w(t))
3.16) = (f(),v—w(t))y v, VoeV, tc[0,T].

We plug now (2.3) in (3.16), (2.4) in (3.15), use the notation E = —V¢ and
the initial condition (2.8) to derive the following variational formulation of
problem P, in the terms of displacement and electric potential fields.

PROBLEM Py . Find the displacement field w : [0,T] — V and the electric
potential ¢ : [0,T] — W such that

(@(t),v — () + a(u(t), v —a(t)) + c(it(t), v — i(t))
(3.17) +e(v—a(t), o(t) +j(ul(t),v) — j(u(t), u(t))
> (f(t),v —a(t)y y YveV, tel0,T],

(3.18) (), ¥) —e(ul(t)),¥) = (q(t), Y)w w V¢ €W, t €[0,T],

(3.19) u(0) = ug, ©(0) = vo.
The main results of this section is the following:

THEOREM 3.1. Let d = 2,3. Assume that (3.1)-(3.9). Then under the
previous assumptions on A, C, B and &, there exists a unique solution (u, p)
of Problem Py such that

(3.20) we Whe(0,T; V)N W2(0,T; H), ¢ € W-2(0,T; W).

4. PROOF OF THEOREM 3.1
The proof of Theorem 3.1 will be carried out in several steps.

UNIQUENESS. Let us consider two solutions (w1, ¢1), (u2, ¢2) to problem
Py with the regularity (3.20) and write w(t) = wu2(t) — ui(t) and ¢(t) =
w2(t) — 1(t). If we write the variational inequality (3.17) successively for
(u1, 1) and (uz,¢2), taking v = 49(t) in the first inequality and v = 4 (¢)
in the second one, and add the resulting inequalities, we obtain
(@ (1), w(t))r + a(w(t), w(t)) + c(w(t), w(t) + e(w(t), (t))
(4.1) +j(ua(t), wr(t) + j(ua(t), 4a(t)) — j(wa(t), wa(t))
_.j('U’Q(t)’ul(t)) < 07 Vite (OaT)
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We can easily deduce from variational equality (3.18) that

(4.2) e(w(t),v) =b(o(t),4),Vte(0,T),VipeW,
which implies that

(4.3) e(w(t), $(t) = b($(t), #(t)),V t € (0,T).
Having in mind (3.12), we obtain

(4.4)

7 (w1 (1), w1 (t)) + j(wa(t), 2(t)) — jlui(t), w2(t)) — j(ua(t), w1 (t))]

=| | S(s)[(uls, lur-)]) — p(s, [uar (D)) ([t1 (s, 8)] = |isar (s, 1)])] ds]

s
< 03/ |u1r(s,t) — uar(s,t)| |i1r(s,t) — 2, (s,t)| ds
I's

< cllur(t) —u2@)] 4 (t) — w2t

where ¢ = M || S| Lo (ry) and ¢4 = c3 X ¢12 = M ||S|| = (ry)c1? which M; and
¢1 are the constants defined respectively in (3.5) and (3.2).
Then, from (4.1), (4.3) and (4.4) we obtain

s g (0 + alwlo)w() + Hoe). o) + clio). (o)
< callw®)|| x lw®@)]l, Ve (0,T).
Using (4.2) with ¢» = ¢(0) and ¢ = 0; and coercivity of the bilinear form b(-, -);

we get ¢(0) = 0. Since w(0) = w(0) = 0, ¢(0) = 0, if we integrate the above
inequality from 0 to ¢, we obtain by using Young inequality

1 t
5 @7 + a(w(t), w(t)) +b(e(t), (1)) + [ c(w(9),w(4)) db
(4.6) 2( A ) /0

< [ (elio0)1? + @) do. ¥ ¢ (0.7,

D
By choosing € = 5} (where D is given in (3.13)) and coercivity of the

bilinear forms a, b we deduce
t
(o + @) + le) I3 ) + / o(0)]? B
(4.7) , 0
<c [ (0@ + 1w @I + 160 ) . v e 0.7)
The Gronwall’s Lemma allows us to deduce from the above inequality that
w(t) = 0and ¢(¢t) =0, Vt € [0,T]. This concludes the proof of uniqueness. O

EXISTENCE. Firstly, by using Riesz’s representation theorem we find the
operators B : W — W/, H:V—W and II* : W — V' defined by:
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(4.9) <H'U7¢>W’,W = (55("’)7v¢)L2(Q)d =e(v,y), VyeW;

(4.10) (e, v)yr v = (E7Vp,e(v))q = e(v,¢), YveV;

where IT* is the adjoint of II.
Now, we prove the following equivalence result.

LEMMA 4.1. The couple (u,p) is a solution to problem Py if only if
(@(t), v —w(t)m + a(u(t),v —u(t)) + c(u(t), v — u(t))

WD 0, ) - 0, 50) > (F0, 0 — @)y Yo € V
(4.12) u(0) = ug, u(0) = vy,

(4.13) o(t) = B~ 'TIu(t) + B~ 'q(t), Yt € [0,T],

where a(u,v) = a(u,v) + (II*B~'lu,v)y ,  and ft) = f@t) —
II*B~1q(t).

PROOF. Let (u, ) be a solution of Pyy. We solve the equation (3.18) on
u(t). To this end, let w € C'(0,T;V) and find ¢ : [0,7] — W such that

(414) b(@(t)vw) - e(u(t)aw) + <Q(t)7w>W/,W7 Vl/) € Wa Vi e [Oa T]
From the continuity of e on V' x W, we remark that for all ¢ € [0, T] the linear
form: ¢ — e(u(?)),¥) + (q(t), ¥)y -, is continuous on W. Since b(-,-) is
symmetric continuous and W-elliptic, it follows that B is positive-definite and
self-adjoint operator and is invertible such that B! is linear continuous from
W' to W. Using the Lax-Milgram theorem, we conclude that the equation
(4.14) has unique solution ¢ € C(0,T; W) which has an explicit form (4.13).

Now, we deduce that if w : [0,T] — V is given and ¢ : [0,T] — W satisfies
(4.13) we have

(4.15) e(w, p(t)) = (I B~ 'Mu(t) + II* B~ q(t), w)y ,Yw € V.

Thus, by inserting the equation (4.15) with w = v—4(t) in (3.17), we can
deduce easily that the variational problem Py is equivalent to the problem
(4.11)—(4.13) introduced in Lemma 4.1. O

Let denote agp(u,v) = <H*B_1Hu,v>vfjv, we observe that ag(-, -) is
bilinear, symmetric continuous on V and there exists @ > 0 such that
ap(v,v) > a||Hv||?/V/ >0 for all v in V. Thus, we conclude that a is bilinear,
symmetric, continuous and V — elliptic.

Keeping in mind that ¢ € W2(0,T; W/) and properties of the oper-
ators IT*, B~! which are linear continuous in their correspondent spaces,
we deduce that § : [0,T] — V' defined by §(t) := —II*B~¢(t) satisfies
q e wWh20,T; V/) and therefore the function fe Wh2(0,T; Vl).

Now, we solve the transformed problem (4.11)-(4.12) on w as in [3] and
[6]. We will use the regularized method followed by the Faedo-Galerkin’s
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method and compactness and semicontinuity arguments. To this end let us
consider (¢;)ien € V a sequence of linear independent functions such that
V =U_, V™ where V™ = Span{¢1, @2, ..., o, }. We shall suppose that V™
is chosen such that for m large enough we have uy and vy belong to V.

We also consider, for all € > 0, the family of convex and differentiable
functions 1. : R¢ — R given by

Ye(v) = /|v]2+ €2 —€, Vv e R

It is easy to show that such a family of functions satisfies:

(4.16) 0 < 9Ye(v) < ||, Vv € RY,
(4.17) [¢e(v) = |v]| < e, Vv €RY,
(4.18) ¥, (v)(w) = _vw Vv, w € RY.

From equation (4.18), we have

(4.19) [, (v)(w)| < |w|, Vv, w € R%.
We then define a family of regularized frictional functional j. : V xV — R by
(4.20) Je(u,v) = / S(s)u(s, |ur(s))e(v-(s))ds, Yu, veV.

s

The functionals j. are Gateaux-differentiable with respect to the second ar-
gument v and represent an approximation of j, i.e., there exists a constant C'
such that

(4.21) |je(u,v) — j(u,v)| < Ce, Vu, v eV.

We denote by J. : V xV — V' the derivative of je with respect to the second
variable given by
(4.22)
(Je(u,v), z)y = S(s)p(s, |ur ()0, (v-(3))(z-(s)) ds, Vu,v, z € V.
s

Now, we define the regularized problem associated to (4.11)—(4.12) in finite-
dimensional spaces: Find «” : [0,T] — V™ such that:

(@ (1), v)m + a(u (1), v) + c(a (1), v) + (Je(u (1), " (1), v)y v

(4.23) - ’
= (F(t),v)y, YV EV, YVt €[0,T].

(4.24) um(O) = Uug, ’U,Zn(O) = vo.

Since (u, v) — Je(u, v) is locally Lipschitz continuous on V™ x V™ we deduce
that for all € > 0 and m € N the problem(4.23)—(4.24) has an unique maximal
solution u™ € C?(0,T/™; V™). The a priori estimates of our regularized
problem are given by the following lemma.
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LEMMA 4.2. Under the assumptions of Theorem 3.1, there exists a unique
solution u™ of Problem (4.23)- (4.24) such that for every e > 0,m € N, we
have

{ul"tm, e, {4 }m,e are bounded in L*(0,T; V),
(4.25)

{2}, e is bounded in L?(0,T; H).

PROOF. First, let observe that in [3] and [6] the authors derive the above
estimates for similar problem, with different functional j by assuming that
fe Wh2(0, T; V'). Here, to establish the Estimates I, we only assume that
ferLo, T; V).

The proof of estimates II follows the lines of [6]. We thus do not detail
the proof in the present paper. We give briefly the outline of the proof:
Estimates I. Since (Je(u,v),v)y > 0 for all u,v € V, if we take v = u."
in (4.23), we obtain

1d
2 dt

(1 O + @ (0, u (1)) + e(@l(0), (1) < (F(0), @20y, -

Using the classical techniques, we can easily deduce that there exists C' > 0,
which is independent of g, vo and f, such that: V¢ e [0, T

lu (@))% + [ad (8)|% +/ g (t)(6)]]* 4
(4.26) 0

t
ngwW+m@+AHﬂW@d% Vi e 0,77,

So the unique solution of the approximate problem is global in time, i.e.,
T =T and

{ul"}, e is bounded in L>°(0,T; V),
(4.27)

{4}, e is bounded in L>(0,T; H) N L%(0,T; V).

Estimates II. Setting v = @"(t) in (4.23) and using that 2 (v (i, (s, 1)) =

(ﬁ) (s,t), we obtain

O+ Al (1), 67 (0) + 5 (@l (0, 4 (1)
b [ St lur (s, 1) St live (1) = (F0), 7" (1) v

s

(4.28)
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Now, using coercivity of the form ¢(-, ) , the last equality and integrating
over (0,t), 0 <t < T, the equation (4.28) we get

|t @ a0+ Flar o)
(129 < getwo.w) = [ awr (@) @) a0+ [ (F0).52 0,y o

t m o
f/o /FS S(s)u(s, luc’-(s,0)]) 55ve(acr (s, 0))ds db.

Let us remark that we use here a simplified version of mechanical problem
studied in [6] with operators which take into account the piezoelectrical effect.
Now, adapting the proof of [6] to the present case, one can obtain the following
estimates: there exists C' > 0 such that

T
(4.30) WW@W+/uwmmwga
0

Thus, from estimates I and estimates II, we get the estimates given in Lemma
4.2. O

PASSAGE TO THE LIMIT IN m AND e. The a priori estimates (4.25) are
used now to deduce that there exists u € W (0, T; V)NW?22(0,T; H), and
a subsequence of {u"},, . such that for m — oo and € — 0, we have:

u” — u and 4" — w weak star in L>°(0,7T; V),
" — @ weak in L*(0,T; H).
Now, using the convexity argument of the functionals j and the properties

of its regularization, the lower semicontinuity arguments and compactness
results which are used in [6], one can find that u satisfies

/0 (@), w(t) — i(t))n + a(u(t), w(t) — a(t)) + c(a(t), w(t) — (1)) dt

+/O (G(u(t), w(t)) = j(u(t), w(t) dtZ/ (F(0),w(t) —a(t))y, v dt.

0
From the last inequality, we deduce that w is a solution of the variational
problem (4.11)—(4.12).

Finally, we define o by (4.13), i.e., ¢(t) = B~ 'Hu(t)+B~1q(t),Vt € [0, T].
Having in mind that B-'I1 € £(V, W), B~ € LW, W), u € WH(0,T; V)
and ¢ € WH2(0,T; W) it is now easy to show that ¢ € Wh2(0,T; W) so
(u, ) is the unique solution of Problem Py with the regularity (3.20). O
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