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ABSTRACT. In a previous paper the author has associated with every
inverse system of compact CW-complexes X with limit X and every sim-
plicial complex K with geometric realization |K| a resolution of X X | K|,
which consists of spaces having the homotopy type of polyhedra. In a sub-
sequent paper it is shown that this construction is functorial. The proof
depends essentially on particular cellular subdivisions of K. The purpose
of this paper is to describe in detail these subdivisions and establish their
relevant properties. In particular, one defines two subdivisions L(K) and
N(K) of K. Each cell from L(K), respectively from N(K), is contained in
a simplex o € K and it is the direct sum a @b, respectively c® d, of certain
simplices contained in ¢. One defines new subdivisions L’(K) and N’(K)
of K by taking for their cells the direct sums L(a) @b, respectively c® N (d).
The main result asserts that there is an isomorphism of cellular complexes
¥: L'(K) — N’(K), which induces a selfhomeomorphism 6: |K| — |K].

1. INTRODUCTION

In [6] the author has associated with every inverse system of compact
Hausdorff spaces X = (X, pay, A) with limit p = (px,A): X — X and every
simplicial complex K with geometric realization P = |K| a resolution (inverse
limit with additional properties) ¢ = (g, M): Y —Y = (Y}, quu, M) of the
Cartesian product Y = X x P, here called the standard resolution of X x P.
If X consists of compact CW-complexes X, the inverse system Y consists
of spaces Y}, having the homotopy type of polyhedra. In [7], it is shown that
the construction of the standard resolution of X x P can be enriched so as to
obtain a functor (in the first variable) from the coherent homotopy category
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of inverse systems of Hausdorff compacta CH(pro-Cpt) to the pro-category
pro-HTop of the homotopy category HTop (for these notions and the notion
of resolution see [5]). The proof depends essentially on constructing particular
cellular subdivisions of K. The purpose of this paper is to describe in detail
these subdivisions and establish their properties needed in [7].

The first construction, described in the present paper, associates with
every simplicial complex K in a real vector space V a particular cellular
subdivision L(K) to which we refer as to the first canonical subdivision of
K (see Theorem 3.6). It is the union of subdivisions L(o), where 0 € K.
An important property of L(o) is that, for an n-dimensional simplex o € K,
the n-dimensional cells ¢ € L(o), are direct sums of the form ¢ = e @ d,
where (e,d) is an ordered pair of simplices contained in o, and the second
summand d is endowed with a natural linear ordering of its vertices, i.e., it
is an ordered simplex. The direct sum e @ d is a cell, homeomorphic to the
Cartesian product e x d, described in Section 3.

In [7] the subdivision L(K) is used in defining the desired functor CH(pro-
Cpt) — pro-HTop. More precisely, with every coherent mapping f: X — X’
between cofinite inverse systems X and X', which are objects of CH(pro-
Cpt), one associates an induced homotopy mapping g = (9,9,): Y — Y’
between the standard resolutions Y of X x P and Y’ of X’ x P. Here
g: M’ — M is an increasing function, which to every pu € M’ assigns an
increasing function g(u1): K — A. Moreover, each g, is a mapping Y,y — Y};,
induced by mappings g : X(g(u))(0) X 0 — Ylb where o ranges over K. The
latter mappings are given by explicit formulae on subsets X (4(,.))(0) X ¢, Where
¢ ranges over the set of cells of L(o).

A particular cellular subdivision N(A"™) of the standard n-simplex A"
was used in defining the composition f/ = f'f: X — X" of two coherent
mappings f: X — X' and f': X' — X" (see [5, 1.1.3] or Section 4 of [7]).
This subdivision consists of n + 1 n-dimensional convex polytopes P* C A",
0 <7 < n, and of their faces. Each of these n-cells is the direct sum P;" =
Q! @R?_i of two simplices Q! and R?_i of dimensions 7 and n — i, respectively
(see Section 4 of [7]). By definition, f” consists of an increasing function
f"+ A" — A between the index sets of X” and X and of some mappings
Frs Xpogu,y x A" — X1 where p = (po, - .., ftn) is a multiindex in M" of
length n. These mappings are defined by explicit formulae on the subsets
Xy X PG Xprn(ug) X A"

The construction of the subdivision N(A™) of A™ readily generalizes to
the construction of a subdivision N (o) of any linearly ordered simplex o =
[vo,...,vn] € V. We refer to it as to the second canonical subdivision of o.
By definition, N(o) consists of n-dimensional polytopes ¢7, 0 < i < n, and
of their faces. As in the case of L(o), each of the n-cells ¢7 is the direct
sum ¢ = /7 & "7 of two simplices ¢/; and ¢’ (of dimensions i and n — 1,
respectively) (see Theorem 4.3). The construction easily extends further to a
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cellular subdivision N(K), for any ordered simplicial complex K in V. Recall
that K is ordered if its set of vertices is partially ordered in such a way that
the vertices of each of its simplices are linearly ordered.

We will consider two more cellular subdivisions of K to which we refer as
to the first iterated canonical subdivision L'(K) of K and the second iterated
canonical subdivision N'(K) of K. To define L'(K) we first define a cellular
subdivision L'(c) of L(o), for each o € K. If dimo = n, one considers the
subdivision L(o) and its n-cells ¢ € L(o). They are of the form ¢ = e®d, where
e and d are simplices contained in ¢ of dimensions dime = ¢ and dimd = n—1,
0 < i < n, respectively. Applying the operation L to the first summand e,
one obtains a subdivision L(e) of e. The i-cells ¢’ € L(e) determine n-cells
e’ & d C ¢, which together with their faces form a cellular subdivision L(c) of
c. Tt is shown in Theorem 5.1 that the union of all L(c), when ¢ ranges over
the set of n-cells from L(o), is a cellular subdivision L'(o) of L(o), hence also
a cellular subdivision of ¢. Finally, we put L'(K) = Usex L'(0).

Similarly, to define N’(K) we will first define a cellular subdivision N'(o)
of L(0), for each o € K. As above, if dimo = n, one considers the n-cells
c=e®d from ¢ € L(o). Applying the operation N to the second summand
d, one obtains a subdivision N(d) of d. The (n — i)-cells d’ € N(d) determine
n-cells e ® d’ C ¢, which together with their faces form a cellular subdivision
N(c) of c. Tt is shown in Theorem 6.1 that the union of all N(c), when ¢ ranges
over the set of n-cells from L(o), is a cellular subdivision N’(o) of L(o), hence
also a cellular subdivision of ¢. Finally, we put N'(K) = Uy,ex N'(0).

A careful analysis of the cellular complexes L'(K) and N'(K) shows that
there exists an isomorphism of cellular complexes ¢: L'(K) — N'(K) (Theo-
rem 7.1). Moreover, there exist affine isomorphisms between the correspond-
ing cells ¢* € L'(K) and ¢* = ¥(c*) € N'(K), which generate a selfhomeo-
morphism 6: P — P of the carrier P = |K| = |L/(K)| = |N'(K)| (Theorem
7.2). These surprising facts are the main results of this paper and have en-
abled the author to prove in [7] the following assertion. The composition g’g
of the homotopy mappings g and g¢’, associated with f and f’, respectively,
is homotopic to the homotopy mapping g”’, associated with the composition
f" = f'f. This assertion is the crucial step in establishing the desired func-
toriality of the standard resolution of X x P.

2. PRELIMINARIES ON CONVEX POLYTOPES AND CELLULAR COMPLEXES

In this section we fix terminology and notations and review notions
and facts from the basic theory of polytopes and cellular complexes, needed
throughout the paper.

2.1. Let V be a (real) vector space. The sum of two non-empty subsets
A,BCVistheset A+ B={a+blac Abec B} CV. An affine manifold
M in V is a subset of V of the form M = v + Ly, where v € V and L,
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is a linear subspace of V. Note that Ljs is completely determined by M,
i.e., it does not depend on the choice of v. An alternative definition says
that M is an affine manifold in V if vg,...,vp € M, Ag,..., A\rx € R and
Zilg Ai = 1 imply Zi'& Aiv; € M. By definition, the (geometric) dimension
dim M = dim Ly;. A set of points {vg,...,v,} C V is affinely independent if
its affine hull Aff({vo,...,v,}) has dimension n.

A mapping f: M — N between affine manifolds M = v+ Ly; and N =
w+ Ly is an affine mapping provided there is a linear mapping ¢: Ly, — Ly
such that f(v+ z) = w+ ¢(x), for x € Ly. Alternatively, f is affine if
0oy 0k € M, Aoy Mg € Roand Y2 N = 1 imply f(X2h Nivg) =
SN ().

A convex polytope C in V is the convex hull C'= Conv(F') of a finite set
of points F' C V. Dimension dim C' is the dimension of the affine hull Aff(C)
(see [2, §7] or [9, Definition 6.2.1]). A proper face C’ of a convex polytope
C' is the intersection of C' with a supporting hyperplane of C in Aff(C); we
use the notation C’ < C (see [4, §2.4] or [2, Theorem 7.5] or [9, §6.2]). The
empty set () and C itself are improper faces of C. If C’ is a face of C, proper
or improper, we use the notation C’ < C. The faces of a convex polytope
are convex polytopes (see [2, Theorem 7.3] or [9, Lemma 6.2.3]). If C is a
convex polytope in V, ¢’ < C and C” < C’, then C" < C (see [4, §3.5]). Two
faces of a convex polytope intersect in a common face (possibly empty) (see
[4, 2.4.10] or [2, Theorem 5.9]). The (geometric) boundary Bd (C') of C is the
union of all proper faces of C. The (geometric) interior Int (C) of C is the
set C\Bd (C'). Vertices of C are the 0-dimensional faces of C. Every convex
polytope is the convex hull of its vertices (see [2, Theorem 7.2] or [9, Theorem
6.2.5]). The faces of a convex polytope C' of dimension dim C — 1 are called
facets of C'. Every proper face of C is a face of some facet of C. The boundary
Bd (C) equals the union of all facets of C.

A mapping f: C — C’ between convex polytopes is said to be affine
provided it is the restriction to C' of an affine mapping between the affine
hulls Aff(C) and Aff(C”). In 3.7.3.1, we will need the following elementary
lemma (see the proof of Lemma 3.11.(7)).

LEMMA 2.1. Let f: C — C’ be an affine mapping between two convex
polytopes and let D < C' and D' < C' be proper faces such that f(D) C D’.
If for every vertex w € C\D one has f(w) € C'\D’, then for every point
u € C\D, one has f(u) € C'\D'.

PROOF. Since C' is the convex hull of its vertices, there exist vertices
wo, ..., w, of C and there exist real numbers pug,...,u, > 0 such that
Y o<cicmti =Lland u = >, ., Hiw;. At least one of the vertices w; does
not belong to D and the corresponding coefficient is # 0, for otherwise, we
would have u € D. Therefore, there is no loss of generality in assuming that
either all vertices wy,...,w, € C\D or there is a k, 0 < k < n, such that



SOME CELLULAR SUBDIVISIONS OF SIMPLICIAL COMPLEXES 223

wo, ..., Wk € Dy Wgg1,...wy, € C\D and pgi1,...pu, > 0. In the first case,
by assumption, f(wp),..., f(w,) € C'\D’. Since C'\D' is a convex set, it
follows that f(u) = (<<, #if(wi) € C'\D'. Now consider the second case.
Let P’ be a support affine subspace for the face D’ and thus, P’NC’ = D’. For
i >k, we have f(w;) ¢ D', and thus, f(w;) ¢ P'. Put vo = 3 ocicp iy 11 =
Zk+1§i§n 1; and note that vg > 0, ¥ > 0 and vy + ;1 = 1. Consider the
points ug = > o, S f(wi), uy =341 <icpn 55 f(wi). Since f(w;) € D', for
0<i<kand f(w;) € C'\D', for k+ 1 < i < n, it follows that uy € D’ C P’
and uy € C'\D’. Also note that f(u) = vougy + r1uj. If we assume that
f(u) € D' C P, it would follow that v} = D—ll(f(u) — vuj) € P’. Since
uj € C', we would have u) € P’NC’ = D', which is a contradiction. O

2.2. Convex polytopes C in the Euclidean space R™ are compact metric
spaces (see [2, Corollary 2.9] or [9, 6.2.2]). If the geometric dimension dim C' =
n, i.e., Aff (C) = R", then the topological dimension of C also equals n.
Moreover, the geometric interior Int (C) coincides with the topological interior
of C'in R™. To see this we need the fact that C is the intersection of those
supporting halfspaces of the facets of C which contain C' (see ([1, Appendix
I1, §4, Theorem V] or [2, Theorem 4.5]). Since each facet is the intersection
of C' with the corresponding supporting hyperplane, it follows that Int (C)
is the intersection of the corresponding open halfspaces. However, these are
open sets in R™ and their number is finite. Therefore, Int (C') is an open
subset of R™, contained in C. Clearly, it is the maximal open subset of R™
contained in C, because every neighborhood of a point of Bd (C') meets R™*\C.
It follows immediately that the geometric boundary Bd (C') coincides with the
topological boundary of C' in R”™.

Every n-dimensional polytope C' in R™ is homeomorphic to the unit n-ball
B™ C R™ ([1, Appendix II, §2, Theorem X]). It follows that n-dimensional
convex polytopes C' C R™ are n-manifolds with boundary, the boundary being
Bd C. This justifies referring to n-dimensional convex polytopes in R" as to
n-dimensional cells, shorter n-cells in R™.

2.3. If V is an arbitrary vector space, then every n-dimensional linear
subspace L of V admits a unique topology, called Euclidean, which makes
it a topological vector space. To define it, one considers the standard basis
{e1,...,en} of the vector space R", e; = (1,0,...,0), ...,e, = (0,...,0,1),
and one considers a basis {v1,...,v,} of the vector space L. Let ¢: R"® — L
be the linear mapping determined by putting ¢(e;) = v;, 1 <i < n. Note that
@ is an isomorphism of vector spaces. The Euclidean topology on L is the
topology which makes ¢ a homeomorphism (see [3, Appendix I. A, Theorem
2.1]). Clearly, L endowed with the Euclidean topology is isomorphic to the
Euclidean vector space R™ as a topological vector space.
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One endows n-dimensional affine manifolds M in V with a topology, called
Euclidean. If M = v + Lj;, where v € V and L), is an n-dimensional
linear subspace of V' and ©¥: M — L is the affine isomorphism, given by
¥(x) = x —w, then the Euclidean topology on M is the topology which makes
1) a homeomorphism. Affine mappings f: M — N = w + Ly between finite-
dimensional affine manifolds are continuous (Euclidean topologies). Indeed, if
Yy M — Ly and ¢y : N — Ly are affine isomorphisms, given by 1 (z) =
x—wv, Yn(y) = y— w and ¢: Ly — L, is a linear mapping such that
p¥pr = Yy f, then continuity of f is an immediate consequence of the fact
that ¢ (just as any linear mapping between finite-dimensional vector spaces)
is continuous and s and ¥ are homeomorphisms.

Statements made in Subsection 2.2 about n-dimensional convex polytopes
in R™ are also valid for n-dimensional convex polytopes C in V and their affine
hulls Aff (C) in V. In particular, C is a closed subset of Aff (C).

2.4. Tt is well-known that for non-empty subsets A, B C V, Aff (A+B) =
Aff (A) + Aff (B) and Conv (A + B) = Conv (4) + Conv (B) (for Conv see
[9, Theorem 3.2.6]; a proof for Aff is obtained from the proof of [9, Theorem
3.1.4] by obvious modifications). An immediate consequence is the fact that
the sum of two affine manifolds, two convex sets or two convex polytopes in
V is an affine manifold, a convex set or a convex polytope (see [9, Theorem
6.2.7]).

If {a;]1 < i <k} and {b;|]1 < j <1} are the sets of vertices of convex
polytopes A and B in V, then A+ B = Conv ({a; +b;]1 <i<k,1<j <I})
(see [9, Theorem 6.2.7]). It follows that every vertex of the polytope A+ B is
of the form a; + b; (see [2, Theorem 7.2]). In general, the converse does not
hold, i.e., some of the points a; + b; may not be vertices of A + B. E.g., if
A=10,1 CR, B=10,2] CR, then the points 1 +0 =1 and 0+ 2 = 2 are
not vertices of A+ B = [0, 3]. However, the converse does hold if the affine
hulls of the two convex polytopes are affinely independent (see Subsections
2.5 and 2.6).

2.5. Two affine manifolds M = v + Lj; and N = w + Ly are affinely
independent if the linear subspaces Lj; and Ly of V are linearly independent,
ie., Ly N Ly = 0. In that case M + N = (v + w) + (La + Ly) and thus,
LM+N = Ly + Ly and dlm(M + N) = dimLM+N = dlm(LM + LN) =
dim Ly + dim Ly = dim M + dim N. Moreover, every point z € M + N
admits unique points x € M, y € N such that z = z +y. Indeed, if z,2’ € M
andy,y’ € N, then z = z+y = z'+y’ implies z—x’' = 3/ —y. Since x—2’ € Ly,
y —y € Ly, it follows that z — 2’ =9’ —y and thus, z — 2’ =0 =y —3y’. We
refer to the functions ppy = M + N — M and py = M + N — N, given by
pu(z +y) = x and py(z + y) = y as to canonical projections. It is readily
verified that pps and py are affine mappings. Therefore, they are continuous.
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2.6. The following lemma plays an important role in the paper.

LEMMA 2.2. Let A and B be convex polytopes in a vector space V. If their
affine hulls Aff (A) and Aff (B) are affinely independent, then the following
assertions hold:

(1) dim (A + B) = dim A+ dim B.

(it) The faces of A+ B are convex polytopes of the form A’ + B’, where
A" < A and B’ < B.

(#9i) The vertices of A+ B are the points a; + b;, where a; ranges over the
set of vertices of A and b; ranges over the set of vertices of B.

(i) If A/, A" C A and B',B" C B, then (A’ + B )Yn (A" +B") = (A'n
A//) + (B/ m B//)'

PROOF. (i). Put M = Aff (4) and N = Aff (B) and note that Aff (A +
B) = Aff (A)+Aff (B) = M+ N. Therefore, dim(A+ B) = dim Aff (A4 B) =
dim(M+N). Asseenin 2.5, dim(M+N) = dim M +dim N = dim A+dim B.

(). If z € (A + B')N (A" + B"), then there are points o’ € A" C A,
Ve B CB,d" € A" CA, bV € B”C Bsuchthat z=d +b =a”" +b".
Since a’,a” € A C M and V',V € B C N, it follows that ' = a” € A’ N A"
and V' = 0" € B'NB” (see 2.5) and thus, z € (A’'NA")+ (B'NB"). The
converse implication is obvious.

(7i7) is an immediate consequence of (i7). To prove (ii), consider the
following statement.

(i4)". The facets of A+ B are convex polytopes of the form A’ + B or
A+ B’, where A’ ranges over the facets of A and B’ ranges over the facets of
B.

(19) = (#i). If A" is a facet of A, then Aff (A’) C Aff (A) and thus,
Aff (A’) and Aff (B) are affinely independent. This enables us to apply (i7)’
to A’ + B and conclude that, for facets A” of A and B’ of B, the faces A” + B
and A’ + B’ are facets of A’ + B. Analogously, applying (i)’ to A+ B’, one
concludes that, for facets A’ of A and B” of B’, the faces A’ + B’ and A+ B”
are facets of A + B’. Since descending chains of facets yield all faces of a
convex polytope, one obtains (ii).

Proof of (ii)'. Let M = v+ Ly, N =w+ Ly, wherev € M, w € N
and L, Ly are linear subspaces of V' such that Ly; N Ly = 0. Consider the
affine polytopes A* = A —v C Ly and B* = B — w C Ly and note that
A* 4+ B* = A+ B — (v+ w). Since translation preserves the face structure
of polytopes, it suffices to prove (i7)" for A* + B*. This shows that there
is no loss of generality in assuming from the beginning that Aff (4) = Ly
and Aff (B) = Ly are linear subspaces of V, dim Ly; = m, dim Ly = n and
Ly N Ly = 0. Choosing a basis {v1,...,vn} of Ly and a basis {w1,...,w,}
of Ly, one obtains linear isomorphisms ¢p;: R™ — Ljs and pn: R® — Ly
as in 2.3. Clearly, these isomorphisms induce an isomorphism ¢: R™*" —
Ly + Ly. Since linear isomorphisms preserve the face structure of convex
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polytopes, it suffices to prove (i7)" in the case when A C R™ x 0, B C 0 x R™,
dimA = m and dim B = n. Note that in that case, for arbitrary subsets
DCRM x0and ECOxR? onehas D+ E =D x ECR™" =R™ xR,
because (d,0) + (0,e) = (d,e), for d € R™, e € R™. In particular, A+ B =
A x B CR™™,

Assume that A’ < A is a facet of 4, i.e., an (m —1)-dimensional face of A.
Let H C R™ be the supporting halfspace of A, whose supporting hyperplane
S C H intersect A in the facet A’. Then K = H x R* C R™*" ig a supporting
halfspace of A x B, whose supporting hyperplane T' = S x R"™ intersects A x B
intheset TN(AXx B)=(SxR")N(Ax B)=A"x B, because S x A = A".
Since dim(A’ x B) = m — 1+ n, we see that A’ + B = A’ x B is a facet of
A+ B = A x B. In the same way one concludes that A + B’ is a facet of
A + B, whenever B’ is a facet of B. It remains to show that in this way we
have obtained all the facets of A + B.

Recall that the union of all facets A’ of A coincides with the geometric
boundary Bd (A) and thus, the union | ,,(4’+B) = (U A")+B =Bd (A4)+
B. Similarly, |Jz/(A+ B’) = A+ Bd (B). It follows that the union of all the
facets we have just constructed equals (Bd (A) + B) U (A + (Bd(B)). For the
topological boundary, the following formula is easily proved: (Bd(A) x B)U
(A x Bd(B)) = Bd(A x B). It suffices to note that, for open sets Uy in
R™ and Uy in R7?, the set Uy x Uy is open in R™ x R® = R™*", Since
D+FE = DxE, the boundary formula can be written in the form Bd (A+B) =
(Bd (A)+ B)U(A+ (Bd (B)). However, for convex polytopes, the topological
boundary coincides with the geometric boundary. Consequently, interpreting
Bd in the boundary formula as the geometric boundary, we conclude that the
facets of A+ B, which we have constructed above, cover the whole geometric
boundary of A + B and thus, there can be no other facets of A + B. O

2.7. In the present paper we find it convenient to use the notion of a
direct sum M @ N of two affine manifolds in V' and the notion of a direct sum
A @ B of two convex polytopes in V. We define M & N only when the affine
manifolds M and N intersect in a single point w, which implies that they are
affinely independent. By definition, M & N = M + N —w. Note that the point
w is completely determined by M and N and we call it the reference point of
the direct sum M &N (in [7] we called it base-point). Being the translate of the
affine manifold M + N, the direct sum M @ N is also an affine manifold. By
Subsection 2.5, dim(M & N) = dim(M + N) = dim M + dim N. Since M and
N are affinely independent, the canonical projections ppy = M &N — M and
pNy =M @ N — N are well-defined affine, hence also continuous mappings.

Analogously, if A, B are convex polytopes in V such that Aff (A)NAff (B)
is a single point w € V, we define (see [9, Definition 6.4.3]) A & B by the
formula

(2.1) AeB=A+B-w.
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We call w the reference point of A @ B.

FIGURE 1. Sum A + B and direct sum A ® B

Being a translate of the convex polytope A + B, the direct sum A @ B is
a convex polytope. Moreover, by Lemma 2.2, dim(A & B) = dim(A + B) =
dim A+dim B, the faces of A® B are convex polytopes of the form A"+ B’ —w,
where A’ < A and B’ < B. The vertices of A @ B are the points a; + b; — w,
where a; ranges over the set of vertices of A and b; ranges over the set of
vertices of B. If A/, A” C A and B’,B” C B, then (A’ 4+ B'—w)n (A" +
B" —w) = (AANA")+ (B'NB"”) —w. In general, for faces A’ < A and
B’ < B, the direct sum A’ @ B’ is not defined, because Aff(A’) N Aff(B’) can
be empty. Clearly, A’ & B’ is defined if and only if Aff(A") N Aff(B’) # (.
In that case Aff(A") N Aff(B") = {w} and A’ ® B’ = A’ + B’ — w. Note
that the direct sum A & B is invariant with respect to translations, because
Aff(A) N Aff(B) = {w} implies Aff(A +¢) N Aff(B +t) = {w + t} and thus,
(A+t)®(B+1t) = (A+B+2t)— (w+t) = A+ B—w+t = (A®B)+t. This
is not the case with the ordinary sum, because, (A+t)+ (B+t) # (A+ B) +t,
for ¢ # 0.

28. If M ® N and M’ & N’ are direct sums of affine manifolds with
reference points w and w’, respectively, then mappings f: M — M’ and
g: N — N’ induce a mapping f & g: M & N — M’ @ N’. By definition, if
z=r+y—weM®N,z€M,yeN,then (f®g)(z) = f(z)+g(y) —w"
A straightforward verification shows that, for affine mappings f and g, the
mapping f@g is also an affine mapping. Moreover, (f'®¢')(f®g) = (f'fDg'9)
and 1@ 1 = 1. Consequently, if f and g are affine isomorphisms, then so is
f @ g. For direct sums M & N with reference point w and for points x € M
and y € NV, it is sometimes convenient to denote z+y—w by x®y. Then fBg
can be defined by the simple formula (f @ g)(z ®y) = f(z) ® g(y). However,
one can use this shorter notation only when it is clear about which direct sum
M @& N and M’ & N’ we speak, because for arbitrary points x,y € V, the set
{z} ® {y} is defined only when Aff{z} N Aff{y} = {z} N {y} # 0 and thus,
T =y.

Since a convex polytope is the convex hull of the set of its vertices, for
convex polytopes A® B with reference point w and A’@® B’ with reference point
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w’ and for affine mappings f: Aff (4) — Aff (4’) and g: Aff (B) — Aff (B'),
the affine mapping f@g: Aff (A)® Aff (B) — Aff (A")® Aff (B’) is completely
determined by its values at the vertices of a; + b; — w of A ® B, i.e., by the
values f(a;) + g(b;) — w'.

2.9. We now endow the vector space V' with the topology generated by
the Euclidean topologies of the finite-dimensional affine manifolds M in V
and call this topology the finite topology of V. By definition, a subset H C V/
is closed in V provided H N M is closed in M (Euclidean topology), for every
finite-dimensional affine manifold M in V (see [3, Appendix I. A, Definition
4.2]). Note that affine manifolds in R™ are closed subsets of R™. Therefore,
affine manifolds in finite-dimensional affine manifolds M in V are closed in M
(Euclidean topology). Since the intersection M N N of an affine manifold M
in V with a finite-dimensional affine manifold N in V is a finite-dimensional
affine manifold in N, it follows that M N N is closed in N, which proves that
every affine manifold M in V is closed in V. Since every convex polytope C
is closed in its affine hull Aff (C), it follows that C' is also closed in V. It is
known that V' endowed with the finite topology as well as all of its subspaces
are (Hausdorff) paracompact spaces. In general, V' is not a topological vector
space (see [3, Appendix I. A, 4.3]).

2.10. In this paper by a cellular complex in a vector space V' we mean
a collection L of convex polytopes ¢ C V, called cells of L, such that all
faces ¢’ of a cell ¢ € L belong to L and any two cells ¢/,c¢” € L intersect
in a common (possibly empty) face of ¢’ and ¢”’. We allow L to be infinite,
but we require that, for any convex polytope C C V, there are only finitely
many different intersections C' N ¢, when ¢ ranges over L. By a morphism of
cellular complexes ¥: L — N we mean a sequence of functions ¥ : Ly — Ng,
k € {0,1,...}, between the sets of k-cells Ly, of L and Ny, of N, which preserve
faces, i.e., if ¢ € Ly, ¢ € Ly and ¢’ < ¢, then ¥/ (¢) < ¥g(c). An isomorphism
of cellular complexes is a morphism : L — N, which admits an inverse, i.e.,
there is a morphism of cellular complexes ¢: N — L such that ¢, = id and
Vrpr = id, for every k.

The carrier |L| of a cellular complex L in V is the union of all cells
belonging to L. The finite topology on V induces a topology on |L|, called
the finite topology of |L|. It coincides with the CW-topology of |L|, i.e.,
the topology generated by the Euclidean topologies of the cells ¢ € L, which
implies that our cellular complexes are special cases of CW-complexes. Indeed,
let H C |L| be a set closed in the CW-topology of |L|, i.e., let H N¢ be closed
in ¢, for every ¢ € L. To show that H is also closed in the finite topology of | L],
it suffices to show that HNF is closed in F', for every finite-dimensional affine
manifold F' of V', endowed with the Euclidean topology. Since the topology
of R™ is generated by the topologies of convex polytopes contained in R™, the
topology of F' is generated by the topologies of convex polytopes contained in
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F. Therefore, it suffices to show that H N C is closed in C, for every convex
polytope C C F. By the definition of a cellular complex, there are finitely
many cells ¢1,...,¢, € L such that C = (CNep)U...U(CNeg) and thus,
HNnC=HNCNea)U...U(HNCNc¢g). By assumption, H N ¢; is closed
in ¢; and thus, HNC Ng¢; is closed in C N¢;. Since ¢; is closed in V' (finite
topology), it follows that C'N¢; is closed in C, hence also HNC Ne¢; is closed
in C. However, H N C is a finite union of sets of the form H N C' N¢; and
therefore, H N C is closed in C. Conversely, sets H C |L|, closed in the finite
topology of |L| are closed in the CW-topology of |L|, because for E = Aff (¢),
the set H N E is closed in E and thus, H Nc is closed in c.

A cellular complex L in V is a subdivision of a cellular complex K provided
every cell ¢ € L is contained in a cell d € K and every cell d € K is the union
of a collection of cells ¢ € L. By our definition of a cellular complex, the
collection of all cells ¢ € L contained in a cell d € K is a finite cellular
complex L(d) with carrier |L(d)| = d (we use the same notation d for the cell
d, for the complex consisting of d and its faces, as well as for its carrier |d|).

REMARK 2.3. It appears that complexes consisting of convex polytopes
are not used very often in recent literature. However, in older literature they
were standard objects (see e.g., [1, Chapter III, §1]).

Simplicial complexes in V' are special cases of cellular complexes, whose n-
cells o, called simplices, are convex hulls of sets consisting of n+1 affinely inde-
pendent points vy, . . ., v, of V, called vertices of o, n € {0,1,...}. Throughout
this paper, for simplices in V', we use the standard notation o = [vg, ..., v,].
Note that the order of the vertices is irrelevant.

Every abstract simplicial complex K admits a geometric realization in a
vector space V as a simplicial complex L in V. It suffices to take for V' a vector
space, whose basis {a;} admits a bijection onto the set {v;} of all vertices of

K. With every abstract simplex {v;,,...,v; } of K one then associates the
polytope (simplex) [ai,,-..,a;,] in V. It is readily seen that the simplices
¢ = laiy,- - ., a;,] form a simplicial complex L, the geometric realization of the

complex K. Note that, for any convex polytope C C V', there are only finitely
many different intersections C' N ¢, when ¢ ranges over L.

3. THE FIRST CANONICAL SUBDIVISION L(K)

3.1. To construct the cellular subdivision L(K) of a simplicial complex
K, we assume that K is contained in a vector space V. We first construct
the cellular subdivisions L(o) of o, for all simplices 0 € K. If dimo = n,
it suffices to define the n-cells of L(c). Then L(o) consists of these n-cells
and of all of their faces (including the empty face). The construction of L(o)
will be done in such a way that the intersections of its cells with any proper
face { < o coincides with L(¢). Therefore, the union of all L(c), when o
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ranges over K, is a cellular subdivision of K. By definition, this is the desired
subdivision L(K) of K.

Among the n-cells of L(o), where dimo = n, there is one, contained in
the interior Int(o) of o. This n-cell is actually an n-simplex, which we call
the central n-simplex of o and we denote it by ¢?. All other n-cells of L(o)
meet the boundary Bd (o) (also denoted by 0c) and are called peripheral
n-cells of o. If vg,...,v, are the vertices of o (repetition is not allowed),
we use the notation o = [vg,...,v,]. Each peripheral n-cell of o is deter-
mined by a proper face 7 < o, e, T = [viy,...,V;, ]|, where 0 < k < n,
{io,...,ig} C {0,...,n}, o < ... < ig, and by a permutation 7 of the
complement {jit1,...,4n} = {0,...,n}\{i0,- . yix}, Jrr1 < ... < jn. The
corresponding n-cell is denoted by c]. The central n-simplex ¢’ can also be
viewed as an n-cell of the form c¢], where 7 = ¢ and 7 is the empty permu-
tation (this explains the notation ¢?). Arguments for peripheral n-cells given
throughout this paper readily adapt to the central simplex and are omitted
in most cases.

3.2. To define the central n-simplex ¢” of o = [vg, ..., vy], we consider
the barycenter b7 of o,
(3.1) b7 = A5 2o vi

and the homothetic transformation x?: ¢ — ¢ with center b° and ratio %, ie.,

we put X7 (z) — b = 2(x —b7), for z € 0. By definition, ¢ = x7 (o). Clearly,

¢’ is the n-dimensional simplex [wg, ..., wZ] with vertices wf = x7(v;), 0 <
i <mn. Since w¢ € Int(c), it follows that ¢” C Int(o). In situations where it is
clear that we are performing a construction within a simplex o = [vg, ..., vp],
we will often be using the convenient (shorter) notation %" for b7, %" for
¢ and w)" for w?, where the upper index o is replaced by the indices of

the vertices of . Consequently,

(3.2) wf = wd " = L(v; + %) = Lo, + m ;zg vj, 0<i<m,
(3.3) & =" =i wd ] = W, Wl

Note that b = vg = w) and ® = [w]]. Also note that the order of the
upper indices in 4% wd ™ and %" is irrelevant. The convenient notation
is also used in the case of a face 7 = v, ..., v;,] of 0 = [vo, ..., v,]. E.g., the

corresponding central k-simplex ¢” of 7 will also be denoted by ¢,

REMARK 3.1. It is useful to keep in mind that w]* = wf,l"'s/ if and
only if {r,...,s} ={r',...,s'} and i = ¢'. Indeed, w]* € Int[v,,...,vs] and
w;}/'“s/ € Int[v,r, ..., vs]. Therefore, w5 = wf,l"'s/ implies that the interiors
of the faces [v,,...,vs] and [v,,...,vs] of the simplex [vg,...,v,] intersect.
This is possible only if the two faces agree, i.e., [vr,...,vs5] = [Upr, ..., Vs]
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and thus, {r,...,s} = {r',...,s'}. However, by (3.2), 0 = w}* —w};® =
%(vi — vy) implies v; = vy and thus, i = 7.

For a point u € o = [vg,...,vp], let Ay = Ai(u), 0 < i < n, denote
the barycentric coordinates of u with respect to the vertices vy, ..., v, of o
(shorter, with respect to o). Then u € o belongs to ¢ if and only if

(3.4) Aos- -5 A (W) > ety -

Indeed, let p; = u;(u), 0 < i < n, be the barycentric coordinates of u € ¢+

with respect to the vertices wd ", ..., w% " of ¢?. Substituting in the equality

(3:5) w= 30100 Aoy = iy el "
the values of w?" from (3.2), one concludes that
(3.6) M=+ g, 0<j <n.

Now formula (3.4) is a consequence of the fact that p; > 0. Conversely,
(3.4) implies u € ”+", because the numbers y;, determined by (3.6), have

the property that u; > 0, ijg 1 = 1 and thus, u; are the barycentric
coordinates of u with respect to wg", ..., wdm.

3.3. By definition, in L[vg] there are no peripheral O-cells. In L[vg, v1]
there are two peripheral 1-cells, i.e., the 1-simplices [w(, w3!] and [wi, w{!]. In
L[vg, v1,v2] there are nine peripheral 2-cells, i.e., the six 2-simplices meeting

the boundary of [vg,v1,v2] and the three parallelograms, shown in Figure 2.

2

Wo = V2
2 12
wg w3
12
w§
02 12
w
0 012 012 Wi
Wo w1
01 01 1
w8 =0 Wo w1 w] = V1

FIGURE 2. The decomposition L[vg, v, vs]

In general, the peripheral n-cell ¢ of ¢ is determined by the central k-
simplex ¢” of the face 7 of o and by an (n—k)-simplex d7 C 0. In what follows
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we will describe dZ and ¢ in the case when 7 = [vg,...,vx], 0 < k < n, and
therefore, 7 is a permutation of the set {k + 1,...,n}. In all other cases d~
and ¢ are obtained by adequately relabelling the vertices of 0. We will also
be using the convenient notation d2-* for d7 and ¥ for cT.

By definition, d7 = d%* is the (n — k)-simplex

(3.7) 4Ok = [ul-*, W0+ wg.,.lm(kﬂ)mw(kﬂ')7 _

; 0.1,

S, Wh

Note that wy #0700 — 0en pecanse {m(k + 1),...,7(n)} = {k +
1,...,n}.

The points listed in (3.7) are affinely independent and belong to . There-
fore, d%* is an (n — k)-simplex contained in o. Let us show that even the
points in the larger list

(3.8) W,k g I QA0

are affinely independent. Indeed, consider the affine hulls Sy, = Aff{vo, ..., v;}
and Skpy; = Aff{vo,..., 0%, Vx(kt1)s - Vn(hti) ), 1 < @ < n — k. Since
Sk C Skt1 € ... C S, = Aff(0) and the points wd-* ... wlF are
affinely independent and belong to the simplex [vg,...,vg] € Sk, it suffices

to show that wg"'kﬂ(kﬂ)'”ﬂ(kﬂ)

0...km(k+1)...7m(k+1i)

€ Sk4i\Skti-1, for 1 < i < n—k. In-

deed, wy € (O--kr(kt1)..m(k+9) Jieg in the interior of the sim-
plex [Vo, .., Uk, Un(kt1)5 - - - » Vn(kti)] € Skt and therefore, does not belong to
the proper face [vo, ..., Uk, Ur(kt1), - - - » Un(kti—1)] Of that simplex. Since that

face equals 0 N Sk4;—1, it follows that wg'”kﬂ(kﬂ)”‘ﬁ(kﬂ) ¢ Skti-1-

Note that, for ¢ = [vg,v1] and 7 = [vg], the permutation 7: {1} — {1}
is the identity ¢ and d°' = [wl,wd!]. If o = [vg,v1,v2] and T = [vg, v1], then
m: {2} — {2} is the identity ¢ and d%'? = [w§', wi'?]. If o = [vg, v1, v] and
7 = [vp], there are two permutations of {1,2}, the identity permutation ¢ and
the permutation &, which interchanges 1 and 2. Accordingly, one obtains two

2-simplices, d*'? = [w], wit, wd?] and d9'? = [w], w§?, wi*?].

For 7 = [vg,...,vx], 0 < k < n, we define the peripheral n-cell ¢l by the
formula
(3.9) cr=c ®d.

Note that the intersection of S = Aff(¢”) and T}, = Aff(dZ) is the point w] =
wd ¥, because the points listed in (3.8) are affinely independent. Therefore,
the direct sum c” @ d7, is well-defined and has w{ for its reference point. It is
an n-dimensional convex polytope and

(3.10) ¢ ed=c +d. —w.
Note that of the nine peripheral 2-cells of the decomposition L[uvg, vy, v2]

(see Figure 2), formula (3.7) describes only three, i.e., for 7 = [vg], the tri-

angles with vertices w3, wi!, wd'? and wg, wy?, wi'? and for T = [vg, v1], the

parallelogram with vertices wi!, w9, w32, w92, To obtain the triangles with
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vertices w1, wiZ wf? and wi, wfl, wf'? and the parallelogram with vertices

wiZ wi? w2 wit? we must use the faces 7 = [v1] and T = [v1, 2], respec-
tively. To obtain the remaining three peripheral 2-cells of L[vg,v1,vs], we
must use 7 = [vg] and T = [vg, v2]. Let us illustrate, in the case of the triangle
[w], wi?, w¥?], how it is obtained using formula (3.7) and the relabelling of
the vertices of [vg, v1, v2], which sends the indices 0, 1,2 to 1,2, 0, respectively.
By (3.7), d = [w], w§!, w§*?], where ¢ is the identity permutation on the set
{1,2}. After the relabelling, to ¢ corresponds the identity permutation x on
{0,2} and we obtain dl = [wi, wi?, w1?].

The following lemma lists the vertices of ¢ and describes the faces of cI.

LEMMA 3.2. If o = [vo,..., 0], T = [vo,..., 0], 0 < k < n, and dL is
the simplex defined by (3.7), then the vertices of ¢ = c¢I @ dI are the points
(3.11)

g Ll L wk

wg...kﬂ'(k-i-l) o w?...kﬂ'(k-‘rl) o wz...kﬂ'(k-i-l)
wgkﬂ'(kJrl)ﬂ'(kJrz) w;)kﬂ'(kJrl)w(kJrz) wgkﬂ'(kJrl)ﬂ'(kJr’L)
i e i

The faces of c. are convex hulls of the sets of vertices lying at the crossings
of a collection of rows with a collection of columns of (3.11). The n-cell c¥. is
contained in o.

Note that the last row of (3.11) consists of the points
w]Q...k?r(k+1)7r(k+2)...7r(n) _ ’U.);)n

We will refer to (3.11) as to the wvertexr scheme of ¢Z. The crossings of a
collection of rows with a collection of columns of (3.11) form a subscheme of
the vertex scheme of ¢]. Such a subscheme determines a face of ¢ and we
call it the vertex scheme of the face.

ProOOF OF LEMMA 3.2. Since w?“‘k, 0 < j < k, are the vertices of ¢”

and wg"'kﬂ(kﬂ)'”ﬂ(kﬂ), 0 <i < n—k, are the vertices of d7 (for i = 0, one

interprets m(k + 1)...m(k + ) as empty), (3.9) implies that the vertices of ¢
are the points

(3.12) wjo-"'k + wg'”kw(kﬂ)”‘ﬁ(kﬂ) — wg“'k.
Now note that (3.2) implies
(3.13) w§ " —wf" = 3 (v; — ), 0<j < m.
Analogously,
(3.14)
Y T
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and we see that (3.12) coincides with

0...kmw(k+1)...7(k+i)
(3.15) W’ ,

Note that the point w?"'kﬂ(k+1)"'ﬂ(k+i) lies at the crossing of the i-th row and
the j-th column of (3.11). To obtain the vertices of a face of ¢ one considers
the vertices of a face of ¥ %, which are points wjo-'“k7 for appropriate indices
0 < j1,...,J¢ < k, and one considers the vertices of a face of d%-* which

are points wg'”kﬂ(kﬂ)”‘ﬂ(kﬂ), for appropriate indices 0 < iy,...,%, < n — k.
Then the points w?k + wg...kﬂ(k—i-l)...ﬂ'(k-i-z) . wgk _ w?...kﬂ(k+1)...w(k+z) at
the crossings of the rows determined by i1, ..., i, and the columns determined
by ji,...,jq are the the vertices of the given face of c]. Finally, since every
convex polytope is the convex hull of its vertices and the points in (3.11)
belong to o, one concludes that c. C o. |

REMARK 3.3. In formula (3.7) the index 0 plays a special role and the
notation for the (n — k)-simplex d7 should really include that index, i.e., one
should be using the notation, say dj,. Then (3.10) should be written as
™ ®dl, =c +di, —wd*. Choosing another index j € {0,...,k} would
yield another (n — k)-simplex d7 = [w?"'k,w?"'kﬂ(k+1), . ,w?“‘”] and the
analogue of (3.10) should be written as ¢™ @ df, = ¢™ +dJ, —w)*. The fact

that (3.12) and (3.15) coincide show that d7. = dg, + (w9* — wf~*) and

thus, d7 is the translate of dj,. by the vector w]O-"'k — wd ¥, which connects
two points of Aff (c7). Therefore, Aff (¢") and Aff (d7,) intersect in the single
point wd* + (w?'"k —wy k) = w?“‘k, which proves that the direct sum

c” @ dj; is well defined and has w?‘“k for its reference point. Moreover,
cedi =c +di, — wJQ"'k =c +dy, —w)* = ¢ @di . This shows
that the choice of the index j does not affect the definition of the n-cell ¢
and therefore, there is no need for including that index in the notation for
cr. Note that the vertices of ¢™ form the first row of the vertex scheme (3.11)
and the vertices of d7 form the j-th column of that scheme. Their crossing
wjof“k is the reference point of ¢” ©d7 . To simplify notation we will generally
continue to denote dj,. by d’.

T...8

3.4. Every vertex wi* of ¢ (in fact, every point of o) belongs to the
interior of a unique face of 0. We refer to the dimension of that face as to the
rank of the vertex wy~*. By (3.2), wj* = 1 (v + b"™*) lies in the interior of
the face [vy,...,vs] of o and thus, the rank of w}* equals dim[v,,...,vs] =

card{r,...,s} — 1. Note that the vertices w?'"k in the 0-th row of (3.11)

are of rank k and the vertices w?"'kﬂ(k+1)"'ﬂ(k+i) in the i-th row of (3.11)
are of rank k + i. Clearly, the first summand ¢” of ¢" @ d} = ¢™ & d], is
the simplex spanned by the vertices of ¢ of minimal rank and is therefore,

completely determined by c7. The vertices of the second summand d7 have
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a natural linear order given by their ranks, which increase by 1 as we descend
along the j-th column. Since (3.12) and (3.15) coincide, the translation by
wj —wf is an affine isomorphism d7. = dj, — d7 which preserves the ranks,

O k() B+ of rank k + i to the vertex

because it sends the vertex wy
w?'”kﬂ(kﬂ)”‘ﬂ(kﬂ), whose rank is also k + 4. Consequently, the translation by
wj — wf preserves the ordering of the vertices of d7. = dj, and d7,.

If a is a face of an n-cell ¢f = ¢ & d} € L(o), one cannot conclude
that a = ¢4 @ dg, where ¢, < ¢7, d, < d~, because Aff (¢,) N Aff (d,) could
be empty and the direct sum ¢, ® d, would not be defined. However, the
following lemma holds.

LEMMA 3.4. Let ¢ = ¢™ @ dl be an n-cell from L(c) and let a < ¢ be a
face of ¢, whose vertex scheme is the following subscheme of the vertex scheme

(3.11) of c.
(3.16)
0...km(k-+1)...w(k+1) 0...km(k-+1)...w(k+1) 0...km(k+1)...m(k+1)
wjkkl ki wjlkkl i) szkkl ket
w_? w(k+1)..w(k+i1) w_?l w(k+1)...w(k+i1) w]OS 7 (k+1)...m(k+i1)
w?mkw(kJrl)...ﬂ(kJriT) wglmkw(kJrl)...ﬂ(kJriT) o u};);.kﬂ'(l»chl)“‘7r(k+i,.)7

where 0 <i=ig<i1 <...<i,<n—kand0<j=jo<i1<...<js <k.
If ¢, and d, are simplices, whose vertex schemes are the first row and the
first column of (3.16), respectively, then ¢, and d, are faces of a such that the
direct sum decomposition a = ¢, ® dq = cq + dg — w is well defined and the
corresponding reference point w = w?"'kﬂ(k+1)"'ﬂ(k+l), lying at the crossing of
the first row with the first column of (3.16), is a vertex of both simplices ¢,
and d,. The set of vertices of ¢, coincides with the set of vertices of the face
a having minimal rank. Therefore, c, is completely determined by a and does

: — [0k 0.k 0.k ;
not depend on c. The simplex c'q = [wj %, wi:%, ... w; "] is a face of 7
and translation by wg kr(k+1)..m(ktd) wg 1s a bijection between the vertices

w(O)mkw(kJrl)...ﬂ'(kJri) o U}g)— )

of o and cq and thus, cq = o + The simplex

d/a _ [wg...kw(k-l—l)...ﬂ(k—i-i)’ wg...kﬂ(k-l—l)...ﬂ(k—i-il), o ,wg...kﬂ(k—i-l)...ﬂ(k-i-ir)] is a
face of d. and a = ¢/, + d'o — wi. Translation by w] — wf is a bijection
between the wvertices of d'q and d, and thus, d, = d', + wl — wg. This

translation preserves the ranks of the vertices of d', and thus, it is an order
preserving isomorphism between the simplices d', and d,. Analogously, if d} is
the face of a, whose vertex scheme is the l-th column of (3.16), then translation
by wi — w7 is an order preserving isomorphism between the simplices d, and
dl.

ProOOF. All the assertions of this lemma are immediate consequences
of the definitions and facts given in Subsections 2.7, 3.1, 3.2 and 3.3.
They are here stated only for easier referencing. The vertices of ¢, lie
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in the first row of (3.16) and have rank k + ¢, while all other vertices
of a have ranks > k + i. Therefore, ¢, is completely determined by a.

The vertex scheme w9 %% . w9 % of ¢, is a subscheme of the ver-
Js
0...km(k+1)...m(k+i)

J J1
tex scheme w(...w] of ¢ and thus, ¢/, < ¢7. Since wy
wf = w?l'”k”(kﬂ)‘”ﬁ(kﬂ) — wj,, translation by wg‘”kﬂ(kﬂ):”ﬂ(kﬂ) — w{ maps
the vertex w%‘“k of ¢/, to the vertex w?i"kﬂ(kﬂ)mw(kﬂ) of ¢, and thus,
Co = o+ wg"'kﬂ(kﬂ)“'ﬂkﬂ) — w]. Analogously, the vertex scheme of
d', is a subscheme of the vertex scheme of dZ and thus, d';, < dI. Since

wi —wh = WOkt (btie) wg”'kﬂ(kJrl)‘

J
maps the vertex wy TRk op g

”W(kJrit), translation by w] —w{

to the vertex > Frk+L-m(ktic)
j
of d, and thus, d, = d' + w}] — w§. Both vertices wg"'kﬂ(kﬂ)'”ﬂ(kﬂ‘) and

w?"'kﬂ(k+1)"'ﬂ(k+l‘) have the same rank k + i;, which shows that this transla-
tion is an order preserving isomorphism between the simplices d’, and d,. A
similar argument proves the assertion concerning the translation by wj —w7.
O

REMARK 3.5. If 0 = [vg, ..., v,] € K, there exists a bijection between the
set of n-cells of L(o) and the elements of the partially ordered set C[n], which
consists of chains of nonempty subsets of the set {0, ..., n}, ordered by proper
inclusion C and having two additional properties. The adjacent links of a
chain are sets whose cardinality differs by 1 and the terminal link is the subset
{0,...,n}. In that sense L(o) can be considered a geometric representation
of C[n]. E.g., C[2] consists of ten chains ending with {0,1,2}. They are
the 1-link chain: {0,1,2}, three 2-link chains: {0,1} < {0,1,2}, {0,2} C
{0,1,2}, {1,2} C {0,1,2} and six 3-link chains: {0} < {0,1} C {0,1,2},
{0} € {0,2} € {0,1,2}, {1} c {0,1} C {0,1,2}, {1} C {1,2} C {0,1,2},
{2} € {0,2) € {0,1,2}, {2} C {1,2} C {0,1,2}.

3.5. The main result in this section is Theorem 3.6. Its lengthy proof is
carried out in a number of steps.

THEOREM 3.6. For any n-simplex o of a simplicial complex K, the n-
cells ¢ described in Subsections 3.2 and 3.3, together with their faces, form a
cellular subdivision L(o) of o. If { < o is a proper face of o, then L(¢) C L(o)
and

(3.17) L(()=¢NL(oc)={¢CNc|ce L(o)}.
The union L(K) =,cx L(0) is a cellular subdivision of K.

We will first prove that L(o) is a cellular complex. For this we need to
prove that the intersection of any two cells ¢1,co € L(o) is a common face

(possibly empty) of these cells and that the union of all cells ¢ € L(o) equals
o. If dim o = n, it suffices to prove the first assertion in the special case when
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¢1, co are n-dimensional cells of L(o). Indeed, if ¢1, co are arbitrary cells from
L(o), then there exist n-dimensional cells ¢}, ¢, € L(o) such that ¢; < ¢} and
c2 < 4. By the assertion in the special case, the intersection ¢j N ¢ is a cell
¢/, which is a common face of ¢} and ¢}. Since ¢; = ¢1 N ¢} and c2 = ca N ),
we see that ¢; Neg =1 N () Nehy) Nea = e N’ Neg. The cells ¢p, ¢ are faces
of ¢} and thus, their intersection ¢; N¢’ is also a face of ¢/. Analogously, caN¢’
is a face of ¢’. Consequently, the intersection ¢; Nea = (c1 Ne’) N (¢ Neg)
is a face of ¢/. Since ¢ < ¢} € L(o), it follows that ¢ € L(o) and thus, also
c1Neg € L(o). Clearly, to prove the second assertion, it suffices to prove that
o is the union of all n-cells from L(o).

3.6. Before considering the intersection ¢ N c:/ of two different n-cells
from L(o), we will prove the following lemma concerning the intersection
drndy,.

LEMMA 3.7. Let o = [vo,...,vn], let T = [vg,...,0k], 0 < k < n, and let
m, ' be permutations of the set {k+1,...,n}. Then d_.NdL, is a common face
of both simplices d, and d,. More precisely, if ri <ry <...<r,=n—k
are all integers in the set {1,...,n —k}, for which

(3.18) w{k+1,.. k4+ry=m{k+1,.. . k+nr}
then
(3.19) dzndy, =dz,.,
where
(3.20)
0, = [k, Qe m i) 0 k(b )m(hebra)om(bra) | 0.n]

Proor. First note that the vertices of d7 _, are contained in d N d7,,
because by (3.18), {w(k +1),...,7(k + )} = {7 (E+1),...,7"(k + r;)}.
Since d7. Nd7, is convex, it follows that

(3.21) dr., Cd%*ndlk,

To prove the opposite inclusion, consider the n-dimensional affine man-
ifold S, = Aff{vg,...,vn}. Moreover, for any pair of integers j,I €
{1,...,n — k}, consider the (n — 1)-dimensional affine manifold S;; C S,,
spanned by the points v;, i € {0,...,n}\{m(k+j),7(k+1)} and by the point
%(vﬂ(kﬂ) + Ur(kt1))- It consists of all points u € S,,, whose barycentric coor-
dinates satisfy the condition A (r45) = Ar(rtr). Since w(k + j), w(k +1) > k,
we read from (3.2) that

(3.22) Are(ret) (WG ) = 0 = Arigay (wg "),
and thus, wg* € Sj. Since wd* € dZ Nd7,, we see that

(3.23) {wy-*} CdindL NSy
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and thus,
(3.24) d.NS;#0, d,NSj #0.

For every integer j € {1,...,n — k} there is a unique integer j' €
{1,...,n — k} such that w(k + j) = 7' (k + j'). We will say that an ordered
pair of integers (j,1) from {1,...,n — k} is an inversion pair provided j < {

and j° > 1’. Let us show that, for all inversion pairs (j,1), Sj; is a supporting
hyperplane for both simplices d,d”, and it separates them. More precisely,

T

S, determines in S;, two affine halfspaces,

(3.25) S]J? ={ue Sn|)\7r(k+j) (u) > Aﬂ—(kJ’,l) (w)},
(3.26) S;l ={uce Sn|)\7r(k+j)(u) < Aﬂ-(k;Jrl)(/U/)},
such that

(3.27) dy € S5,

(3.28) o C S

and (3.24) holds.
To prove (3.27) and (3.28), it suffices to prove that, for 1 <i <n —k, all

the vertices wg‘ (kD). (ki)

(3.29) )\W(kﬂ)( 0...km(k+1).. ﬂ(k+z)>)\ k+l( 0...kw(k+1).. 7r(k+i))

and all the vertices wg”'kﬂ (kb )...m (k+9)

of d* satisfy the inequality

of d?,‘/'k satisfy the inequality
(3.30) )\W(kﬂ)(wg,,,kw (k+1)...w (k+i)) < Aoy (w0 0...kn’ (k+1)...m (kJri)).

Indeed, by (3.2), applied to the simplex [vg. ..., Uk, Vx(kt1) - - - > Vn (ki)

wO...k?T(k-‘rl)...Tl’(k‘—‘ri) _

(3.31) 10 1
50 + m(’vo +...t v+ U (k+1) +...+ vﬂ'(k-‘r’i))

and thus,
R
3.32 A 0...km(k+1)...m(k+1) 2(k+itl)’ ]
(3.32) w(k+5) (W )=1 0 j>i.
Replacing j by I, an analogous relation for A; (441 (wg 0-..km(k+1).. ﬂ(kﬂ)) is ob-
tained. Using temporarily the abbreviation w for wg kﬂ(kﬂ)‘”ﬁ(kﬂ), we see
that the two relations yield the following.
(3.33) Aﬂ-(kJrj) (w) =0= Aﬂ—(kJ’,l) (w), 1< 7,
(3.34) Aoy (W) = sy > 0= Aegerny (W), J <0<,
(3.35) M) (W) = sy = Merr(w), 1<

Clearly, formulae (3.33), (3.34) and (3.35) imply (3.29).
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For Ax (k44 (wg'”kﬂ/(kﬂ)‘”ﬂl(kﬂ)) we have a relation analogous to (3.31).
0...km" (k+1)...7" (k+1i) _

(3.36) o .
§’UO + m(?}o + ...+ Vi + ’Uﬂ-l(k+1) + ...+ UW'(]C+’L))'

Since 7(k + j) = 7' (k + j'), we see that

0...k7' (k+1)...7" (k+i) 2(k 1' . J <
(3.37) A (k) (Wo )= { é,+z+ ) 7>
Replacing j by I, an analogous relation for )\W(kH)(wg‘”kﬁl(kﬂ)uﬂl(kﬂ)) is

obtained. Using temporarily the abbreviation w’ for wg"'k7T (k+1)...m (kH),

see that the two relations yield the following.

we

(338) )\W(kﬂ)(w’) =0= )\W(k+l)(w’), 1< l/,
(3.39) Aty (W) = 0 < gy = Aerany (W), U <i < 7,
(3.40) Ar (o) (w') = 2‘(k+1¢+1) = Ay ('), 3" <.

Clearly, formulae (3.38), (3.39) and (3.40) imply (3.30).
It is a consequence of (3.27), (3.28) and SﬁﬂSﬁ = S that d%-Fnd%* C
S and thus,

(3.41) dmnd., Cd.nS;.

Denote by Wj; the set of all vertices wg”‘kﬂ(kﬂ)”'ﬂkﬂ) of d7, which lie in Sj;.
Since Sj; is a supporting hyperplane of the simplex d7. in Sy, the intersection
d7. N Sy is the face of d, spanned by the set Wy, i.e., d7. N Sj; is the convex
hull Conv(Wj;). If (§1,0),..., (Jm,lm) are all inversion pairs, then (d7 N
Siin)N...N(dzNS;,.0,.) = Conv(W,i,)N...N Conv(Wj, ;.. ). However, the
intersection of a collection of faces of a simplex coincides with the convex hull
of the intersection of their sets of vertices. Consequently, (3.41) implies

(3.42) drndy, C Conv(Wj,, N...N Wi, 0,.).

To complete the proof, it suffices to show that, for every i € {1,...,n—1}\
{r1,...,rp_1}, there exists an inversion pair (j,) such that wg'”kﬂ(kﬂ)”‘ﬁ(k“)

¢ Wj;. Indeed, if this is the case, then W;,;, N...NWj, ;. is contained in the

m

set {wdk, wg”‘kﬁ(kﬂ)”'ﬂkwl), wg”'kﬂ(kﬂ)‘”ﬂ(mr”), o, wy ™}, which spans
the simplex dZ_,. Therefore, by (3.42),
(3.43) drndy, Cd..,

which together with (3.21) yields the desired equality (3.19).
Finally, let us show that, for 0 <4 <n —k and ¢ # r1,...,7p, there does
exist an inversion pair (j,!) such that

(3.44) j<i<l
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and therefore, by (3.44), w = wO-Frk+1)-7(b+i) & G ie w g Wy
First consider the case, when 0 < ¢ < ;. By the definition of rq,

(3.45) m{k+1,.. . k+i} #n{k+1,... . k+i}.

We claim that there exists an integer j € {1,...,i} such that 7(k + j) &
m'{k+1,...,k+i}. Indeed, if this were not the case, we would have w{k +
1,...,k+i} Cn'{k+1,...,k+1i}. Since these are equipotent finite sets, we
would have m{k+1,...,k+i} =a'{k+1,...,k+i}, which is in contradiction
with (3.45). Since w(k+j) = 7'(k+j’), one must have j' > i. Similarly, there
existsanl € {i+1,...,n—k} such that 7(k+1) ¢ n’{k+i+1,...,n}. If this
were not the case, we would have n{k+i+1,....,n} Ca'{k+i+1,...,n},
hence also n{k+i+1,...,n} =7'{k+i+1,...,n}. However, this too is in
contradiction with (3.45), because it implies the equality 7{k+1,...,k+i} =
7{k+1,...,k+1i}. Since w(k +1) = n'(k + '), one must have I’ < i. Now
j<i<land! < i < j show that (j,1) is an inversion pair with property
(3.44).

If r1 < i < 79, one repeats the argument with obvious changes. Instead of
{0,...,k}, one considers {0, ..., k,w(k+1),...,m(k+r)} ={0,... .k, 7" (k+
1),...,7(k+ r1)} and one notes that = and «’ permute the set {k + r1 +
1,...,k+ro}. Instead of (3.45), one uses

(3.46) mk+rm+1,.. k+i} #n{k+ri+1,....k+i},
which holds, because of the definition of 3. One proceeds in the same way,
when 7, <t < rp4e1, m> 2. O

The next lemma is an immediate consequence of Lemma 3.7.

LEMMA 3.8. Let 0 = [vg,...,Un], T = [vo,...,0x], 0 < k < n, and let
m, ' be permutations of the set {k+1,...,n}. Let W(dL) and W(dL,) be the
sets of vertices of the simplices d. and d7,, respectively. Then d7. N d~, is the
convez hull of the set W (dZ) N W (dL,).

PRrROOF. Since W(dL) C dr, W(dL,) € dI, and dL NdZ, is convex, it
follows that Conv (W (dL) N W (dZ,)) C d NdZ,. Conversely, by Lemma 3.7,
drNd7, <d. and d. Nd], <d7,. Therefore, if w is a vertex of d7. Nd7,, it is
also a vertex of d7 and a vertex of d7,. Consequently, w € W (dZ)NW(dL,) C
Conv (W (dL) N W(dZ,)). Since dZ NdZ, is the convex hull of the set of all of

its vertices w, it follows that dZ NdZ, C Conv (W (dL) N W (dL,)). O

3.7. In considering the intersection of two different n-cells c;',,c:/// €
L(o), we distinguish three cases: (a) 7/ = 7", (b) 7/ # 7" and the convex hull
7 =Conv (7 UT") = 0 and (¢) 7" # 7" and T is a proper face of o. The
assertion that c:, N c;’,', is a common face of the cells c;', and c:,/, in cases (a),
(b) and (c) will be proved in Lemmas 3.9, 3.10 and 3.12, respectively.
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3.7.1. Case (a), 7 = 7”. Clearly, 7/ # o, because there is only one
central n-cell ¢?. By relabelling the vertices of o, it suffices to consider the case
of a proper face 7 = [vg, ..., vg] of 0, 0 < k < n, and of different permutations
m, 7" of the set {k+ 1,...,n}. This case is settled by the following lemma.

LEMMA 3.9. Let 7 = [vg,...,vk], 0 < k < n, and let w,n’ be different
permutations of the set {k+1,...,n}. Then the intersection cL NcL, of the
n-cells ¢, = c™ & d}, and c, = c™ & d, is a common face of both n-cells c].
and cl,. More precisely,

(3.47) crNey =c & (doNdy).

PRrOOF. Note that wf = wi* is a vertex of ¢™ C Aff(c¢”) and by (3.19)
and (3.20), w{ is also a vertex of d7 NdL, C Aff(d] Nd7,). Since Aff(c™) N
Aff(d. ndl,) C Aff(c™) N Aff(dZ) = {w]}, it follows that ¢™ & (dZ NdL,) is
well defined and has w{* for its reference point. By Lemma 3.7, dZ N d7, is
a face of dZ and thus, ¢ @ (d7 Nd7,) = ¢™ + (d7 Nd7,) —wdF is a face of
¢™ +dT — wd* = cT. Analogously, ¢” & (d7. NdT,) is a face of ¢7,.

To complete the proof, we need to prove (3.47). Counsider an arbitrary
point u € ¢ Ncl,. It is of the form

(3.48) u=s+t—w) =5+t —w*,

where 5,8’ € ¢7,t € d7 and t’ € d7,. Consider the affine mapping p,,: 0 — 7,
determined by its values at the vertices of o,

N\ Vj, OSJSka
(3.49) Pro(v;) _{ b, ktl<j<n

Note that p,, uniquely extends to an affine mapping p,,: Aff (o) — Aff (7).
Since pro is a retraction, an application of the affine mapping p,, to (3.48)
yields the equality

(3.50) 5+ Prolt) = 8+ pro(t).

Let us show that

(3.51) Pro(t) = wg " = pro(t))

and thus, s = s’. Indeed, t € d7. = [w]*, ... ,wg"'kﬂ(kﬂ)“'ﬂ(kﬂ), e wd

and wgmkw(kJrl)mﬂ(kJri) _ %(’Uo + bO...kTr(k+1)...7r(k+i))' Moreover,

(3.52) po---km(k+1)...w(k+i) — . 1 (Vo + ...+ v + (kL) - +» +Uw(k+i))

+1+i
and thus,
(3.53)
Pro (b0 T b H0) - = g (vo k) A g (07 BT

k+1 37 ) T _ T
k‘+1+ib + k‘+1+ib =07
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Consequently,

Omk7r(k+1)...7r(k+i))

pTO'(w() bO...kTr(k+1),,,7r(k+i)))

= %(UO +p7'a(

(3.54) 2
= (v +b7) =wg*

and we see that p,, maps all vertices of d” to the point w*. Therefore, it
also maps ¢ to that point, i.e., pr,(t) = w8“'k. In the same way one verifies
that p.o(t') = wd*. Now s = s’ and (3.48) yield the conclusion that also
t =1 € dinNdZ,. All this proves that u = s+t—w)* € ¢+ (d7NdT,) —w]*
and thus,

(3.55) cINe, Cc 4 (dnd) —wy k.

The opposite inclusion is obvious and we see that ¢Z NI, = ¢™ + (dZNdL,) —

T

w*, which establishes (3.47). O

3.7.2. Case (b), 7" # 7" and T = o. If 7 N 7" # 0, the intersection
7' N 7" is a simplex 7, which is the common face of 7/ and 7”/. There is
no loss of generality in assuming that 7 = [vg,...,vg], where 0 < k < n.
At least one of the sets 7/\7, 7/\7 must be nonempty, for otherwise, one
would have 7/ = 7 = 7. It suffices to consider the case when 7/\7 # (). If
7' # 0, i.e., if it is a proper face of o, there is no loss of generality in assuming

that 7 = [vg,...,v], 7 = [vo,...,lvk/], 7" = 0o, ..., Uk, Uk 415 - - -, Up), Where
0<k<k <n. If 7 =o0,then ¢, = ¢’ is the central n-simplex, 7/ = 7 and
7" is a permutation of the set {k + 1,...,n}. Renaming 7" to = the n-cell

c;’,', becomes cZ. Therefore, case (b) is settled by the following lemma.

LemMmA 3.10.
(Z) Let 7' = [Uo,...,vk/], T = [’Uo,...,l/)k,’l)lflurl;"',vn]; Nt =1=
[vo, ... vk], 0 <k <k <nandletcl,, c. ben-cells from L(c). Then

. R ’ 7 ’ "
the intersection c, NcL, is a common face of cL, and cl.,. Moreover,

’

(3.56) Nl

T = [U}g,,wg]
(i4) Let T = [vo,...,vk], 0 < k < n and let ¢ be a peripheral n-cell from
L(o). Then the intersection ¢ N cL of the central n-simplex ¢ with

the n-cell ¢ is a common face of ¢ and ci.. Moreover,
(3.57) cNep =[wd,...,wi.
(iii) Let ¢, and cT,, be n-cells from L(c) such that T = o. If 7/ 07" =0,
then also c;/, N c;/,/, = 0.
PRrROOF. Case (7). In the n-dimensional affine manifold S,, = Aff (o) CV
we will define an (n — 1)-dimensional affine manifold S such that S is a sup-

porting hyperplane for both convex sets c:, and c:,/, Moreover, S will separate
these two sets, i.e., they will lie in different subspaces ST, S~, determined by
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S. Since ST NS~ =8, it will follow that ¢Z, N ¢l = ¢&, Nk, NS. We will
also show that

(3.58) NS =wg,... wil,
(3.59) NS =[wd, ... wl, W, wl),
which will imply ¢, N ¢, = [wg, ..., w]], as asserted by (3.56).

To define S, ST and S, we consider the function A: Aff (¢) — R, given
by the formula

(3.60) Aw) = M1 (u) + ...+ A (u), u € Aff (0)

and we put

S ={u e Aff (0)|A(u) = 2(n+1)},
(3.61) St = {u e Aff (0)|A(u) > 2’(“n+1) }
ST ={ue Aff (0)|A(u) < (n+1)}

We will show that, for all vertices w’ of CT/, one has AW’ > %,
which implies A(u) > ]E +1)’ for all points w € cZ,, i.e., cl, , C S*. Moreover,
of all the vertices w’ only w9, ..., wl ™ satisfy the equahty Alw') = 2](2;];) .
Therefore, S is a supporting hyperplane for the convex set cw, and (3.58) holds.
Similarly, we will show that, for all vertices w” of c:///, one has A(w”) < 2](€n Jj)
and only the vertices w” from the set {w§,...,w,w{ ,...,wy} satisfy the
equality A(w') = 21(“;;% Therefore, ¢7,, € S~ and (3.59) holds.

According to (3.11), the vertices of c;l, are the points w,oﬁ“k/ and the points
w?ﬁ”k m (K1) H), where 1 <i<n—Fk and 0 < m < k’. Note that
(3.62)

po-- k'w'(k'Jrl).,.ﬂ"(k'Jri) _

k/+1+’t (Uo o U F V1 U V) T UTr’(k’+i))~

Since {0,...,k}N{k+1,..., K} =0 and {7/ (K" +1),..., 7 (K + i)} n{k +
k'Y =0, we see that A(vo+...4+vk) = AV (rg1) + -+ Vp(rgy) =0
and thus,

A(bo"'k/w/(k/“)'“wl(k/H)) = _k/+11+iA('Uk+1 +.. Fo) =

s Vet (Uk41) + -+ A () = 7705
Now note that A(v,,) =0, when 0 < m < k and A(vy,) =1, when k+1 < m <

O k, 7 k/ 1 . ’ kl . 7 ’ 7 7
. Since wl*T (k' +1)...7" (k' +1) _ %Um + %bo...k ' (k'+1)..7

that

(3.63)

L
(K'+1) we conclude

K-k _
(3.64) A H 7O )y :{ Ry 0<m<k, |
3T oy, kHl1Sm<K.
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A simplified version of the above calculation gives for A(w? *") the value
obtained by substituting ¢ = 0 in (3.64). For i = n — K/, (3.64) yields

(3.65) Awg) = ... = Aw]) = 5675y

(3.66) Awiy,)=...=Awy) =3+ %7

because {7'(k'+1),...,7'(n)} = {k'+1,...,n}. Moreover, i < n—k’ implies
kfﬂ__l’j_z > Z—;f, which shows that A assumes the minimal value % only
for the vertices wg, ..., wf. We have thus, verified the above made assertions

. . ’
concerning the vertices of c7,.
. . . . . . "
A similar calculation establishes the assertions for the vertices of cZ,.

These are the points w%“kklﬂ'“” and w?ﬁ”kkur1'”m”(k+1)”ﬁ”(kﬂ), where 1 <
j<k'—kand 0<m<kor k' +1<m<n. Note that

(3.67)
pO---kk +1. " (k+1)...7" (k+j) —

m(vo R ol V) o O W S Urrr (k+-1) + ...+ ’Uﬂ_u(kJrj)).
It is readily seen that A(vp + ... + vx) = 0 and A(vg/41 + ... + v,) = 0. Since
7k +1),...,7"(k 4+ j) are j different elements of the set {k + 1,...,k'},
one haS A(”Tr”(k-i—l)) = ... = A(Uﬂ.u(k_;’_j)) = ]_ and thus, A(Uﬂ.u(k_,’_l) + ...+
Vnr(k4j)) = j. Consequently,

0...kk" +1..n7"" (k+1)...7" (k+37)\ — j

Since A(vy,) =0, for 0 <m <k or ¥’ +1 < m < n, we conclude that

0...kk' +1..nm"" (k+1)..7"" (k+j)\ _ j
(3.69) A(wnm, " V)= Pl B

Moreover, it is readily seen that

(3.70) Afwly R HLmy = 0,

For j = k' — k, (3.69) becomes

(3.71) Awg,) = =k

because 77 {k+1,...,k'} = {k+1,...,k'} and thus, w0+ +1.nktl.k — 4o
Furthermore, for 1 < j < k' — k, one has 2(k+1+ifk,+j) < 2’(“;;’3, because

I+l This

k' < n implies 0 < k+1+4+n — k" and (k+1+7{_k/+j) < e

shows that the right side of (3.69) assumes its maximal value % only
for the vertices wg, ..., wy,wy,, ,...,w;. Hence, we have verified the above

made assertions concerning the vertices of c:///
Clearly, [wg, ..., w]] is a face of [wg, ..., w7,]. However, the latter simplex
is spanned by the last row of (3.11) for c;', and thus, it is a face of c:/
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Consequently, [wg,...,w]] < c;/, Analogously, [w,...,w]] is a face of the
last row of (3.11) for ¢7,, and thus, it is also a face of ¢Z,.

Case (i1). The proof of (3.57) can be obtained from the above proof of
(3.56) by replacing everywhere k' by n and ¢ by 0 and by deleting expressions
which in this case make no sense, like ¥’ + 1..n, 7/(K' + 1)..7/(k' + i) or
Vg'41 + ..o + vp. Then 7 = [vg,...,vx] becomes o = [vg,...,vp], 7' =
[V0y -+ Vky Uk 41, - - -, Up] bDecomes 7 = [vp, ..., vg] and c;/, and c;/,/, become ¢
and cZ, respectively. Furthermore, A(u) becomes the sum Ak (u)=+. ..+, (u)
% in (3.61) becomes
the points w?, , where 0 < m <n and

and the expression The vertices of ¢ are

n—k
2(n+1) "

n—~k
0<m<k
3.72 Awg) =4 20FD0 0 T

Hence, A assumes its minimal value ﬁ at the vertices wg, ..., w7 and thus,

¢ C ST and NS = [wf,...,wd]. The vertices of ¢7 are the points w;*

and w 0 Jem (k+1). 7r(k+j)’ where 1 <j<mn-—kand0<m < k. Furthermore,
A(w? ) =0and

0...km(k+1)...w(k+j)y __ j
(3.73) Awn; 7) = m~

The right side of (3.73) assumes its maximal value only for the vertices

D) +1)
w§,...,wy. Therefore, ¢ € S7, cL NS = [wg,...,w]] and the assertion
(3.57) follows. That [w§,...,w]] is a face of ¢} follows as in the above case.
That it is a face of ¢” is an immediate consequence of the definition of ¢“.

Case (ii1). If 7/ N 7" =, there is no loss of generality in assuming that

7' = [vo,...,vx] and T = [vgt1,...,0,], where 0 < k < n. In this case
we define A by putting A( ) = Ao(u) + )\k( ). In (3.61) we replace the
expression 2( +1) by 2(n+1) The vertices of cw, are now the points w?%: * and

w?ﬁ"kﬂl(kﬂ) . (kﬂ), where 1 <i<n—kand 0 <m < k. A computation

like the previous ones shows that

0...kn' (k+1)...7 (k+i)y _ k
(3.74) Afw; ) =3+ iy
and A(w?*) = 1. Consequently, the minimal value of A at the vertices of ],
is 1 + (kanH) and thus, for u € ¢7,, one has
k
(3.75) 3 T atar < Alw).

k+1..n k+1...nm" (0).. 7T”(J)

Furthermore, the vertices of ¢, , are the points w;, and wy,
where 0 < j < kand k+1 § m<n. A computation like the previous ones
shows that

k4+1..nm" (0)..7" (5) _ j 41
(3.76) Awhtt-m ") = s
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and A(wktl-n) = m Consequently, the maximal value of A at the

. 178 7
vertices of ¢, is % and thus, for u € c[,,, one has

k
(3.77) Au) < 2(7:31)'
Since there is no point w, which satisfies both inequalities (3.75) and (3.77),
it follows that ¢Z, N ¢, = 0. O

3.7.3. Case (c). 7" # 7" and T = Conv (7' UT") < 0.

3.7.3.1. We first prove a lemma, which will enable us to reduce the proof
in case (c¢) to case (b), using the affine mapping p,,: 0 — 7, determined by
(3.49).

LEMMA 3.11. Let 7 = [vg,...,vk), T = [vo,...,vg] be faces of o, where
0<k<k<n.

(1) For every n-cell cL € L(o), there is a permutation p of the set {k +

1,...,k} such that the corresponding k-cell (S L(T) has the property
that

(3.78) pro(cf) € .

There is also a permutation ¢ of the set {E +1,...,n} and there is a
common face ¢ of ¢k and cj, such that

(3.79) (rolef) M 0] = T,
(i4) For every n-cell ¢z € L(0),
(3.80) pro(ck) S
and there is a face I of cZ such that
(3.81) (prolcZ) Huwg, . .., wi] = 2.

PROOF. (i) Since w: {k+1,...,n} — {k+1,...,n} is a bijection and
{k+41,... k} is a proper subset of {k 4 1,...,n}, there are precisely k — k
integers j such that 1 < j <n—k and 7(k+j) € {k+1,...,k} and there are
precisely n — k integers [ such that 1 <! <n—kand n(k+1) € {k+1,...,n}.
Denote these integers by 1 < j;1 < ... <j, <...<jr_,<n—kand 1< <
o<y <... <, 7 <n—k,respectively. Note that & + 1 < w(k + ja) < k
and n > w(k+1y) > k+ 1. Define functions p: {k+1,...,k} — {k+1,...,k}
and ¥: {k+1,...,n} — {k+1,...,n} by putting

(3.82) p(k+a) =n(k+ja), 1 <a<k—k

(3.83) Ik+b)=7k+1), 1<b<n—k.

The functions p and ¥ are permutations, because they are surjective and
injective.
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Let us now prove (3.78). Every point u € ¢ is of the form u = s+t —w],
where s € ¢™ and ¢ € dZ. Since {s,w]} C ¢ C 7 C T and pr,: 0 — T is
a retraction, it follows that pz,(s) = s and pz,(wj) = w{. Therefore, to
prove (3.78), it suffices to show that p=;(t) € d},, because then, pr,(u) =
8+ pro(t) —wj € ¢ +d, —wj = c},.

To prove that pz,(t) € dy, it suffices to show that p=, maps the vertices
of d. into

= [wdk 8 kp(k+1)...p(k+1i) wgmz]
3.84 B yeees o ~
( ) [w8“'k,...,w8 o (k+41). W(kJrJt),._.)wg...k].
Recall that the vertices of dZ are the points w] and 0kt )...m(kte)
1 <i<n—k. We already saw that pro(wd %) = wd* ¢ dT To determine
y Pro(Wo 0

Pro (Wg 0-..km(k+1).. Tr(k-H)), note that the set {1,...,n — k} is the disjoint sum

of the sets {J1s- - dp_py and {l1,...,1,_3}. Let a(i) and b(i) be the largest
integers a and b such that j, < ¢ and [, < i, respectively. Clearly,

(3.85) {1,...,i} = {jlw“aj@(i)} U {ll,...,lb(i)}, forl1 <i<n-—k.

If no element of {j1,...,j5_,} is <4, put a(i) = 0 and omit the first summand
and if no element of {l1,...,l, +} is <4, put b(7) = 0 and omit the second
summand. Note that (3.85) implies

(3.86)

{0, ..., k,n(k+1),...,m(k+1d)} =
{0,....k,m(k+ 1), ..., 7k + o)} U{m(k + 1), ..., m(k + b))},
which yields
pO---km (k41w (k+i)
(3.87) T (o 4 - Uk F Vr(eggn) F oo A Un(tga) T
Un(ktly) T oo T Vbl )

Now note that m(k + j,) < k implies pro (Un(k4j.)) = Vn(ktjo) and m(k+1) >
k + 1 implies pzo (Un(rt1,)) = b7. Therefore, (3.87) yields

(bOMkw(kJrl)...ﬂ'(kJri)) —
b(z e
(3.88) (ot + vk + Uw(k+]1)7 s FUr(etja) T k+(1zrzb =

E+1+ K (k k+ia
L b0yt M

Note that a(i) + b(¢) = ¢ and thus,

k a(i i
(3.89) Vyp = E_L_(z )vm + k+(li_zvm, 0<m<k.

Summing up (3.88) and (3.89), one obtains
(3.90)

mg(w%“k”(k“)”"r(’“”)) _ ktita(i), O-km(ktjn)..m(btiam) | _b(i)

?
k+1+1 m + k+1+i

Wy,
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Formula (3.90), for m = 0, shows that the point pz,(w, 0. e (k). 7T(kﬂ))

belongs to the 1-simplex [w, 0ok (tgn)..mktda )) w(]. However, this 1-simplex

is contained in d, because of (3.84) and of the fact that a(i) < 4 implies
Ja@i) < Ji- This completes the proof of (3.78).

Continuing the proof of assertion (i) of Lemma 3.11, consider the face of
¢y, whose vertex scheme consists of the last n — jz_, 4+ 1 rows of the vertex
scheme (3.11) for ¢Z, i.e., it consists of the rows

(391) wg...kw(k—i-l)...w(k-i-i) o wg,‘b“kﬂ(kJrl)mﬂ(kJri) o wz...kﬂ(k-l—l)...ﬂ(k—i-i)’

where jz_, <i<n—k, 0<m <k We denote that face of ¢ by ¢I7.

Since a(4) is the largest integer a, 1 < a < k — k, such that j, < i, we see
that jz_, <4 implies a(i) = k — k. Therefore,

{Oa'--ak?ﬂ-(k.—’—jl)a (k+ja(z }
(392) {Oa"'akaﬂ-(k.—’—jl)) (k+.7k k }
{0,...,k,k+1,...,k}f{0 k).
Moreover, (3.83) implies
(3.93) {m(k+ 1), ..., 7k + L)} = {9k +1),...,9(k+bi)}.
Consequently, (3.86) assumes the form
{0,... k(b +1),...,m(k+i)} =
{0,...,k,9(k+1),...,9k+0b(4))}
and thus, the row (3.91) coincides with the row

(3.95)
wg...%ﬂ(%-ﬁ-l)...ﬂ(%-ﬁ-b(i)) o w%ﬁﬁ(ﬁrl)mﬁ(ﬁrb(i)) 3 .wZ"'Eﬁ(%"_l)"'ﬂ(%"_b(i)).

(3.94)

Let us now extend the vertex scheme of 77 with rows written in the form
(3.95), by allowing the subscript m to vary between 0 and k. The new scheme
differs from the previous one by k — k terminal columns. Clearly, every row
of the new scheme is a row of the scheme (3.11) for ¢}, which consists of the
initial row wd*, ... ,w%“k (which does not belong to the new scheme) and
of the rows

(3.96) wg...Eﬁ(EJrl)...ﬁ(Eer) N _w%,,zﬁ(z+1).,.ﬁ(z+b) y _w%mEH).,ﬁ(mb),

where 1 < b < n—k (not every b is of the form b(i) and thus, (3.96) need not

be a row of the new scheme). All this shows that ¢ is a (proper) face of cj.
To prove (3.79), first note that, for jz_, <i<n—4k, 0<m <k, (3.92)

implies

(397) wowkfﬂ'(kJFjl)mﬂ'(kJF]'a(i)) w

Using formula (3.90) and the fact that a(i) + b(4 ) i, one concludes that

(3.98) pro (w0 o (k+1).. 7rk+z)

0...k
e
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Consequently, p=, maps the set of vertices of cﬁi onto the set {w(,...,w}.
Since the latter set spans the simplex [w(, ..., w]], it follows that

0 k
(3.99) pro(cly) = [wg, ..., wi].

Now ¢} C ¢I implies
(3.100) ey C (prolcl)  Huwy, - - ., wi).

To prove the opposite inclusion, it suffices to show that, for every point
u € ¢Z\cl}, one has pr,(u) & [w],...,wf]. We will prove this assertion for
vertices w of ¢f, which do not belong to the face ¢, of ¢Z. Then Lemma
2.1 in Subsection 2.1 (with C = ¢}, C' = ¢}, p = prolc}, D = ¢} and
D' = [wg, ..., wf]) will yield the desired assertion for points u € cf\cJj.

To prove that the vertices w of cJ,, which do not belong to cj;, have the
required property, it suffices to show that the barycentric coordinate

1
3.101 A o (o () < ———
( ) p(k)(p (w)) 2+ 1)
while for points y € [w(, ..., w}f], one has
(3.102) Ay) = —
' dBW T k1)

To prove (3.102), it suffices to show that, for the vertices w? , 0 < m < k,
one has

1

Indeed, p(k) € {k+1,...,k} and thus, Aoy (Um) = 0. Since wy, = L (o +b7),

we see that A ) (wr,) = %)\p@)(b?) = ﬁ)\p(z)(vo +.o Ut U+

) = 2(%1+1)'

To prove (3.101), note that either w belongs to the row wj ... wj, ... wj
or it belongs to one of the rows (3.91), where 1 < i < jr_,. If w = w],,
then pz,(wy,) = wy, and thus, A, g pzo(wy,) = A7) (wy,) = 0, because wy, =

%vm + m(vo + ...+ vg). Now assume that w = w%”kﬂ(kﬂ)‘”ﬂ(kﬂ). Since

Ja(iy < 4, the assumption i < jz_, implies that j,;y < j;_, and thus, a(i) <
k—Fk. Since  is an injection, it follows that 7(k+jz_,) & {m(k+j1) ..., 7(k+
Ja@)}- By (3:82), w(k + jr_p) = p(k + &k — k) = p(k) and thus, p(k) ¢

{m(k+j1)...,m(k+ Jai))}- Since also p(k) ¢ {0, ...,k}, it follows that

(3.104) )\p(%) (w,?ﬁ"kﬂ-(k—i_jl)"'1W(k+ja(i))) —0
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Therefore, application of A 7, to (3.90) and (3.103) shows that

(3.105) ook b(i) 1

rir® (W) = S gy < 20D

because b(i) <iand k+ 1+ > i.
(i) Let ¢ be an n-cell from L(c). To prove (3.80), consider an arbitrary

point u € ¢Z. It is of the form u = s + ¢ — wy~*, where s € ¢™ and t € d.
Recall that p-,(s) = s, pro(wdF) = wdk and p= (t) = wd* (see (3.51)).

Therefore, pry(u) = s+wd* —wd* = s € ¢™ and thus, p=(cZ) C ¢™. Define
cI™ as the face of ¢Z, whose vertex scheme consists of the first k£ + 1 columns
of the vertex scheme of ¢Z. Clearly, ¢Z7 < cZ.

If a point u belongs to the left side of (3.81), then u € cZ and p=,(u) €

[w, ..., wf]. Since u = s+t — wf, where s € ¢” and t € dZ, we see that
s = pro(u) € [w,...,wf] and therefore, u belongs to the convex polytope

spanned by the vertices belonging to the first £ 4+ 1 columns of the vertex
scheme of ¢Z, i.e., u € ¢Z7. Conversely, if u belongs to the right side of (3.81),

then it is of the form u = s+t — w], where s € [w(,...,w}] and ¢ € dZ.
Consequently, pr,(u) = s + w) —w] = s € [wy,...,wf], which shows that
also the right side of (3.81) is contained in its left side and thus, equality
(3.81) holds. O

3.7.3.2 Proofin Case (c). Recall that 7/ # 7/ and 7 = Conv (7'UT") < 0.
If N7’ #0, then 7/ N7 = 7 is a simplex, which is a common face of both
7/ and 7”. There is no loss of generality in assuming that 7 = [vg, ..., vx] and
7T = [vo,...,vg). Clearly, 7 <7/ <7 and 7 < 7" < 7. We distinguish two
cases, either 7/ and 7 are incomparable, i.e, 7/ £ 7" and 7 £ 7/ or they
are comparable, i.e., one of the relations 7/ < 7”7, 77 < 7/ holds. In the first
case one cannot have 7 = 7/, because 7 < 7”7 would imply 7 < 7", contrary
to the assumptions that 7" and 7 are incomparable. Consequently, 7 < 7’.
Similarly, 7/ < 7, because 7/ = 7 and 7’ < 7 would imply 7" < 7/, which also
contradicts the assumption that 7/ and 7" are incomparable. Consequently,
in the first case we must have 7 < 7/ < 7 and analogously, 7 < 7/ < 7. In the
second case, there is no loss of generality in assuming that 7/ < 7”7 and thus,
7' < 7"”. By the definition of 7 and 7, it follows that 7 = 7/ and 7 = 7. In
view of this discussion, the following lemma establishes the desired assertion
in Case (c).

LEMMA 3.12.
(i) Let 7" = [vo,...,vr], T”_: [V0, ..y Uk Vi 41,5+ -5 05], T NT =7 =
[vo, ... o], 0 <k <k <k <mn, and let cL,, cL. be n-cells from L(o).

. . / " . ’ "
Then the intersection cl, N cl. is a common face of c., and cL,.
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(ii) Let T = [vo,..., vk}, T = [vo,...,v5], 0 <k < k < n, and let c%,cZ be
n-cells from L(c). Then the intersection ¢ N cL is a common face of
¢ and cL.

(iii) Let 7" = [vo,...,vp], 7" = [vprg1, .., 0g], 0 < K <k < n, and let
¢, Ty be n-cells from L(o). Then the intersection ¢I, N ¢l = {.

PROOF. Case (i). We will first exhibit two permutations ',9” of the
set {k+1,...,n}, a cell c;',g,, which is a common face of c;', and ¢}, and a
cell C:,I,E,,, which is a common face of c:/// and cj,. We will then prove that
the intersection c:@, N c;','@” is a common face of the n-cells c:/ and c:///
Therefore, the assertion will be proved if we also show that

’ " /= 1=
(3.106) e Nl =clly Neign.

To carry out this program, we first apply Lemma 3.11.(¢) to the n-cells
¢, T, € L(o). One obtains a permutation p’ of the set {k'+1,...,%} and a
permutation p” of the set {k+1,...,k’} such that the n-cells c;,', c;:: € L(7)
satisfy the following relations:

/ /

(3.107) pro(cr) C ey,
(3.108) Pro(cin) C .
One also obtains permutations 9,9 of the set {k+1,...,n}, a common face

= ’ — = " —
cr of ¢, and ¢y, and a common face ¢/}, of ¢, and cj,, such that

(3.109) (pro|cl) MWy, ... wf) = ¢,

(3.110) (prolcl) MWy, ... wi] = L.

We now apply Lemma 3.9 to the n-cells ¢}, and cj,, and conclude that
their intersection ¢, N ¢j, is a common face of both cells ¢}, and ¢j,,. Since
< ch and i < ¢, the intersection ¢Z,5, N ¢l 5, is a common face of
both cells ¢}, and cL,J5.. This is a consequence of the following elementary
fact.

Let C',C" be convex polytopes in a vector space V and let D' < C’ and
D" < C" be their faces. If C' N C" is a common face of C' and C”, then
D' D" is a common face of D' and D" .

Since, 7,5, < I, and ¢L,5,, < s one concludes that L O T, s
also a common face of the cells ¢, and cf,,.

To complete the proof of Lemma 3.12 in Case (i), it remains to prove
(3.106). We will first show that

(3.111) cr N e = (prol(ch N efn)) (e Nehn).
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Indeed, (3.107) and (3.108) imply p;g(c;/, N c;/,l,) C p;g(c;/,) ﬂp;a(c;l,l,) -
c;,' N c;,',' . Since pro (cZ N eln) = (prol (¢t N L)) (ch, N ek, we see that
(3.112) N ety C (prol(ch N em) Ml nel).
The opposite inclusion also holds, because, for an arbitrary function f: X —
Y and for arbitrary subsets A C X, B C Y, one has (f|A)~'(B) C A (by the
very definition of the restriction f|A).

We now apply to (3.111) the following elementary fact. If f: X — Y is

a function and A, A’ C X, B C Y are subsets, then (f|(A’ N A”))"1(B) =
(fIA)Y"Y(B) N (f|A")~1(B). One obtains the equality

(3.113) L Nery = ((pa,|c;,)_1(c;, Nepr)) N ((p?g|c;//)_1(c;, Nepr)).

Since 7 = Conv (7' U7"), Lemma 3.10.(4) is applicable to c;:, c;,',' € L(7).
It implies that

(3.114) c;: N c;:: = [wg, ..., wj].

Replacing in (3.113) the expression c;: ﬂc;,’,' by [w(,...,w]] and using (3.109)
and (3.110), one obtains the desired equality (3.106).

Case (ii). We will first exhibit a permutation ¥ of the set {k+1,...,n},
a cell ¢77, which is a common face of ¢ and ¢} and a cell ¢Z7, which is a face
of ¢Z. We will then prove that the intersection ¢I7 N ¢Z” is a common face of
the n-cells ¢} and cL. Therefore, the assertion will be proved if we also show
that

(3.115) cINcr=clpncy.

To carry out this program, we first apply Lemma 3.11.(7) to the n-cell ¢] €
L(c). One obtains a permutation p of the set {k-+1,...,k}, a permutation ¥
of the set {k+1,...,n} and a cell ¢7}, which is a common face of ¢% and cj,
such that (3.78) and (3.79) hold. Lemma 3.11.(i7), applied to ¢Z, shows that
(3.80) holds and there exists a face ¢Z" of ¢Z such that (3.81) holds.

We now apply Lemma 3.9 to the n-cells ¢ and ¢Z and conclude that
their intersection ¢}, N ¢Z is a common face of ¢}, and ¢Z. Since 7% < ¢}, and
cIT < ¢, it follows that ¢I7, N ¢Z7 is a common face of ¢I7, and ¢Z”. However,
eIt < ¢k, 7 < ¢ and thus, ¢Z N X7 is a common face of ¢ and cZ.

To complete the proof of Lemma 3.12 in Case (ii), it remains to prove
(3.115). Using (3.78) and (3.80) and an argument like the one which produced
(3.111), one can see that

(3.116) crNes = (p;a|(c;ﬂc;))71(c; ne’).

The same elementary fact, which we used to derive (3.113) from (3.111), can
be applied to (3.116) to obtain

(3.117) cx N g = ((prolcr) ™ (c; NeT)) N ((prolcR) ™ (c; NeT)).
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Applying Lemma 3.10.(i) to ¢ € L(7) and ¢7, we conclude that
(3.118) o Ne” = [wg, ... ,wi).

Now replace in (3.117) the expression ¢} N ¢” by [wg, ..., w]] and use (3.79)
and (3.81). One obtains the desired formula (3.115).

Case (iii). Since 0 < k' < k < n, we can apply Lemma 3.11.(5) to
¢I, € L(o) and obtain a permutation p’ of the set {k’+1,..., %} such that the
k-cell c;: € L(T) satisfies relation (3.107). Analogously, there is a permutation
p" of the complement {0,...,k'} = {0,...,k}\{k' +1,...,k} such that the
k-cell c;//; € L(7) satisfies relation (3.108). Since 7 = Conv (7' U 7”), Lemma
3.10.(447) is applicable to c;:, c;/l/’ € L(7) (7 plays the role of o). Since 7'N7" =
(), it shows that c;,/ ﬂc;:: = (). Therefore, (3.107) and (3.108) yield the desired
conclusion that also c;/, N c;/// =0. O

3.8. To complete the proof that L(o) is a cellular subdivision of o, it
only remains to establish the following lemma.

LEMMA 3.13. If 0 € K is n-dimensional, then the union of all n-cells
from L(o) equals o.

ProoF. It suffices to prove that the n-cells from L(o) cover the n-
simplices of the barycentric subdivision ¢’ of o. Let ¢y, tn_1n, ..., t1...n denote
the identity permutations of the sets {n}, {n—1,n},...,{1,...,n}, respectively.
We will prove that the n-cells ¢, c0:-n=1 0--.n=2 o € L(o) cover

? Tln P lp—1n 77T Tl1on
the n-simplex [b°, 6%, ... b%"] € ¢’. The assertion for any other n-simplex
from o’ is obtained by relabelling the vertices of o.
Let u be a point from [b°,...,6%"]. We must show that u belongs to
at least one of the cells ¢+, 0=t c0--n=2" " 0 QObviously, this is

? Tln 7 ln—1n Pl n
true if u € ™. Therefore, we will assume that u € [b°,... 5% "]\
Let p;: [b0,... 0% "] — [0,... %] 0 < i < n, be the simplicial mapping
determined by p;(b%7) = %I, for 0 < j < i, and p;(b%7) = b%? for
i <j <mn. Foruc€ [b°,° ... 6% "] put u; = p;(u) and note that ug =
b° = vy and wu,, = u. Also note that u = uobo +...+ unbo‘“”, oy - -y i > 0,
wo + ...+ pyp = 1 imply

(3.119) wp = pob® 4 o BT (g )0
Consequently,
(3.120) Ui —Uim1 = (fti + o+ ) (OO =00 1< i <.

Now note that (3.2) yields

1 . )
—(®%t =% 1 < <,

(3.121) Wt gt =
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and thus,

(3.122) i — i1 =20 + A ) (w3 —wd ), 1 <0 <.

If for some integer k, 0 < k < n — 1, we sum the relations (3.122), for
k+1 <1< n, we obtain

(3.123) u—up =t —wd",
where
t— wg...k — 2(#k+1 4 'un)(wg...kJrl _ wg...k)+
(3.124) 2t + - A ) (w2 =Y
2pun (" — ")

We now choose as k the largest integer, 0 < k < n—1, such that uy € ¢%*.
It exists because ug = vg = wy, ¢ = [wY] and u = u, ¢ *". For that k we

will prove that ¢ € df;% = [wg*,...,w)~"] and thus, (3.123) will imply
that u € % +d)v — gk = %k In the proof we will use the
following elementary fact.

If [ag, . . ., am] is an m-simplex, a —ag = v1(a1 —ag) + v2(as —a1) + ...+
Un(@p —ap—1) and 1 > vy > v9 > ... > vy > 0, then a € [ag, . . ., ap].

Since 2(pg1 + -+ fn) = 2(ky2 + oo+ fn) > o0 = 20, > 0, our
assertion concerning t will be proved if we show that

(3.125) > fkt1 + o .

N | =

However, by (3.119),

(3.126) ka1 = pob” + oA b F A (pegr A )00

and we see that pgy1 + ...+ py is the last barycentric coordinate of ugy1 in
(3.126). Since ugi1 € [B°, ..., b0 KT\ -+ we see that (3.125) is a conse-
quence of the following assertion. If u € [b°,..., 0% ™\c%™ 0 < m < n, and
Bo, ..., Bm are the barycentric coordinates of u with respect to &, ..., 5% ™,

then G, < % Indeed, it is well known that a point v € o belongs to

[0,...,6%™] if and only if its barycentric coordinates Mg, ..., A\ with re-
spect to vy, ..., v, satisfy the inequality Ao > ... > A,,. One cannot have

A > m, because that would imply that all coordinates A; > m,
0 < i < m, and thus, u € ™, which contradicts our assumption that
u ¢ %™, Consequently, \,, < m Now, if in w = Aqug + ... + AU =
Bob® + ... + B,b" ™ we substitute the values of ¢°,..., %™ from (3.1), we
Bm

m+1)

readily see that \,, = i and the desired assertion 3, < % follows. O
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3.9. The next lemma will complete the proof of Theorem 3.6.

LEMMA 3.14. Ifo € K and { < o is a proper face of o, then L(¢) C L(o)
and (3.17) holds. For any cell ¢ € L(o), the intersection ( N¢ is a face of c,

which belongs to L(C). The union L = Uyei L(0) is a cellular subdivision of
K.

PrOOF. Let ( < o, dimo = n and dim{ = m < n. To prove that
L(¢) C L(o), it suffices to prove the assertion that ¢ € L(¢) implies ¢ € L(o)
in the special case, when ¢ € L({) is an m-cell. Indeed, an arbitrary cell
c € L(¢) is a face of an m-cell ¢/ € L({) and the special case of the assertion
shows that ¢ € L(0). Now ¢ < ¢ implies that also ¢ € L(o).

Let us now assume that o = [vg, ..., v,], { = [vo, ..., U], 0 <m < n. Ifc
is the central m-simplex of L(¢), consider the peripheral n-cell ¢ = c$ € L(o),
where ¢ is the identity permutation of the set {m + 1,...,n}. By Lemma
3.2, the first row in the vertex scheme (3.11) of ¢’ consists of the vertices

wy ™, .., wd-™ and thus, [wi™, ..., w%™] is a face of ¢’. However, ¢ =
[wd=m, o wdem] < [wd ™ wd ™) < ¢ Since ¢ € L(o) and ¢ < ¢, it

follows that also ¢ € L(0).

Now let ¢ = ¢ be a peripheral m-cell from L(¢). There is no loss of gener-
ality in assuming that 7 = [vg, ..., vx], 0 < k < m, and thus, 7 is a permuta-
tion of the set {k+1,...,m}. The vertex scheme (3.11) of ¢ consists of its first
row wl~k .. wdk and of the rows wy FTHEFD kR 0 km (kL) (kD)
where 1 < ¢ < m — k. Let 7’ be the permutation of the set {k +1,...,n},
which on {k+1,...,m} coincides with m and on {m+1,...,n} is the identity.
The vertex scheme of ¢/ = ¢, € L(o) consists of the row w* ... wd* and

of the rows wg'”kﬂ(kﬂ)”‘ﬁ(kﬂ) . ..wg”‘kﬁ(kﬂ)”'ﬂkﬂ), where 1 < i < n — k.

Consequently, the vertex scheme of ¢ coincides with the initial m — k+ 1 rows
of the vertex scheme of ¢’ and thus, ¢ < ¢/, which together with ¢/ € L(o)
yields the desired conclusion that ¢ € L(o).

Note that L(¢) C L(o) implies

(3.127) L(¢) € ¢ N L(o).

Indeed, if ¢ € L((), then ¢ C ¢ and thus, ¢ = ( Ne. However, ¢ € L(¢) implies
¢ € L(o) and thus, ¢ € (N L(o).

We will now show that, for a simplex o € K, for a proper face ¢ of o and
a cell ¢ € L(o), the intersection ¢ N ¢ is a face of ¢, which belongs to L(().
It suffices to prove the assertion in the special case when dimo — dim ( = 1.
Indeed, if dimo — dim{ = k£ > 1, we consider a sequence of faces { = (i <
... < (1 < 0, where the dimensions of consecutive members differ by 1. The
assertion in the special case shows that (;Ne < cand (1Ne € L({1). Therefore,
GNe=GNGNe<GNe<cand (oNec e L(¢). Repeating this argument
k times, we obtain the desired conclusion that ( N ¢ < ¢ and { N ¢ € L(().
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We will now show that, for dimo = n, for a face ¢ of o of dimension
dim¢ = n — 1 and for ¢ € L(o), the intersection ¢ N ¢ is a face of ¢, which
belongs to L(¢). It suffices to prove the assertion in the special case when
dim ¢ = n. Indeed, an arbitrary cell ¢ from L(o) is a face of an n-cell ¢ € L(o).
By the special case, ( N ¢’ is a face of ¢/, which belongs to L(¢) C L(o). Note
that ¢ = ¢/ Nc and thus, (Ne = ((Nc)Ne Since (N and ¢ are faces of
¢ € L(0), it follows that their intersection (Ne = ((Nc’)Ne is a face of (N
and ¢. Now (Ne< N and (N € L(¢) imply that also ¢ Ne € L(Q).

Let us now assume that o = [vg,...,v,], 0 <1 <n and ¢ is the (n — 1)-
dimensional face of o, which does not contain the vertex v, i.e., ( = S No,
where S is the (n—1)-dimensional affine manifold S = {u € Aff(c)|\;(u) = 0}.
Let ¢ be an n-cell of L(c). If ¢ is the central n-simplex ¢, then c lies in the
interior of 0. Since ¢ C o, it follows that ( N ¢ = (). However, the empty
set is a face of ¢ and it belongs to L({). We will now assume that ¢ = ¢ is
a peripheral n-cell of L(c). There is no loss of generality in assuming that

7 = [vg,...,vx], where 0 < k < n and thus, 7 is a permutation of the set {k +
1,...,n}. We first consider the case when 0 < [ < k. It is readily seen that,
for 0 < m < k, one has A\j(wl*) > 1(6%F) = m > 0. Similarly, for

1<i<n—k, )\l(w%“kw(kJrl)mw(kJri)) > %)\l(bO...kﬂ'(k+1)...7r(k+i)) _ 2(k+1i+1) >
0. In view of Lemma 3.2, this means that all the vertices of ¢ belong to
the convex set {u € Aff(o)|A\(u) > 0} and thus, ¢ is contained in that set.
Consequently, ¢ Nc = @) and the assertion holds.

Now assume that £ +1 < [ < n. We will show that ¢ N ( is a face of
¢, which belongs to L(¢). In addition, we will show that it is of the form
cN¢=c ®d = +d’ —wj, where d’ is a face of d7, which contains the
vertex w(. First note that ¢ C ¢ implies ¢ = oNc and thus, (Nc = SNc. Since
1> k+1, N(vm) =0, for 0 < m <k, and thus, A(wd*) = IX,(%F) = 0.
This shows that the vertices w8"'k, . ,wg'“k belong to ¢ and S and thus,
SNec # (. Moreover, since ¢ C o, ¢ is contained in the affine halfspace
St = {u € Aff(0)| )\ (u) > 0}, which shows that S is a supporting hyperplane,
for the n-cell ¢ = ¢L € L(o). It follows that { Nc = S Nec is the face of ¢,
whose vertices are all the vertices w of ¢, which are contained in S, i.e., for

which A\j(w) = 0. Note that there is a unique integer j € {1,...,n — k}

such that | = w(k + j). Clearly, )\l(w%”kﬂ(kﬂ)”‘ﬂ(kﬂ)) =0, for 1 <i < j,
0...kmw(k+1)... m(k+i T T i

and \;(wn, (k+1)...m( )) = I (b0 kr kL) omhti)) 72(k+11+i) > 0, for

7 < i < n—Fk. This shows that (Nc is the face of ¢, whose vertices are the points

belonging to the first j rows of (3.11), i.e., the points wg“'k, . ,wg'“k and the

points wg"'kﬂ(kﬂ)'”ﬂ(kﬂ), .. .,wZ"'kﬂ(k+1)"'”(k+i), where 1 <4 < j. In other
words, ( Nec = ¢ +d — w], where d’ = [w§*, ... ,wg"'kﬂ(kﬂ)'””(kﬂ_l)] <
d7. Clearly, the simplex n = [vo,. .., Uk, Un(kt1), - - - » Un(ktj—1)] 18 a face of

¢, because its vertices differ from v;. Consider the identity permutation ¢ of
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the set {m(k+1),...,7(k+j — 1)} and note that, by Lemma 3.2, the vertex
scheme of the cell ¢/ € L(n) coincides with the above described vertex scheme
of ( Nc and thus, { N ¢ = ¢]. However, ¢] € L(n). Since L(n) C L((), it
follows that { Nc € L(¢). Note that dime] =k +j — 1 =dimn.

The statement which we just proved implies that

(3.128) L(¢) D¢ N L(o),

because ¢ € L(o) implies (Nc¢ € L({). Note that (3.127) and (3.128) yield for-
mula (3.17). The final assertion of Theorem 3.6 that the union L = Uycx L(0)
is a cellular subdivision of K is an immediate consequence of (3.17). O

The following corollary is an easy consequence of Theorem 3.6.

COROLLARY 3.15. Let ¢, be cells from L(o) and let W(c), W(c) be
sets of their respective vertices. Then ¢ N ¢ is the conver hull of the set
W(e)NnW ().

PROOF. Since W(c) C ¢, W(c') C ¢ and eN ¢ is convex, it follows that
Conv (W(e) N W(c')) C enc. Conversely, let w be a vertex of cN¢’. By
Theorem 3.6, cNc¢ < cand cNc < ¢ and thus, w is a vertex of ¢ and
a vertex of /. Consequently, w € W(c) N W(c') C Conv (W (c) N W(c)).
Since ¢N ¢’ is the convex hull of the set of all of its vertices w, it follows that
encd C Conv (W(e) NW()). O

REMARK 3.16. The n-cells ¢ = ¢™ & dl of L(o) depend on the or-
dering of the vertices of o = [vg,...,v,], but the subdivision L(o) itself
is independent of that ordering. More precisely, ¢” does not depend on
the ordering of the vertices of 7, because, for 7 = [vp,...,v;], one has
¢ = [wf,...,w}]. However, d7 does depend on the ordering of the remaining
vertices of 0. Indeed, write o in the form o = [vo, ..., Vk, Var(kg1)s - - 5 VU (n)]
where 7’ is a permutation of {k + 1,...,n}. Consider a permutation 7 of
{k+1,...,n} and the simplex dy, obtained using the new ordering of the ver-
tices of 0. Putting vy = wvo,..., v, = Uk, Vjyy = Vp/(kg1)s--->Un = Uni(n),

the new ordering of o assumes the form o = [v/g,..., 0k, U ks1,...,0 0]

0k 0. kn(k+1 0... 0.k
and thus, dy = [w'y"",w'y (k- ),...,w'o "], where w'y"" = 1v/o +

kn(k
st (Vo o V'k) = gv0 + gy (vo + -+ o) = wg w'p D =

%v’oer(v’OJr. . .+’U/k+1}/n(k+1)) = %voer@oJr. . '+vk+vﬂ'/77(k‘+1)) =

0...kx'n(k
w)FTED Cete, S = %Uo—i—m(vo—f—. .Fv,) = wi". Consequently,

d; = [w8"'k, wg‘”kﬁ n(kJrl), o ,wg“'”]. However, this simplex has the form of

dl, when one uses the original ordering vy, ..., v, of the vertices of ¢ and
the permutation 7 = #n’'n. When 7 ranges over the set of all permutations
of {k+1,...,n}, # = n'n will also range over the set of all permutations of
{k+1,...,n} and thus, the set of all dj and the set of all d} coincide. It
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follows that also the set of all ¢ = c¢” @ d]} coincides with the set L(c) of all
cr=c" @d.

4. THE SECOND CANONICAL SUBDIVISION N (K)

4.1. We will first define the cellular complex N(o), for ordered n-
simplices ¢ = [vg,...,v,], contained in the vector space V. By definition,
N(o) consists of n + 1 n-dimensional convex polytopes ¢, 0 < i < n, and
of their faces. Most of the time there will be no danger of misunderstanding
if we simplify the notation ¢, to ¢f. To define c{, one considers the ho-
mothetic transformation xJ: o — o with center v; and ratio %, i.e., one puts
X7 (v)—v; = 2(v—v;), for v € 0. Then ¢}’ = x7[vo, ..., v;] is an i-dimensional
simplex, which lies in [vg, ..., v;] C Aff[vg,...,v;] and ¢//7 = xT[vi, ..., vp] is
an (n—i)-dimensional simplex, which lies in [v;, ..., v,] C Aff[v;, ..., v,]. The
intersection Aff[vg, ..., v;] N Aff[v;, ..., v,] = {v;}. Therefore, the direct sum
ci” @ 7 is well defined and has v; for its reference point. By definition,

(4.1) g =c’@cd’.

7 7
Note that ¢ is an n-dimensional convex polytope contained in Aff(c). More-
over, every point u € ¢ admits unique points v’ € ¢,” and u” € ¢/ such
that v = v + " — v;.

€3
A3

A3

AS
)

(YQ
€0 €2
ot

1

€

FIGURE 3. The decompositions N(A2%) and N(A3)

The following lemma describes the vertices and the faces of the n-cell
¢, when o = [vg,...,v,]. Recall that b* is the short notation for plvivsl =
2(v; +v;) (see (3.1)). Note that b’ = v;.

LEMMA 4.1. If o = [vg,. .., vs] i an ordered simplex and 0 < i < n, then
the vertices of the n-cell ¢ are the points
bot coo bY
0i+1 i1
(4.2) b o0b

o b
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The faces of ¢ are the convex hulls of the sets of vertices lying at the crossings
of a collection of rows with a collection of columns of (4.2). The n-cell ¢ is
contained in o.

PROOF. Since x7|[vo,...,v;] is an affine isomorphism, 0 < ¢ < n, and
X7 (v;) = $(v; +vj) = b, 0 < j < i, we see that ¢/ = x7[vo,...,v;] =
(b0, ..., b"] is a simplex with vertices %, ... b%.  Analogously, ¢”{
X7 [viy - yvn] = [b%,...,b™] is a simplex with vertices b, ... ,b". There-
fore, ¢? = (] @ "] is a convex polytope of dimension n with vertices
bit 4 btk — g, = %(’Uj + vg) = bk, where 0 < j < iandi < k < n. Since
Wk € o, it follows that ¢ C o. O

We will refer to (4.2) as to the vertex scheme of ¢. Similarly, we will
refer to the crossings of the rows and columns of (4.2), which span a face of
g as to the vertex scheme of that face. Note that when o = A™, then P/, Q!
and R, defined in Section 4 of [7], coincide with ¢7, ¢;” and c”g.

If o is the standard n-simplex A™ = [eo, .. ., €,], then ¢ is just the convex
polytope P, defined in [5], I1.1.3, using barycentric coordinates Ag, ..., A,
(with respect to A™) of points u € o and formula (4.3). This assertion follows

from the next lemma, putting o = [eg, . .., ep].

LEMMA 4.2. A point u € o belongs to ¢, 0 < i < n, if and only if
its barycentric coordinates Ao, ..., A\, with respect to o satisfy the following
condition,

(4.3) PO EDVES - S

PROOF. Assume that (4.3) holds and consider the points

(4.4) w' = Y0 20+ (1= U207 20 € Aff[v, .., v,
(4.5) w" =377 z+12)\ vj+ (1 =372 Z+12)\ )vleAff[vl,...,vn].
Since Y-7=0 A; =1, (4.3) implies 1 — Y=~ 12>\ >0and 1-377, 2); >0,
which shows that w' € [vg,...,v;] and w’ € [v,...,v,]. Defining points

L(w" —v;), we conclude

u',u” € o, by putting v’ —v; = F(w' —v;), v —v; =1
that v’ € ¢/” and u” € ¢!/?. Moreover, (4.4) and (4.5) imply that v’ +u" —v; =

T(w +w") = ijn)\-’uj = u, which shows that u € ¢/” & /7 = ¢7.

Conversely7 1f u € ¢f, then w is of the form v = v + v” — v;, where

u e d? ued’. Therefore, there exist points w’ € [UO, ..., v] and w” €
[Viy ..., U] such that v/ —v; = %(w'—vi), u' —v; = %(w”—vi). Let po, ..., 1
and v;,...,v, be the barycentric coordinates of w’ and w” with respect to
[vo, . vi] and [Ui, ..., vn], respectively. Then u = v’ +u” —v; = (v +
Zj o1 + i iZi vjvj. Since u = Y7I7F Ajvj, it follows that

)\] = 2/L], for0<j<i—1,and \; = %I/j, for i +1 < 7 < n. Consequently,
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Jj=i—1 _ Jj=i—1 1

Yizo N =320 M <gand YTt A = 52070 v < & and thus,
]'L _ n 17

im0 =1- gz+1)‘21*§*§ a

4.2. The main result in this section is the following theorem.

THEOREM 4.3. For any ordered n-simplex o € K, the n-cells ¢, 0 <1 <
n, together with their faces, form a cellular complex N(o), which has o for
its carrier, i.e., [IN(o)| =o. If ( < o is a proper face of o, whose ordering is
induced by the ordering of o, then N(¢) C N(o) and

(4.6) N({)=¢NN(o)={CNc|lce N(o)}.

If K is an ordered simplicial complex in V, then the union N = Uyex N(0)
is a cellular subdivision of K.

PrOOF OF THEOREM 4.3

4.2.1. Let us first prove that the intersection ¢f N ¢f, is a common face
of both n-cells ¢f and cf. It suffices to consider the case when i < /. We
will define an (n — 1)-dimensional affine manifold S C Aff (o) such that S is
a supporting hyperplane for both convex sets ¢/ and cf and thus, ¢/ NS is
a face of ¢ and ¢, NS is a face of ¢/. Moreover, we will show that the sets
¢ and ¢ lie in different halfspaces ST, S~ of Aff (¢) determined by S. Since
STNS™ =5, it follows that ¢ NcG = (¢f NS)N (g NS). We will also show
that the intersection (¢ N.S) N (¢ N'S) is a common face of ¢f NS < ¢f and
e NS < ¢f and thus, ¢/ Ncf is a common face of ¢ and cJ .

To define S, St and S, consider the function A: Aff(¢) — R, where
Aw) = YocjciNj. Put S = {u € Aff(0)[A(v) = i1, 8t = {u €
Aff(0)[A(u) > 3} and S~ = {u € Aff(¢)|A(u) < 3}. For the vertices bi*
of ¢7,0<j<i, i <k<n AW*) =1,if k=iand A(W*) =1 ifi <k
Consequently, A(u) > %, for every point u € ¢ and thus, ¢/ C S*. Similarly,
for the vertices b7% of %, 0<j5<i ¢ <k<n, A(bF) = , if j <4, and
A(bF) =0, if i < j. Consequently, A(u) < %, for every point u € ¢ and thus,
g C S~. Note that b° belongs to both sets ¢Z NS and ¢ N S, which shows
that these sets are not empty. It follows that S is a supporting hyperplane
for both n-cells ¢ and cJ.

Let us denote by W; the set of all vertices b* € ¢¢ which belong to
S and by W; the set of all vertices b’* € ¢%, which belong to S. Then
/NS = Conv(W;) and ¢ NS = Conv(Wy) (see [9, Lemma 6.2.3]). The above
stated results show that b]k eW,,ifandonlyif 0 <j<iandi+ 1<k <n,
while * € Wy, if and only if 0 < j < i and i/ < k < n. Since i +1 < 4’, we
see that W; C W; and thus, W; N W = W, consists of the last n — i’ + 1
rows of the vertex scheme of ¢f, which coincides with the first ¢ + 1 columns
of the vertex scheme of ¢,. Consequently, ¢/ NS = Conv(Wy ) is a face of
¢ NS = Conv(W;) and thus, ¢ Ncf = (¢ NS)N(cfNS) =i NS <cfNS.
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It follows that ¢ N ¢ is a common face of ¢, and ¢{. This completes the
proof that N (o) is a cellular complex.

Let us now show that the union of the n-cells ¢/, 0 <1 < n, equals o and
thus, |N(o)| = 0. Let u € o and let A,..., A, be its barycentric coordinates
with respect to o. Since Zogjgn Aj=1> %, there is a smallest index ¢,
0 < i < n, such that Zogjgi Aj > % Therefore, Zogjgi—l Aj < % Hence,
Lemma 4.2 shows that u € ¢7.

4.2.2. The next lemma will complete the proof of Theorem 4.3.

LEMMA 4.4. If 0 € K and ( < o is a proper face of o, whose ordering is
induced by the ordering of o, then N(¢) C N(o) and formula (4.6) holds. For
any cell ¢ € N(o), the intersection (Nc is a face of ¢, which belongs to N({).
If K is an ordered simplicial complex in V, then the union N = Uyex N(0)
is a cellular subdivision of K.

PRrROOF. Consider an ordered simplex ¢ in V' and a proper face { < o,
whose ordering is induced by the ordering of . In order to prove that N({) C
N (o), it suffices to prove this assertion in the special case when dim o—dim ¢ =
1. Indeed, if dimo — dim ¢ = k£ > 1, we consider a sequence of faces ( = (; <
... < (1 < o, where the dimensions of consecutive members differ by 1. By
the special case, one concludes that N(¢) = N(¢x) € ... € N(¢1) € N(o).
Now assume that o = [vg, ..., v,] and ¢ is the (n — 1)-dimensional face of o,
which does not contain the vertex vy, where 0 <[ <n,i.e.,( = SNo, where S
is the (n — 1)-dimensional affine manifold S = {u € Aff(o)|\;(u) = 0}. Since
every cell ¢; from N(() is a face of an (n — 1)-cell ¢ from N((), it suffices to
show that every (n — 1)-cell ¢ € N(¢) belongs to N (o), because then ¢; < ¢
will imply ¢; € N(o).

Let c = cg%, where 0 < ¢ < n and i # [. By Lemma 4.1, the vertex scheme
of ¢ = ¢, is obtained from the vertex scheme (4.2) of cJ, by deleting the row
bl .. b, when i < | and by deleting the column b' ...b", when i > [. In
both cases we see that cgi < ¢.. Since ¢ € N(o), we conclude that also
c=c§, € N(o). As in the proof of Lemma 3.14, N(¢) C N(o) implies

(4.7) N(Q) S¢NN(o).

We will now show that, for any cell ¢ € N(o), the intersection ¢ N ¢
is a face of ¢, which belongs to N(¢). By the argument given in the proof
of Lemma 3.14, it suffices to prove the assertion in the special case when
dimo — dim ¢ = 1. Moreover, one can assume that ¢ is an n-cell from N (o).
Indeed, an arbitrary cell ¢ from N(o) is a face of an n-cell ¢ € N(¢). By the
special case, (N ¢’ is a face of ¢/, which belongs to N(¢). Note that ¢ = ¢ N¢
and thus, ( Ne = ((Nc)Ne. Since (N and ¢ are faces of ¢ € N(o), it
follows that (N ¢’, ¢ € N(o) and their intersection ((N¢c’)Nc is a face of (N
and c¢. Since ( N ¢’ € N((), it follows that also (Nec=({(Nc)Nce N(C).
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Let us now assume that ¢ = [vg,...,v,], n > 1, ¢ is the (n — 1)-
dimensional face of o, which does not contain the vertex v;, 0 < | < n,
and ¢ = ¢, 0 <4 < n, is an n-cell of N(c). Note that ¢ = SN o, where S
is the (n — 1)-dimensional affine manifold S = {u € Aff(o)|\;(u) = 0}. Since
¢ C o implies ¢ = 0 N¢, it follows that (Nc=SNe.

We will first assume that ¢ = [. In the special cases, when 0 =i =1[1<n
or 0 < i =1 = n, the intersection ¢ Nc = @ and our assertion holds. Indeed,
if 0 =i = [ < n, the vertex scheme of ¢ consists of a single column 5% . .. ",
Since A\ (%) = Xo(b%) > 0, for 0 < j < n, we see that all vertices of ¢ are
contained in the convex set S~ = {u € Aff (o)A (u) > 0} and thus, ¢ C S~.
However, S~ does not intersect ¢ C S = {u € Aff(o)|\;(u) = 0} and thus,
c¢N¢ = . Similarly, if 0 < ¢ = [ = n, the vertex scheme of ¢ consists of a single
row b ... 6", Now X\/(b") = A\, (™) > 0, for 0 < j < n. Consequently,
¢ C 8> and again cN ¢ = 0.

Now assume that 0 < i = < n. Then b’ = 1(vg + v,) € (, because
00,V € (. Since b9 is a vertex of ¢, it follows that ¢ Nc # (). Clearly, ¢
and o are contained in the affine halfspace ST = {u € Aff(o)|\;(u) > 0} and
thus, S is a supporting hyperplane, for the n-cell ¢ = ¢J.. This implies that
(Ne=cNS is the face of ¢, whose vertices are all the vertices b/* of ¢, which
are contained in S, i.e., for which \;(b’%) = 0. These vertices are obtained
from the vertex scheme (4.2) by deleting the first row and the last column,
i.e., ( Nc is the face of ¢, having the following vertex scheme.

b0l+1 bl—1l+1

(4.8)
pon b
Putting on top of (4.8) the row b%~1 ... b'=1=1 we obtain the vertex scheme
of 05171 € N(¢). Consequently, (Ncis a face of c%hl and thus, it also belongs
to N(¢).

It remains to consider the case when i # [. In that case b* = v; is a vertex
of ¢ and thus, SNc=(Nec#0. Since ¢c,c C ST, one concludes that S is a
supporting hyperplane, for the n-cell ¢ = ¢ . Consequently, ( Nc =cN S is
the face of ¢, whose vertices are all the vertices b7* of ¢, which are contained
in S, i.e., for which \;(5"%) = 0. If i < I, these are all the vertices from (4.2),
except the ones belonging to the row 5% ...b". However, these are just the
vertices of ¢§ € N(¢) and thus, ( N ¢ = ¢§ . The same formula holds if I < 4,
because in that case, the vertices b/* of ¢, for which \;(b"%) = 0, are all the
vertices in (4.2), except the ones belonging to the column b ... b!". However,
these are just the vertices of cg% € N(¢). Hence, fori #1,(Nec= cgi belongs
to N(¢).

It is an immediate consequence of the assertion we just proved that

(4.9) CNN(0) € N(Q).
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Clearly, (4.6) follows from (4.7) and (4.9). The final assertion of Lemma 4.4
that N = U,ecx N (o) is a cellular subdivision of K is an immediate conse-
quence of (4.6). O

5. THE FIRST ITERATED CANONICAL SUBDIVISION L/(K)

5.1. In this section we first extend the definition of the cellular complex
L(0), associated with a simplex ¢ C V (considered in Section 3), to the
case of a cellular complex L(o @ o), associated with the direct sum o & o’
of an ordered pair (o,0") of simplices from V of dimensions dimo = k and
dimo’ = k’. We assume that o @ ¢’ is well defined, i.e., Aff(c) N Aff(¢’) is a
single point w and thus, 0 ® ¢/ = ¢ + ¢’ — w. We will first define the n-cells
of L(o & ¢'), where n = k + k’. Then L(c @ ¢’) will consist of all faces of
these n-cells. By definition, an n-cell of L(o @ ¢') is a convex polytope of the
form ¢ @ o', where c is a k-cell from L(o). Clearly, Aff(c) = Aff(o) and thus,
Aff(c) N Aff(0’) = {w}. Consequently, c® ¢’ = ¢+ ¢’ —w is a well-defined
n-dimensional convex polytope. If we denote by L,(c @ ¢’) the set of all
n-cells of L(o @& ¢’) and we denote by Ly(c) the set of all k-cells of L(c), we
put

(5.1) Ly(c®d")=Lg(oc)® o’ ={cd'|c € Li(o)}.

In other words, L, (c @ ¢’) is obtained from o ® ¢’ by applying the operation
Ly, to the first summand o, leaving the second summand ¢’ unchanged. If ¢’
is a 0-dimensional simplex *’, then Aff(¢’) = #’. The reference point of o & o’
is */, because Aff(c) N Aff(x') = ’. Consequently, for ¢ € L, (o), the direct
sum ¢ @ = ¢+« — ' = ¢ and thus, L,(c @ ') = {c® «'|c € L,(0)} =
{¢|c € L,(0)} = Lp(0). Therefore, L(oc ® *') = L(o) and we see that L(o) is
a special case of L(o & o).

To show that L(c @ ¢’) is indeed a cellular complex, it suffices to show
that any two n-cells c® ¢’ and ¢; @ o’ from L, (0 @ ¢’) intersect in a common
face. Let us first show that (c® o’) N (c1 @ 0’) = (¢cNer) + 0’ — w. Indeed,
dimec = dimo = k implies Aff(c) = Aff(0) and thus, Aff(c) N Aff(c’) =
Aff(o) N Aff(0’) = {w} so that c® ¢’ = ¢+ ¢’ —w. Analogously, ¢; ® o’ =
¢1+ 0o’ —w. Now assume that u € (c®o’)N(c; Po’). Thenu=s+t—w =
s1+t1 —w, where s € ¢ C Aff(0), s1 € ¢y C Aff(0) and t,t; € o' C Aff(o”).
Consequently, s —s1 +w = t; —t + w € Aff(0) N Aff(0’) = {w} and thus,
s=s1€cNe,t=t; €0’ It follows that u =s+t—we (cNey)+o0’ —w
and one obtains the inclusion (¢ @ o’) N (c1 ®o’) C (cNey) + 0 —w. The
converse inclusion is obvious. Since ¢ N ¢y is a common face of ¢ and ¢y, it
follows that (¢Ne¢1) + 0’ —w is a common face of ¢+ ¢’ —w = ¢ ® o’ and
cg+o —w=c ®o.

The carrier [L(c®0’)| = o ®o’. Indeed, if u € 0 B0’ = 0+ 0' —w, then u
is of the form u = s+t —w, where s € 0, t € ¢’. Since |Li(o)| = |L(0)| = o,
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there is a cell ¢ € L(o) such that s € c and thus, u = s+t—w € c+o' —w =
c®o €Lp(cdo’)C Lcdd).

5.2.  We will now apply the above described construction to cells ¢ from
the subdivision L(o) of a simplex o € K, described in Section 3. Recall that,
for an n-simplex o, with every n-cell ¢ € L, (o) is associated the ordered pair
of simplices (¢7,dL) such that ¢ = ¢ @ d7, 7 < g, dim7 = k. Therefore, L(c)
is a well-defined cellular complex with carrier |L(c)| = ¢. Its n-cells form the
set

(5:2) Ln(c) = Ln(c" @ d7) = Ly(c") © dr.

All other cells are faces of these n-cells. The first iterated canonical subdivision
L'(0) of an n-simplex o C V is defined by the formula

(53) L/(O') = UcGL"(a)L(C)-

If K is a simplicial complex in V', the first iterated canonical subdivision L'(K)
is defined by the formula

(5.4) L'(K) = Uper L' (0).

THEOREM 5.1. If o is a simplex in V, then L' (o) is a cellular subdivision
of L(0), hence, it is also a cellular subdivision of o. If ( < o, then L'(¢) C
L'(o) and L'(c) N ¢ = L'(¢). If K is a simplicial complex in V, then L'(K)
is a cellular subdivision of L(K), hence, it is also a cellular subdivision of K.

PRrROOF. First note that every face e* of ¢* € L'(¢) also belongs to L'(0).
Indeed, if dimo = n, there exists an n-cell ¢ € L, (o) such that ¢* € L(c).
Since L(c) is a cellular complex, it follows that also e* belongs to L(c) and
thus, e* € L'(0). To prove that L'(c) is a cellular complex, we still need to
prove that the intersection of two cells ¢*, ¢f from L'(o) is a common face of
these cells. By definition, there exist cells ¢,¢; € L,(0) C L(o) such that
¢* € L(c) and ¢ € L(c1). There is no loss of generality in assuming that
c*,cf are n-cells, i.e., ¢* € Ly(c), ¢t € Ly(c1). Indeed, arbitrary cells from
L(c) and L(cy) are faces of n-cells from L(c) and L(ey), respectively. If the
latter cells intersect in a common face, then so do the original cells.

Since L(o) is a cellular complex, the intersection a = ¢N¢; is a common
face of both cells ¢ and ¢;. We will define a cellular complex L(a) and we will
show that

(5.5) anc*,ancd € L(a).

Note that (5.5) implies that the intersection (aNc¢*)N(aNcy) is a common face
of anc* and aNc}. Since ¢* C cand ¢f C ¢y, it follows that ¢*Nef C cNep =a
and thus, ¢* Nef = (anNc®) N(anci). Consequently, (5.5) implies

(5.6) " Nel <anc’, ¢"nef <ang.
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The desired assertion that ¢* N ¢} is a common face of the cells ¢* and ¢} will
follow, if we also show that

(5.7) anc* <c*, and <cf.

We will now define L(a). By Lemma 3.4, applied to a < ¢ = ¢, there
are simplices ¢,, dq, which are faces of a, such that the vertex scheme of ¢, is
the first row of the vertex scheme of a and d, is the first column of the vertex
scheme of a. Moreover, a = ¢, @ d, and the reference point w is the only
common vertex of ¢, and d,, i.e., w = w?"'kﬂ(k+1)"'ﬂ(k+l). We define L(a) by
putting L(a) = L(ca) ® do = L(ca) + do — w.

Let us prove that the cellular complex L(a) is completely determined by
a, i.e., it does not depend on c. This means that, if we have another n-cell ¢; =
cjrll € L(o) such that a < ¢; and perform the above construction, the resulting
cellular complex L'(a) will coincide with L(a). Indeed, this time Lemma 3.4
will give us faces cq,d. of a such that a = ¢, & d. = ¢, + d. — w!, where
the reference point w! is the only common vertex of ¢, and d.. Moreover,
the construction will give us the cellular complex L'(a) = L(c,) & d} =
L(cy) +dL —w'. Note that the first summand c, is the same as in the case of
the n-cell ¢ = ¢I, because ¢, is completely determined by a alone (see Lemma
3.4). To prove that L'(a) = L(a) we need to prove that d, —w = d} — w?.

Since d} < a, the vertex scheme of d} consists of the crossings of a set
of rows with a set of columns of the vertex scheme (3.16) of a. Since w! is a
vertex of ¢, and the vertices of ¢, fill up the first row of (3.16), it follows that

0..km(k+1).
wl = kTt

i ”ﬁ(kﬂ), for some 0 <[ < r. Moreover, we see that the set of
rows includes the first row and the set of columns includes the j;-th column.
It cannot include any other column, because the crossing of that column with
the first row would be a vertex of d}, different from w! and belonging to
ca- However, d! has only one vertex in common with ¢,. This proves that
the vertex scheme of d! is a subscheme of the ji-th column of (3.16). The
number of vertices of d. equals dimd. + 1. However, ¢, ® d, = a = ¢, ® d:
implies that dimd. = dimd, = r. Consequently, d: has r + 1 vertices and
thus, the vertex scheme of d is the whole j-th column of (3.16). Finally,
translation by wj — w7 is a bijection between the vertices of the j-th column
and those of the j;-th column, which implies that d} = do+w] —wj. However,
wl — w = w;)l...kﬂ(kJrl)mw(kJrz) . w;)...kﬂ'(kJrl)mw(kJrz) _ w]Ql_..k . U}]Ok and we
obtain the desired relation d} = d, + w' — w.

We will now show that

(5.8) anL(c) = L(a), anL(ci) = L(a).

Recall that ¢ = ¢” @ d] = ¢ +d} — wj and thus, L(c) = L(¢") & d] =
L(c™) +dL —wj. Let /4, d g, cq and d, be as in Lemma 3.4. Then ¢/, < 7,
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d,<d,a=c,+d,—w] and thus, by 2.7,
anLc)=(do+ds—wl)N (L) +dL —wp)
= (oNL()+ (dandl) —wj.

By (3.17) (with o = ¢" and ( = ¢/,), ¢oNL(c™) = L(¢,). Moreover, d' ,Nd% =
d'qand we see that a N L(c) = L(c/y) + d'q — w]. On the other hand, since

a = cq & dy and w?"'kﬂ(k+1)"'ﬂ(k+i) is the corresponding reference point, it

follows that L(a) = L(c,) ® dy = L(ca) + do — qu"'k”(k+1)"'w(k+i). Taking
into account that d, = d’, +w] —w{, we see that L(a) = L(ca) + (d'a +w] —

Ok (kt1)..om (ki) _ L(cy) +d'o — wg'”kﬂ(kﬂ)”‘ﬂ(kﬂ). Now note that

j
translation by w) FTETD- D 0.k g g bijection between the vertices

of ¢4 and ¢, (see Lemma 3.4) and thus, it is an affine isomorphism between
the simplices ¢/, and ¢,. Therefore, L(c,) = L(cs) + wg”‘kﬂ(kﬂ)”'ﬂkﬂ) -
wdk. Tt follows that L(a) = (L(cs) + wg'”kﬂ(kﬂ)”‘ﬁ(kﬂ) —wd k) +dy —
w) AT p Y+ dy — wdF = an L(c). This establishes the
first of the two relations in (5.8). The second one, follows by symmetry.
Since ¢* € L(c), we see that anc¢* € aN L(c) = L(a). Analogously,
anct € anL(cf) = L(a). Consequently, anc* and aNcj are cells of the cellular
complex L(a), i.e., (5.5) holds. To complete the proof that ¢*Ncj is a common
face of ¢* and ¢f, it remains to prove (5.7). Since L(c) = L(c™) + dI — w{,
every n-cell ¢* € L(c) is of the form ¢* = ¢ + dT — w{, where ¢ € L(c").
Taking into account that @« = ¢/, + d', — w(, where ¢/, < ¢" and d', < dT,
we see that aNc¢* = (g +d'o —wi) N (d +d7 —wl) = e+ d', —wf, where
e=d,Nd €dyNL(c). Since ¢ is a simplex, ¢ € L(¢") and ¢/, < ¢7,
Lemma 3.14 (with ¢, ¢, and ¢’ as o, ¢ and ¢) shows that ¢/, NL(c™) = L(c4,).
Since ¢/, < 7, we see that L(c,) C L(c¢™) and thus, e = ¢/, N is a cell
of the cellular complex L(c™). However, ¢’ is also a cell of L(c"). Therefore,
the intersection e N ¢’ = e of these two cells is a common face of both cells.
In particular, e = ¢ N/, < . Since d'; < d7, we conclude that a N ¢* =

T

e+dq,—wl < +dl —w] =c*. By symmetry, we also have a N ¢ < ¢f.

wf) —w

5.3. L'(0) is a subdivision of L(o), because the carrier |L(c)| = ¢, for
¢ € L,(0). Since L(o) is a subdivision of o, it follows that L’(0) is also a
subdivision of . That ¢ < ¢ implies L'(¢) C L’(s) is an immediate conse-
quence of definition (5.3) (for ¢ and o) and of the fact that ¢ < o implies
L(¢) € L(o) (see Theorem 3.6). Since all cells in L'({) are contained in ¢, we
see that L'(¢) N ¢ = L’(¢) and thus, L'(¢) C L'(c) implies

(5.9) L'(Q) € L'(o) NC.
To prove the opposite inclusion

(5.10) L'(e)n¢ S L'(C)
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and thus, obtain the equality L'(c) N ¢ = L'(¢), it suffices to prove that
e* € L'(o) implies e*N¢ € L'(¢) in the special case when dim e* = n. Indeed,
every cell e* € L'(0) is the face of an n-cell ¢* € L'(0). Since e* C ¢*, it
follows that e* = e* N ¢* and thus, e* N ¢ =e* N (c* N (). By the special case,
c*N¢ e L'(¢) C L o). Since L'(0) is a cellular complex and e*,¢* N ¢ are
two cells of L'(0), their intersection e* N (¢* N ¢) = e* N ¢ is a common face
of e* and ¢* N (. In particular, e* N ¢ is a face of ¢* N (. Since ¢* N ¢ € L'(¢)
and L'({) is a cellular complex, it follows that also e* N ¢ € L'(Q).

Now assume that ¢* € L'(0), dimc¢* = n. To prove that ¢* N ¢ € L'((),
it suffices to prove the assertion in the special case when dimo — dim{ = 1.
Indeed, if dimo — dim{ = k > 1, then we consider a sequence of faces ( =
(x < ... < (1 < o, where the dimensions of consecutive members differ by
1. By the special case, L'(c) N¢y € L'(¢1) and L'(¢1) N ¢ € L'(¢2). Since
G2 € ¢ and |L'(G2)| € ¢z and thus, (1 N (2 = (2 and L'(¢2) N (2 = L'(¢2), we
see that L'(0) N (o C L'(¢1) N {2 C L'(¢2). Repeating this argument k times
we obtain the desired conclusion.

We will now prove the assertion assuming that o = [vg, ..., v,], ¢* € L'(0)
is an n-cell and ¢ is the (n—1)-dimensional face of o not containing the vertex
vy, where 0 < I < n. By definition, there exists a cell ¢ € L(o) such that
¢* € L(c). If ¢ is the central n-simplex ¢° of L(o), then ¢*N¢ =0 € L((),
because ¢* C ¢ = ¢? C Int(o) and ¢ C do. Therefore, it suffices to consider
the case when c¢ is a peripheral n-cell ¢ = ¢” @ d7 € L(o). There is no loss
of generality in assuming that 7 = [vg,...,vg], where 0 < k < n and 7 is a
permutation of the set {k + 1,...,n}. The proof of Lemma 3.14 contains an
argument which shows that 0 < [ < k implies ¢ N ¢ = @. Since ¢* C ¢, it
follows that also ¢* N ¢ = 0.

Now consider the case when k + 1 < [ < n. The proof of Lemma 3.14
contains an argument which shows that there is a face d’ of d7. and there is
a face n of ¢ such that cN¢ =c¢" ®d' = +d’ —w] € L(n). Moreover,
dim(c™ @ d’) = dimn and thus, ¢™ @ d’ € L(n). On the other hand, ¢ =
¢™ @ dL implies that L(c) = L(c) @ d7. Therefore, ¢* € L(c) is of the form
c*=e®d. =e+dl —wj, where e € L(c™). Since ¢* C¢,e Cc¢” and d’ < dT
and thus, eN¢™ = e and d’ NdL = d’, we see that ¢*N¢ =c*N(eN() =
(e@di)N(c"®d’")=edd’ € L(c")@®d’. Note that L(c” @ d') is well defined,
because ¢ @ d’ € L(n). Consequently, L(cN{) = L(c" ®d') = L(¢") & d’ and
thus, ¢*N¢ € L(eN(¢) € L(cN(). This and the relation cN¢ = ¢" @®d’ € L(n)
show that ¢* N ¢ e L'(n) € L'(C). O

6. THE SECOND ITERATED CANONICAL SUBDIVISION N'(K)

6.1. In this section we first extend the definition of the cellular complex
N(o'), associated with an ordered simplex o’ from V (considered in Section
4), to the case of a cellular complex N(o @ o), associated with the direct
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sum o @ o’ of an ordered pair (o,0’) of simplices from V, where dimo = k,
dimo’ = k' and ¢’ is an ordered simplex. We assume that o @ o’ is well
defined, i.e., Aff(o) N Aff(0”) is a single point w and thus, c® o’ = o0+’ —w.
We will first define the n-cells of N(oc@®o’), where n = k+k’. Then N(o @ o’)
will consist of all faces of these n-cells. By definition, an n-cell of N (o & o’)
is a convex polytope of the form o @ ¢/, where ¢’ is a k’-cell from N (¢’).

Clearly, Aff(¢') = Aff(0’) and thus, Aff(o)NAff(¢') = {w}. Consequently,
c®cd =0+ —wis a well-defined n-dimensional convex polytope. If we
denote by N, (o @ ¢’) the set of all n-cells of N(o @ ¢’) and we denote by
Ny (0') the set of all k'-cells of N(¢'), we put

(6.1) Ny(c®od')=0® Np (o) ={oca | € Ni (o)}

In other words, N,,(c @ ¢’) is obtained from o @ ¢’ by applying the operation
Ny to the second summand o', leaving the first summand o unchanged. If o
is a 0-dimensional simplex *, then Aff(c) = *. The reference point of o ® o’
is *, because Aff(x) N Aff(¢’) = *. Consequently, for ¢ € N, (0’), the direct
sum * & ¢ = x4+ —x = ¢ and thus, Ny(x @ o’) = {xd |’ € N,(0o)} =
{d|d € Nn(c')} = N,(0’). Therefore, N(x @ ¢’') = N(o’) and we see that
N(c') is a special case of N(x @ o’).

The proof that N(o @ ¢') is a cellular complex with carrier o @ o’ is
analogous to the corresponding proof for L(c & o’).

6.2. We will now apply the above described construction to cells ¢ from
the subdivision L(o) of a simplex o € K, described in Section 3. Recall that,
for an n-simplex o, with every n-cell ¢ € L, (o) is associated the ordered pair
of simplices (¢7,d~) such that ¢ = ¢” @ dL, 7 < o, dim 7 = k. Note that dT is
endowed with a natural ordering, given by the ranks of its vertices. Therefore,
N(e) = N(c" @ d7) is a well-defined cellular complex with carrier |[N(c)| = c.
Its n-cells form the set

(6.2) Na(c) = Np(c™ @ d7) = ¢ & Ny_i(dT).

All other cells are faces of these n-cells. The second iterated canonical subdi-
vision N'(o) of an n-simplex o C V is defined by the formula

(63) NI(U) = UceLn(a)N(c)'

If K is a simplicial complex in V', the second iterated canonical subdivision
N'(K) is defined by the formula

(6.4) N'(K) = Uyex N'(0).

THEOREM 6.1. If o is a simplex in V', then N'(o) is a cellular subdivision
of L(c) and 0. If { < o, then N'(¢) C N'(0) and N'(c)N¢ =N'(¢). If K is
a simplicial complex in V', then N'(K) is a cellular subdivision of L(K) and
K.
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PROOF. As in the proof of Theorem 5.1, it readily follows that faces of
cells belonging to N’(o) also belong to N'(0). Therefore, to prove that N'(o)
is a cellular complex in V, it suffices to prove that the intersection c® N ¢}
of two cells ¢*, ¢} from N'(0) is a common face of these cells. If dimo = n,
there are n-cells ¢, ¢y € L(o) such that ¢®* € N(c), ¢} € N(c1). As in the proof
of Theorem 5.1, there is no loss of generality in assuming that ¢®* and c} are
n-cells of N(c) and N(cy), respectively.

Since L(o) is a cellular complex, the intersection a = ¢N¢; is a common
face of both cells ¢ and ¢;. We will define a cellular complex N(a) and we will
show that

(6.5) anc® e N(a), anc] € N(a).

Note that (6.5) implies that the intersection (aNc®)N(aNc}) is a common face
of anc® and aNcy. Since ¢®* C c and ¢} C ¢y, it follows that c*Nc} C cNey =a
and thus, ¢®* Net = (anc®)N(anc}). Consequently, (6.5) implies

(6.6) c*Nel <anc®, ¢*Net <anc.

The desired assertion that ¢® N ¢} is a common face of the cells ¢* and ¢} will
follow, if we also show that

(6.7) anc® <c®, anc <.

We will now define N(a). By Lemma 3.4, applied to a < ¢ = ¢I, there
are faces c,,d, of a such that the vertex scheme of ¢, is the first row of
the vertex scheme of a and d, is the first column of the vertex scheme of
a. Moreover, a = ¢, & d, and the reference point w is the only common
vertex of ¢, and d, i.e., w = w?"'kﬂ(kﬂ)mw(kﬂ). We define N(a) by putting
N(a) = cq @ N(d,) = ¢q + N(d,) — w. Note that the vertices of any column
of the vertex scheme of a are ordered by their ranks. Consequently, N(d,) is
well defined.

Let us prove that the cellular complex N(a) is completely determined by
a, i.e., it does not depend on c¢. This means that, if we have another n-cell ¢; =
cfl € L(o) such that a < ¢; and perform the above construction, the resulting
cellular complex N'!(a) will coincide with N(a). Indeed, this time Lemma 3.4
will give us faces c,,d} of a such that a = ¢, ®d} = ¢, +d. —w?, the reference
point w! being the only common vertex of ¢, and d. and the construction
will give us the cellular complex N'(a) = ¢, ® N(d}) = co + N(d}) — w'.
Note that the first summand ¢, is the same as in the case of the n-cell ¢ = ¢,
because ¢, is completely determined by a alone. To prove that N'(a) = N(a)
we need to prove that

(6.8) N(d}) = N(d,) + (w' — w).

As in the proof of Theorem 5.1, there is an [, 0 < [ < r, such that the
vertex scheme of d. is the ji-th column of the vertex scheme (3.16) of a and
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the only common vertex of ¢, and d} is the vertex w! = wa‘”k”(kﬂ)'”ﬂ(kﬂ).
Moreover, w! —w = qul P (kL) () —wg P (kL) (k) Wk —awd-F,
We know by Lemma 3.4, that translation by w! —w = w]Ql"'k —wjof“k is an affine

isomorphism between the simplices d, and d}, which preserves the ranks of

the vertices and thus, it preserves the ordering of these simplices. The equality
(6.8) is an immediate consequence of this fact.
We will now prove that

(6.9) aNN(c)=N(a), anNnN(c1)= N(a).

Sincea=c'y+d'y —wj, N(c) =c"+ N(dZ) —w] and ¢/, <7, d', < dT
(notation as in Lemma 3.4), by 2.7, aNN(c) = (¢'oNc™)+(d' NN (dL)) —w].
By (4.6) (with 0 =dT and ( = d',), one has d', N N(d7) = N(d). Moreover,
doNe™ =, and we see that aNN(c) = ¢/, + N(d',) —w]. On the other hand,

(.).,.kﬂ'(kJrl)HJr(kJri) .
J

a=cqa®d, and w=w is the corresponding reference point.

Therefore, N(a) = ¢, ® N(d,) = ¢o + N(da) — WA EED T CGince ¢ =

J
s +w8...k7r(k+1)~.7r(k+z) B w8“‘k, one has N(a) _ (C/a + wg...kﬂ(k—i-l)...w(k-i-z) .

wd k) + N(d,) — w?‘“k”(kﬂ)'””(kﬂ) = 4 + N(dy) — w}. Now recall that
translation by w] —wy is an order preserving bijection between the vertices of

d', and d, (see Lemma 3.4) and thus, it establishes an isomorphism between
N(d'y) and N(d,). Consequently, N(d,) = N(d's) + w] — wg. It follows

that N(a) = ¢q + (N(d'a) +w] — wf) — w) FTEFD7EED — 4 N(a,) —

w R D) 4 N(d!,) — wf = an N(c). This establishes the first
of the two relations (6.9). The second one follows by symmetry.

If ¢* € N(c), then aN¢® € aN N(c) and by the first of the two relations
(6.9), one concludes that a N ¢®* € N(a). Using the second relation of (6.9),
we see that ¢§ € N(c1) implies ane} € a N N(e1) = N(a). Consequently,
both relations (6.5) hold. To complete the proof that ¢®* N ¢} is a common
face of ¢® and ¢}, it remains to prove (6.7). Since N(c¢) = ¢™ + N(dL) — w,
every n-cell ¢®* € N(c) is of the form ¢®* = ¢™ + d' — w{, where d' € N(d7).
Taking into account that @ = ¢/, + d', — w(, where ¢/, < ¢™ and d', < dT,
we see that anNe® = (¢" +d —wi) N (o +d o —wf) = o + e —w], where
e=d nd, e N(d)Nd,. Since dT is a simplex, d € N(dL) and d',, < dT,
Lemma 4.4 (with d7,d’, and d’ as 0, ¢ and ¢) shows that d',NN(dL) = N(d',).
Since d', < dI, we see that N(d'y) € N(dL) and thus, e = d' Nd', is a cell of
the cellular complex N(d7). However, d’ is also a cell of N(dZ). Therefore,
the intersection e Nd’ = e of these two cells is a common face of both cells.
In particular, e = d' Nd’, < d’. Since ¢/, < ¢7, we conclude that a N¢® =
dote—wf < c™+d —w] = c*, which establishes the first of the two relations
in (6.7). The second one, follows by symmetry.
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6.3. The cellular complex N’(o) is a subdivision of L(o), because
IN'(c)| = ¢, for ¢ € L(o). Since L(o) is a subdivision of o, it follows that
N'(0o) is also a subdivision of o. The proof that ¢ < o implies N'({) C N'(0)
is analogous to the proof of the corresponding relation for L’ (see Theorem
5.1). The same situation is with the proof of the relation

(6.10) N'(¢) C N'(o) N¢.
To prove the opposite inclusion
(6.11) N'(c) n¢ C N'(¢),

we proceed as in the proof of Theorem 5.1 and reduce the proof to the case
when ¢ = [vg,...,v,] and ¢ is the (n — 1)-dimensional face not containing
the vertex vy, where 0 < I < n. If ¢* € N’(0), then there exists an n-cell
¢ € L(o) such that ¢®* € N(c). If ¢ is the central n-simplex from L(c), then
c®* N ¢ =0, because ¢®* C ¢ = ¢ C Int(o) and ¢ C do. Therefore, it suffices
to consider the case when ¢ is a peripheral n-cell ¢ = ¢ € L(o). There is no
loss of generality in assuming that 7 = [vg, ..., vx], where 0 < k < n and 7 is
a permutation of the set {k+ 1,...,n}. We saw in the proof of Lemma 3.14
that 0 <1 < k implies cN¢ = (. Since ¢® C ¢, it follows again that ¢®* N ¢ = 0.
Therefore, it suffices to consider the case when £k +1 <1 < n.

We saw in the proof of Lemma 3.14 that, for k+1 < [ < n, the intersection
c¢N¢ belongs to L(¢) and it is of the form ¢N{ = ¢” G d’, where d’ is a face of
dr. Moreover, N(c) = N(c¢"&dL) = ¢" ®N(dL). Since ¢* € N(c), there exists
a face ¢/ < ¢™ and there exists a cell e € N(d7) such that ¢®* = ¢’ @ e. Since
¢*® C ¢, it follows that ¢*N¢ = ¢*N(eNC) = (d@e)N(c"®d’) = (dNe™)d(end’).
By (4.6), d’ < dZ and e € N(dL) imply N(dZ)Nnd’ = N(d’) and thus,
enNd’ € N(d’). On the other hand, ¢ N¢™ = ¢ is a face of ¢™. Therefore,
e*N¢=(dnNe)@(end’)=c®d(end’) € "BN(d’) = N(c"®d’) = N(en().
Since, ¢cN¢ € L(¢), we obtain the desired conclusion that ¢*N¢ € N'(¢). This
completes the proof of (6.11). That N’ = N’(K) is a cellular subdivision of
L(K) is an immediate consequence of the equality N'(o) N ¢ = N'((). O

7. THE ISOMORPHISM ¢: L'(K) — N’(K) AND THE SELFHOMEOMORPHISM
0: K| — |K|

The main results of this section and of the whole paper are the following
theorems, valid for every simplicial complex K in V.

THEOREM 7.1. There exists an isomorphism of cellular complexes
¥: L'(K) — N'(K), given by a sequence of functions 9y : L) (K) — N;(K),
k € {0,1,...}. For every n-simplex 0 € K, the restrictions V|L} (o),
0 < k < mn, form an isomorphism of cellular complexes ¥°: L'(c) — N'(0o).

THEOREM 7.2. There exists a selfhomeomorphism 0: P — P of the car-
rier P = |K| such that, for every simplex o € K, 0|o is a selfhomeomorphism



272 S. MARDESIC

of o. Moreover, for every k-cell ¢* € L'(0), 0 < k <n, n=dimo, the restric-
tion 0|c* is an affine isomorphism between c* and the k-cell 9x(c*) € N'(K).

Figure 4 shows the complexes L’'[vg,v1,v2] and N'[vg,v1,v2]. In that
case, there is an obvious way of defining an isomorphism ¢ between the two
complexes and a selthomeomorphism 6: [vg,v1,v2] — [vg,v1,v2], Whose re-
strictions to the cells ¢* of L'[vg,v1,v2] are affine isomorphisms between c¢*
and 9(c*).

V2 V2

Vo U1 Vo V1
FIGURE 4. The decompositions L'[vg, v1,v2] and N'[vg, v1, v2]
PROOF OF THEOREMS 7.1 AND 7.2. In the general case, a complete proof
of these theorems is rather lengthy and consists of a sequence of steps.
7.1. Step (7). We begin the proof with the following lemma.

LEMMA 7.3. For any n-simplex 0 € K, the sets of n-cells L, (o) and
N/ (o) have the same cardinal numbers,

(7.1) card(L!, (o)) = card(N} (o)) = (n + 1 'zn: (n—k+1)
. n - n Pt k’ +1 .
PROOF. If 0 = [vg,...,v,], then the n-cells of L(o) are of the form cZ,

where 7 is a face of o and 7 is a permutation of the set of vertices of o, which

do not belong to 7. If dim7 = k, there are n — k such vertices and thus, there
are (n — k)! such permutations. There are (Z_ﬁ) k-faces 7 of o and therefore,
the n-cells ¢ with dim 7 = k yield (Zﬁ) (n—k)! = % (n—k)! = EZIB:
n-cells of L(o). Since k ranges from 0 to n, one concludes that

B ~ (n+1)!
(7.2) card(L,(0)) = ;) T

On the other hand, the n-cells of N (o) are of the form ¢, where 0 < i < n.
Therefore,

(7.3) card(N, (o)) =n+ 1.
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In order to obtain the n-cells of L/ (o), every n-cell ¢ = ¢” & dZ of L, (0)
with dim 7 = k is subdivided by replacing the k-simplex ¢” by the k-cells of

Li(c™). Therefore, it yields card(Ly(c™)) n-cells of L/ (o). Since there are
(n+1)!

g7 nocells ¢ with dim 7 = k, they generate EZIB, card(Lg(c™)) n-cells of

L (o). Formula (7.2), applied to the k-simplex ¢, shows that
(k+1)!
(I+1)!°

Since k ranges from 0 to n, one concludes that
n k
n+1) (k+1)! (n+1)!
. d(L] = .
(75) car(n(d)) ;(k‘-‘rll Z+1 ) ZZ(Z+1)'

On the other hand, to obtain the n-cells of N}, (o), every n-cell ¢ = ¢”®d]
of L,(o) with dim7 = k is subdivided by replacing the (n — k)-simplex df.
by the (n — k)-cells of N,,_x(d~)). Therefore, it yields card(N,,_(dZ)) n-cells

of N/ (o). Since there are EZIB: n-cells ¢ with dim7 = k, they generate

(7.4) card(Lg(c")) = Z

=0

%card(Nn,k(d;)) n-cells of N/ (o). Formula (7.3), applied to dZ, shows
that
(7.6) card(N,—i(dr)) =n—k+ 1.
Since k ranges from 0 to n, one concludes that
" (n+1)!
(7.7) card(N;, (o)) = > (k+1)|(n—k+1).
k=0 ’

To see that the right sides in (7.5) and (7.7) are equal, it suffices to change
the order of summation in the double sum of (7.5). Indeed,

" n+1 "N (n+1)! " (n+1)!
8 L3 =LY X )

O

EXAMPLE 7.4. For o = [vg, v1, U2, v3], card(Ls(o)) = 41, card(N3(0)) = 4
and card(L4 (o)) = card(N4(o)) = 141.

7.2.  Step (i1). For every n-simplex o = [vg,...,v,] € K, we will define
a function ¥7: L! (0) — N, (o) from the set of n-cells of L'(c) to the set
of n-cells of N (o). Recall that every n-cell ¢* € L] (o) admits an n-cell
¢ € Ly(0) such that ¢* € L,(c). By the definition of L(c), ¢ is of the form
¢ = ¢ @d] and has wf for its reference point. It suffices to define ¥7(c*) in
the case when 7 = [vg,...,v;], 0 < k < n, and thus, 7 is a permutation of
the set {k+1,...,n}. Let a": ¢" — 7 be the affine isomorphism, which maps

the vertices wi¥, ... ,wg"'k of ¢” to the vertices vy, ..., v of 7, respectively.
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Clearly, L (c™) coincides with (a7)~!(Lg (7)) and thus, L, (c) = Li(c7)®dL =
(a™)"Y(L(7))®dL, the reference point being w]. Since c¢* is a cell from L,,(c),

there exists a k-cell ¢Z, = ¢" @ d7, € Li(r) with reference point wfj , such
that

(7.9) ¢ = (@) () @ d,

the reference point being w(. It suffices to define ¥9(c*) in the case when
7 = [vg,...,o], 0 < k' < k, and thus, 7’ is a permutation of the set
{k' +1,...,k}. In this and similar situations in this section one encounters

chains of simplices 7/ < 7 < ¢ and cells c;l, = @ d;/, Note that 7’ is the
permutation of the vertices of 7 (not of o), which do not belong to 7'.

Recall that every ¢* € N/ (o) admits a cell ¢ € L,(0) such that ¢* €

N, (c). Note that c is of the form ¢ = ¢ & dZ. If 7 = [vg,...,v5], 0 < k <

n, then ¢ has w{ for its reference point and 7 is a permutation of the set

{k+1,...,n}. Consider the affine isomorphism Z: dZ — A"~*_ which maps

0..% wg“‘ﬁ(kﬂ)

i 0...n T :
the vertices wy ", ,-.,wy " of dZ to the vertices eg, ... ,en_z_of

A"k respectively. Clearly, N, z(dZ) coincides with (8Z)~H(N,,_z(A"™))

and thus, N, _;(c) =™ & N, 4(dZ) = ™ & (B2) "' (N, _5(A"%)). Since c*

is an n-cell from N(c), there exists an (n — k)-cell P"~% in Nn_E(A"_%),

0<1< n—E, such that

(7.10) = e (B (P,

the reference point being wy. Recall that the cells P;* were defined in 4.1.
Given c* as in (7.9), we define 95 (c*) = ¢* € N, (o) by specifying the

data (7,7,7) in (7.10) as follows. Put 7 = 7’ and note that & = dim7 =

dim7’ = k'. Put i = k — k', where k = dim7. Define the permutation 7 of

{k+1,...;n}={K+1,...,k,...,n} by putting T = 7’ U 7, where

(7.11) (Tum{k +1,....k} =7,
(7.12) (rum{k+1,...,n} =m.
Consequently,

(7.13) ¢ =09(c*) = ¢ @ (8L (P,

the reference point being wgl.
7.3. Step (ii7).
LEMMA 7.5. The function 97 : L] (o) — NJ (o) is a bijection.

PRrROOF. In view of Lemma 7.3, it suffices to prove that 9% : ¢* € L] (o) —

N/ (o) is a surjection. Indeed, let ¢®* € N (o) be as in (7.10). Consider
* € Ll (o) as in (7.9), where 7,7/, 7, 7" are specified as follows. Put 7/ =
= [vo,.. -, vg], T = [0s - VR VaFpaye - Un(ipyy)- Note that & = k and

e}
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k =k +i. For n’ take the identity permutation of {7(k + 1),...,7(k +14)}
and for 7 take the identity permutation of {#(k+i+1),...,7(n)}. We claim
that ¥2(c*) = ¢*. Indeed, 7/ in (7.11) becomes 7. The role of {k¥' +1,...,k}
in (7.11) is now taken by {F(k+1),...,7(k +1i)} and the permutation 7’ LI 7
of that set reduces to «’, which coincides with the identity. Therefore, the
permutation 7’ Ur of {w(k+1),...,7(k-+i)} is also the identity. Analogously,
the role of {k+ 1,...,n} in (7.11) is now taken by {7(k +i + 1),...,7(n)}
and the permutation 7’ L7 of that set reduces to 7, which coincides with the
identity. Therefore, 7’ U7 on {7(k +i + 1),...,7(n)} is also the identity.
Consequently, the permutation 7/ U of {7(k + 1),...,7(n)} is the identity
permutation. It follows that the permutation 7’ L7 of {w(k+1),...,7(k+i)}
is also the identity. It follows that the sequence (7' U7)(7(k + 1)),..., (7" U
7)(7(n)) coincides with the sequence (7T(k + 1)),...,(7(n)). Now note that

the vertices of ), form the sequence w)) ~*(™" HHTEFL 1 0 ke (rm)E(n)
which coincides with the sequence wg"'kﬂkﬂ), ey wg"'k'”ﬂn) of the vertices

of dZ. Consequently, ﬂliuw = fZ. Finally, Plll—_kk'/ in (7.11) becomes PI?—_EE -

Pi”_E and we conclude that indeed, ¥2(c*) = c°. O

7.4. Step (iv). For an n-simplex o € K and for ¢* € L), (o), ¢® =99(c*) €
N/ (o), we will now define an affine isomorphism 6J.: ¢* — ¢*. By definition,
69. is the composition §9. = 09267 of two affine isomorphisms 6%} and 692.
The first one 0% : ¢* = (@”)~'(cl,) ® dl — ¢, ®dl = (¢” ©dL,) @ d] is
defined by putting

(7.14) 991 = (" |(@™)"H(cD))) @ 1,

the reference point being wg. This is a well-defined affine isomorphism, be-
cause the mapping o7|(a”)"1(cL,): (a7)"Y(cI,) — &, is an affine isomor-
phism and the direct sum c;l, @ d]. is well defined and has w{ for its reference
point. The first assertion is a consequence of the fact that a”: ¢ — 7 is an
affine isomorphism and c;l/ C 7. To verify the second assertion, it suffices
to see that Aff(cT,) N Aff(d7) = {wd}. Indeed, Aff(c7,) C Aff(r) implies
Aff(cT,) N AfF(d7) C Aff(7) N AfF(d]) = {w§}. Moreover, wj is a vertex of ¢Z,
and of d7 and thus, {wj} C Aff(cT,) N Aff(d7).
Before describing 672, let us show that

(7.15) (7 @dl)@dl=c & (dl, &dl)=c +di, +dl —w] —w].

Formula (7.15) is obtained by applying the following elementary fact.

If A, B, C are sets in a vector space V and the direct sums ADB, (A®B)®
C, B&C and A®(B®C) are well defined, then (A& B)®C = A®(BaC) and
one can use the notation A@® B® C. Moreover, if A® B and B ® C have the
points w and w' for their reference points, then AAB®C = A+B+C—w—w'.
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In order to be able to apply this fact, we first note that the direct sum
@ d;l/ is well defined and its reference point is wgl. Furthermore, d;l/ @ d;
is well defined and its reference point is wj, i.e., Aff(d7,) N Aff(dZ) = {w§}.
Indeed, dZ, C 7, C ¢ implies Aff(d7,) N Aff(d7) C Aff(c™) NAfE(dT) = {w]}
and wj € d7, NdZ. Moreover, let us show that ¢™ @ (d7, @ d7) is also well
defined and its reference point is w , i.e., Aff(¢™) N Aff(dT, & dT) = {w§ }.
Consider the permutation 7’Um of {k’+1,...,n}, defined by (7.11) and (7.12)
and consider the n-cell ¢7, = ¢ @ dr, . € L(0). By the definition of the
n-cells from L(), we know that Aff(c™ ) N Aff(dZ,,.) = {wj }. To complete
the proof of the assertion, it suffices to show that Aff(d; ) = AfE(dT @ dD).
First note that the union of the sets of vertices of dw, and d. coincides with
the set of vertices of d;l/uﬂ. Therefore, d] /, and d7. are faces of d;l/uw. Since
d7, @ dT = d7, +d7 —w] and w] € dﬂ e C Aff(dT, u7T) it follows that
d7, @ d7. C Aff(dT,,,.), hence also Aff(d7, @ d7) C Aﬂ“(dT,u ). On the other
hand, every vertex w of d l/uw is a vertex of d; C dl, @ d} or a vertex of
dr C dT/, @ dT Since Aff (cl7r L) coincides with the affine hull of the set of
vertices of d7, ., one concludes that Aff(dT,l_m) - Aff(d:, @dr).

Consider the affine isomorphism ~¢ dT — Qk +» which maps the ver-
tices w8“'k’,w8‘”k/ﬂ/(k H), oo wdk of d;, to the vertices b0k pth—k"

bRk k=K of Ql;*ﬁ:, respectively. Similarly, consider the affine isomorphism

6¢" . di — Ry~F,, which maps the vertices w8‘“k,w8'“kﬂ(k+1), o wi ™ of dT
to the vertices b*~ k/k_k/, l)k_k/k_kl"rl7 e ,bk_kl"_kl of RZ:E,, respectively.
These isomorphisms determine the affine isomorphism v¢ @ ¢ : dT/, ed. —
Qk v OR , = P kk, (recall that the cells Q! and R}~ ¢ were defined in
4.1.) NOW note that ﬁw e ;I,UW — A" ig an affine isomorphism and
Pl?:kk, C A" H, Therefore,

(7.16) e = (B P

is an affine isomorphism £ : Pl?:kk,/ — ( ;iuw)_l(nglf,/). We now define
052: ™ @ (dn, @ dr) — ¢ @ (BT )_I(ngkk,/) = ¢*, by putting

/U
(7.17) 092 =1@ e (v @ 6°).

The isomorphisms §71c* and §72¢* can be composed, because of (7.15).
Since 07. is an affine mapping, it is completely determined by its values at
the vertices w of the n-cell ¢*. We will now determine explicitly these values.
Since the direct sum (a”)~!(¢7,)®dZ has wy for its reference point, the vertices
of ¢* = (a7) Y (c,) @ d7 are the points (o)~ (w') B w” = (a”) " (w') +w" —
w(), where w’ ranges over the set of vertices of ¢ l/ and w” ranges over the set

0...k'm' (K'+1)..n" (k' +7)

of vertices of d7. By (3.11), w’ is of the form ws , where
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0<s<EK,0<r<k—Ek and w” is of the form wg”‘k”(kﬂ)”'ﬂkﬂ)

0 <1 <n — k. Consequently, the vertices w of ¢* are of the form

, where

(7.18) W — (ar)—1(wg...k’w’(k’+1)...w’(k’+r)) ® wg...kw(kﬂ),m(kﬂ)

)

where 0 < s <k,0<r <k—Fk and 0 <! <n —k, and the reference point
is wf. By (7.14), 69} (w) = Wl kT (K'+1)..w' (K +r) | wg...kw(k+1)...7r(k+l) — Wy

. . r__! ’ 1 . ’ ’ ’ ’ ’ 1 . ’ ’ ’ ’
Since wg F T F AN AT 0 KRN 0.k 0k ome
concludes that

1 0.k 0...k'
(7.19) 0% (w) = wd " —wg " +
. 0..k' 7' (K' +1)..n" (k' 0...km(k+1)...7(k+l
(w) ' (k' +1)..7'( +T>+w0 m(k+1) W(Jr)_wg...k).

The expression in the parenthesis equals

- T EAD- T F4r) gy O (bt )bt ]) ¢ el g g
because wg‘”k ™ (kD). (R ) S d;l/, wg'”kﬂ(kﬂ)”‘ﬂ(kﬂ) € dl and d;/, & dL
has wj for its reference point. Since w%* € ¢ and ¢ @ (d7, @ dT) have

wgl for their reference point, one sees that the right side of (7.19) equals

(7.20)
WK @ (wg...k (K1) () wg...kw(k+1)...7r(k+l)) ce” @ (d;'/ & dr).

Now note that
(’YC* o 50*)(wg‘”klw,(kurl)mﬁl(kurr) @ wO...kTr(k+1)m7r(k+l)) _

7.21 . AP ‘o . 0
( ) e (wg...k ' (k'+1)...7" (k +r)) ® 6¢ (wg...kw(k-l—l)...w(k—i-l)).
However,
(7.22) ~e (w8~~~k/7f/(k'+1)---w’(k/+r)) e
(723) 6c* (wg...kﬂ-(kJrl)mw(kJrl)) _ bk—kl,k—k/-i-l
and thus,
< g 56*)(wO_..k’ﬂ—/(k/-i-l)...ﬂ/(k/-i-r) @ wO...kﬂ(k-{-l)...Tr(k—i—l)) _
(7.24) (v 0 0

’ / ’
b’l“k:fk: D bk}*k} Jk—k +l'

Since 0 < 1 < k— K, (¢ Um)(K +1) = «'(K +1),...,(x' Um)(k +

r) = /(K + 1), one concludes that 87, (wg ™" (k1) (k +T>) =eq. In
particular, 87, (w3 *) = e_j. Therefore, ;;uw(%(wg'”k KLk )

wdk)) = Lep + ep_p) = bk=*" " Similarly, since 0 < [ < n — k, we see

2
that (7' Um)(k+1) = w(k+1),...,(x" Unm)(k +1) = n(k +1) and thus,
0...kmw(k+1)...7(k+1)

B (wg ) = ex—g+1- Consequently,

! 1 ok (k+1). (k4 1 o L
6771:’|_|7r(§(w8 kL) (k) +w8k)) = §(€k,k/+l —+ ek‘fk-’) — bk k' +l,k—k .
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It follows that

(7 25) (ﬂ;:uﬂ-)/ﬁll(b’:ﬂkikl 6/9 b/kik/’kfkl*'rl) -
| Ly Hm WAL R g0 b () m (R D)y

Now (7.16) and (7.25) show that

EC* (76* @ 56*)(wg__.k/w/(k/_i_l)...ﬂ/(k/_i_r) ® wg...kﬂ(k—i-l)...w(k-i-l))
0..k' 7" (K'+1)..0" (K +r
L(w) (K'+1)..w' (K +r) |
Finally, (7.17) and (7.26) show that #7. maps the vertex w of ¢*, given by

(7.18), to the vertex

(7.26) w(O)mkw(kJrl)...w(kJrl)).

’ 1 ITr/ ’ 71'_/ ’ r kT T
(7.27) 69 (w) = w®* @a(wg...k (K +1)..7 (k' + )+w<0) ke (k+1) (k+l))

. . /
where the reference point is wj .

)

7.5. Step (v). Let 0 € K be an n-simplex. We define a mapping 67 : o —
o, by putting
(7.28) 0%|c* = 02.,
for every n-cell ¢* € L] (o). Note that % maps ¢* to ¥99(c*) € N/ (o) and
thus, 0%.(c*) C 9¥9(c*) C o. To see that the mapping 67 is well defined, it
suffices to prove the following lemma.

LEMMA 7.6. Let o be an n-simplex from K. For any two n-cells c¢*,c; €
L'(0), the restrictions of 62. and 6. to the intersection ¢* Ncj coincide, i.e.,

(7.29) 09

(€ Nep) =02 |(c" Nep).

PRrROOF. It suffices to prove (7.29) in the special case when ¢* N ¢ is a
common (n — 1)-face of the n-cells ¢* and ¢f. Indeed, assume that ¢*Ncf = e*
is an l-cell, 0 < I < n — 1. Note that all n-cells C' of L’'(c) which contain
e*, together with their faces, form a cellular complex, whose carrier is an
n-cell. Since n-cells are manifolds with boundary, there exists a sequence of
n-cells ¢* = Cp,...,Cr = ¢} of L'(0) such that the intersections C; N Cy1q
of consecutive members of the sequence are common (n — 1)-faces of C; and
Cit1. By the special case of the lemma, 67 |(C; N Ciy1) = 92‘;”1 [(C; N Cig1).
Since e* C C; N Ci11, one concludes that 67.
=02 e

We now consider the special case when c*, ¢] are different n-cells, c*Nc; =
e¢” and dime” = n — 1. To prove that 67.|e" = 07 |e”, it suffices to prove that

et =...=0Z e =0g, "=

(7.30) 0%, (w) = 0 (w),
for all vertices w of the cell e*. There is no loss of generality in assuming
that 7 = [vg,...,vk], 0 < k < n, 77 = [vo,...,0p], 0 < kK < k, o’ =

is the identity permutation of the set {k’ + 1,...,k}, m = ¢ is the identity
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permutation of the set {k + 1,...,n} and thus, 7’ U 7w = 5 is the identity
permutation of {k' +1,...,n}. Then (7.9) assumes the form

(7.31) ¢ = (")) ed],

the direct sum having w-* for its reference point. Consequently, the vertices
w of ¢* are of the form

(7.32) w = (@) (@ +) @l

where 0 < s < k', 0<r <k—k,0<1<n-—k and the reference point is
wk. Furthermore, (7.27) shows that

’ ]_ ’
(7.33) 02 (w) = wi ™ @ 5 (wg M wg Y,
the direct sum having w8“‘kl for its reference point. Given the n-cell ¢* of
L'(0) and an (n—1)-face e* of ¢*, either there is no n-cell ¢f # ¢* with e* < ¢}
or there is a unique n-cell ¢f having this property (o is an n-manifold). We
will now consider all (n—1)-faces e* of ¢*, we will determine the corresponding
n-cells ¢f (if they exist) and we will verify (7.30). Concerning e*, two cases
are possible: Case I, when

(7.34) e = (")) +dT —w]
and €’ is a (k — 1)-face of c:,/ = & dLT/l, k > 1, and Case II, when
(7.35) et = (")) +d—w],

and disa (n—k —1)-faceof dJ, n > k + 1.

7.5.1. Case I. We distinguish two subcases, I.1, when ¢’ = c’+d[,'fw8“‘kl,
where ¢ is a (k' — 1)-face of ¢™ and 1.2, when ¢/ = ¢ +d' — w® ¥, where d’
is a (k— k" — 1)-face of d7 .

Subcase 1.1. This subcase can appear only when ¥’ > 1. For symmetry
reasons, it suffices to consider the situation, when ¢’ = [w8“'k/, .. .,wg;;kl/].
Then the vertex scheme of €’ is obtained from the vertex scheme (3.11) for

c:,/, by deleting the last column. This is the scheme

0.k 0.k
wO e wk/_l

(7.36) . T,
wdk o wdR

and thus, the vertices of ¢’ are of the form (™)' (w’), where w' = w% ¥+,

0<s<k —1,0<r<k-—Fk. It follows that the vertices w of e* are given
by (7.32), where 0 < s <k’ —1,0<r <k—k"and 0 <! <n— k. Moreover,
the 6%.-images of the vertices w of e* are given by (7.33).

Adding to the scheme (7.36) an initial row wg‘“klfl . .wg;;k{*l produces
the vertex scheme of the k-cell cLT,1 =¢m @d?} € Li(7), where 7{ = [vo, ..., vk/],
1 1

k7 = k' —1 and ¢} is the identity permutation of {k] +1,...,k} = {k',... , k}.
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Clearly, €’ is a (k — 1)-face of c:,{ and thus, e* is also an (n — 1)-face of the
n-cell (ozT)_l(cLT/{) @dT € L'(0). Since e* can be the face of only two n-cells,

we conclude that

(7.37) ¢ = (o) N @ d.

To prove that f.-|e* = 6crle*, it suffices to see that the mappings
0Z. and 07. assume the same values at the vertices w of e*. The vertex

w = (a™) " HwF+7) @ wlFH of e* can be written in the form w =
(ozT)_l(wg‘”leH) @® wy* T Therefore, (7.33) for ¢}, shows that 07 (w) =
wg”'kl D %(wg”'kﬁwr1 +w8“‘k+l), the reference point being wg'”kl = wg”'klfl.

Consequently, 07, (w) = wdF =1 4 %(wg'“kqﬁ“ + wl ) —wdF =1 On the

other hand, by (7.33) for ¢*, one has 6%, (w) = w?* + %(wg“'k/‘” Fawd R -
w8'“k/ and thus, 9% (w) = 0% (w), because wg'“kl—wg'“k/ = wg“'kl_l—wg“‘klfl
(see (3.14) for k=k,i=sand k =k —1,i=3s).
Subcase 1.2. In this subcase €/ = ¢™ +d' —w®* | where d’ is a (k—k'—1)-
0.k 0...k

face of d7, = [wd* ..., wy*]. We distinguish three subsubcases, 1.2.1,
when d' = [wg'”klﬂ,...,wg'"k], 0 < k' < k, Subsubcase 1.2.2, when d' =
[wg‘“kl, ...,wg‘“k/”*l, wg”'k’HH, oo wyF], 0 < i < k— k', and Subsubcase
1.2.3, when d’ = [wd*¥, ... wy*1),0 <k <k

Subsubcase 1.2.1. This time d’ = [wg'“k/ﬂ, oo wd R0 < K < k. There-

fore, if one omits the first row in the vertex scheme (3.11) for c:,/, one obtains
the vertex scheme of ¢’ = ¢™ + d’ — w®¥ | which has the form

W H L
(7.38) N
wyk s Wk
: : 0..k" +1 0...k
Adding to that scheme a terminal column wy; 3 ™" ... w5 produces the
vertex scheme of the k-cell cLT} € Ly(7), where this time 71 = [vo, ..., vk ],
1

ki = k'4+1 and (] is the identity permutation of {k1+1,...,k} = {k'+2,...,k}
(if ¥ +1 = k, ¢} is empty). Since €' is a (k — 1)-face of c:,f, it follows
that e* is also an (n — 1)-face of the n-cell ¢f € L'(0), which has the form
(7.37). The vertex w = (a”) " (w%*+7) @& wl -+ of ¢* is a vertex of e*
provided 0 < s <k, 1 <r <k-—Fk,0<1[<n-—k Notethat w can be

written in the form w = (of)_l(wg'”klw_l) @ w)~* T the reference point

being w)~*. By formula (7.33), applied to ¢}, one concludes that 6 (w) =

0...k} 1, O0..kj+r—1 0...k+1 0...k"+1 1¢,,,0...k'+ 0...k+l1
ws @ g (wy + wy ) = wiF @ S (wy "+ wy ), the

reference point being wg"'kl = wg“‘k/“. It follows that 0. (w) = wg»»»k'ﬂ +
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%(wo“‘k/” + w)F) — wg”'klﬂ. Comparing this with (7.33) for ¢*, one

0.k _ 0.k _ 0.k 4+l 0.k 41
—wy Y = w, —wy .

concludes that .: (w) = 0.~ (w), because wy

Subsubcase 1.2.2. This time
! !’ . 1 .
d' = [wd* . wh R TIT qQ R AL 0F 0 < i< B — K,

and the vertex scheme of ¢/ = ¢™ + d — w®* is obtained from the vertex
scheme (3.11) for cLT/I by omitting the i-th row wg”'k’H .. .wg;”klﬂ. Let 7’
be the permutation of the set {k’ + 1,...,k}, which interchanges k¥’ 4+ ¢ and
k’+i41 and otherwise coincides with the identity mapping " of {k'+1,...,k}.

[
Then the vertex scheme of ¢, is

’ ’
wg“‘k R wg;”k
.y ,
w(O)k +i—1 o wg;..k +i—1
0...k"+i—1K +i+1 0...k"+i—1k"+i+1
(7.39) Qe K IR L O R TR i
: wO...k’+i+1 0...k" +i+1
0 Kk’
.y ,
wg,,,k +i42 o wg;..k +i+2
w8‘“k R wg;“k.

7y 7. /s /s
Note that the omission of the i-th row wg“'k o1k it wg;“k Fi—1k i+l

of (7.39) yields the vertex scheme of €’ and thus, €’ is also a face of the n-cell

(7.40) =) e ed.
Note that the vertex w = (o)~ (w*+7) @ w) - ! of ¢* is a vertex of
e*provided 0 < s < K, 0<r<k—-kK,r#iand 0 <[ <n-—k%k In

that case w = (of)*l(wg"'klw/(k/+1)"'”/(k/+r)) ® w) M, because {7'(k +
Dyoooyd(B +r)={k+1,.... +r} for 0 <r #4i Eg, forr=i+1
one has {7/(k' + 1),...,7'(K +i¢ - 1),x/(K' +4),~(k +i+ 1)} = {K +
Lok +i—1k +i+ 1,k +it = {kK +1,....k +i+1}. Now (7.27)

shows that, for r # i, GCT (w) = wg...k/ o %(wgmkfw'(k'+1)~.7r'(k'+r) +w8...k+l) _
wd @ L (whF T 4w R ) = O (w).
Subsubcase 1.2.3. This time d' = [wd " ,. .,wg'“k_l], 0 <Kk <k, and

the vertex scheme of the (k — 1)-cell ¢/ = ¢™ +d’ — wl* € L(r) is obtained
from the vertex scheme (3.11), for the k-cell cLT,/, by omitting the last row.
Consequently, the vertices of e’ are of the form w' = wg“‘k/”, where 0 < s <
k', 0 <r <k—k —1. The vertices w of e* = (a™)"(¢) + dT — w{ are of
the form (7.32), where 0 < s <k, 0<r <k—k —1and 0<[<n-—k.
Furthermore, their .«-images are given by (7.33). Now note that the vertex
scheme of ¢’ coincides with the vertex scheme of the (k — 1)-cell cLT/ll , where ¢}

is the identity permutation of the set {k’ +1,...,k — 1} so that c:,l/ =
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Let 71 = [vg,...,vx—1] and let ¢; be the identity permutation of the set
{k,...,n}. Then the direct sum (aTl)fl(cZ,/) © d]' is well defined and its
1
reference point is wg“'k_l. Let us now show that
(7.41) i = (@) He) @ d]}

It suffices to show that e* is a face of the right side of (7.41). First note that
71 <7 and

(7.42) (@) = (@™) "t 4wl F — wdh L

This formula holds, because both sides are affine mappings defined on 7,
which at each of the vertices v, ..., vr_1 of 71 assume the same values. Indeed,
(OzT)_l(’Ui) — wlOk and (aTl)_l('Ui) + wg...k _ w8“‘k71 _ w?...kfl + wg...k _
w9t = wd k. Since ¢/ C 71, (7.42) implies that (o)~ (e/) = (a™)~(e/)+
wdk — wg'”kfl and thus,

(7.43) e = (a™)7M(e) +d] —wlr

Now note that d] = [w®*, ... wd"] < [wO -+t ... w)"] =d*. Since the
direct sum in (7.41) has wg'“k_l for its reference point, we see that it equals
(a™)7He) +di —w)*7!. A comparison with (7.43) shows that e* is indeed
a face of the right side of (7.41).

Now consider a vertex w = (a”)~ (w? ¥ *7) @ wd ¥+ of e* and note
that 0 < 7 < k — k' — 1. Since ()" Y(c7) @ d7 has wd* for its refer-
ence point, we see that w = (a7)~H(w?**7) 4 wd* — wd-*. Also note
that 0 < r < k — k' — 1 implies wg“'kl‘” € 71 and thus, (7.42) shows that
()" (w2 F+) = (@) (W F ) 4 wlF — wdFTL Consequently, the
vertex w can also be written in the form w = (o)~ (w?*+7) 4wl +
wg”'kfl _ (an)—1(wg...k’+r)+w8...k1+l+1 7w8...k1 c (aﬁ)—l(cz-{)@dz—ll’ where
k1 =k — 1. Now (7.33) for ¢} shows that

’ ]_ ’
(7.44) Oer (w) = wl ¥ @ §(wg~»k TRy
However, this equals - (w) = w0+ & %(wg‘“k/” 4wy F T because ki +

l+1=k+1 and both direct sums have wd ¥ for their reference point.
7.5.2. Case II. In this case e* is given by (7.35), where d is an

(n — k — 1)-face of d7 = [wdk ... wl "], 0 < k < n. We distin-
guish three subcases, 1.1, when d = [w8"'k+1,...,w8“'”], 11.2, when d =
[wd*. . ..,wg”'k“*l,wg'”k““, conwd ], 0 < i < mo— k, and I1.3, when
d= [, .. ]

Subcase I1.1. Put 7y = [vo, . .., vkt1] and let ¢} be the identity permutation

of {k'+1,...,k+1}. Then c:,l/ = @ d:,l/ is a (k+ 1)-cell from L(71). Note

that d = [w) ", ... w) "] = dn

7L, where 11 is the identity permutation of
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{k+2,...,n}. Consequently, c[! = c™ @ d]' = c™ ©d is well defined and
w8"'k+1 is its reference point. Since dim cLT,' =dim7; = k+1 and cLT,I C 71, one
has Aff(c:,l/) = Aff(7y) and thus also Aff(ofl)_l(c:{) = Aff(c™). Tt follows
that Aff(a™) 7 (¢]) N Aff(d) = Aff(c™) N Aff(d) = {wg~**'}. This proves
that (a™ )—1(02’) @ d is a well-defined n-cell of L'(¢), also having w) " for
its reference point. Let us now show that
(7.45) ¢ =(a™) M) @d.

To prove this assertion, it suffices to prove that e* is a face of the right
side of (7.45). First note that 7 < 7y and
(7.46) (@™ Hr = (a7) 7t 4w F T — k.

This formula holds because both sides are affine mappings defined on 7, which
at each of the vertices vg,...,v; of 7 assume the same values. Indeed, for
0 <i <k, one has (a™) " (v;) = wd* and (7))~ (v;) + wdF T —wd-F =
Wk 4w P — Qe k = R Since ¢7) C 7, (7.46) implies that

(7.47) (07) () = (07) el ) e — wfk

and thus, (7.35) assumes the form

(7.48) e = (@) () +d—wdF

Having w8"'k+1 for its reference point, the right side of (7.45) equals

(aTl)_l(c:{) +d — wy*T!. Comparing this with (7.48) and taking into ac-
count that d < d], one concludes that indeed, e* is a face of the right side of
(7.45).

Now consider a vertex w = (a”)~ (w? ¥ *7) @ wl ¥+ of e* and note
that 1 <1 <n—k. Since (a”)"'(c)) ®dT and wl* is its reference point, we
see that w = (o)~ (wd*+7) 4 wd-F+t — 4wk Moreover, w?++" ¢ ¢’
and (7.47) imply that (a7) = (w9 -+ +7) = (a7) =1 (W * +7) K+ g0k,
Consequently, w = (aﬁ)_l(wg'“k/“) —wg'”kH +w8"'k+l. Putting k1 = k+1,
we see that w = (o™ )~ w0+ +7) 4 k=t ) 0-F1 Now (7.33) shows
that 0 (w) = wd* @ %(wg-“k'“ + wyF1 1) the reference point being
wd* . This coincides with .- (w), given by (7.33), because both direct sums
have the same point w8“‘kl for their reference point and k1 +1— 1=k + 1.

Subcase 11.2. Consider the permutation 71 of {k+1,...,n}, which inter-
changes k+1 and k4 i+ 1 and otherwise coincides with the identity mapping
nof {k+1,...,n}. Then the vertices of d} coincide with the vertices of d,
except for the i-th vertex, which equals uJ(O)“‘kJ”'*lkJ”'Jrl and wg“‘kﬂ, respec-
tively. By Lemma 3.8,

TN AT [,0-k 0. kti—1  O..k+itl 0..n] _
dy Ndy, = [wy™", ..., wy , W yoewy M =d
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is a common face of dj and df . Since the direct sum (a7)~* (7))@ dr is well
defined and w{ is its reference point, it follows that e*, given by (7.35), is a
face of that direct sum and thus,

(7.49) = (@) ) edr,.

Now note that the vertex w = (a7) (w2 *+7) @ wl ! of ¢* is a
vertex of e* provided 0 < I < n — k and [ # i. Such a vertex can also be
written in the form w = (o)1 (w?*+7) @ w8“‘k7r1(k+1)“‘7rl(k+l), because
{mk+1),...,7(k+D}={k+1,....k+1},for [ #i. E.g., forl =i+1, one
has {m (k+1),...,m (k+i—1), m (k+i), 7 (k+i+1)} = {k+1,... k+i—1, k+
i+1,k+i}={k+1,...,k+i+1}. Now (7.27) shows that, for [ # i, O.: (w) =
wg,,,k/@%(wg...k +r+w8...km(k+1)m7r1(k+l)) _ wg...k’w@%(wg...k +T+w8mk+l),

the reference point being w8"'k/. However, this expression coincides with the
expression (7.33) for 0.« (w) and thus, .: (w) = 0.- (w).

Subcase T1.3. This subcase cannot occur. Indeed, d = [w§*, ... w) "]
and the vertices w of e* are of the form w = (™)~ (w? ¥ +7)@w)* !, where
0<1<n—k-1 Clearly, (a”) Y (wd++") C ¢ C 7 = [vg,..., 0] C
[vo, ..., Un—1], because k < m. Furthermore, wg'“kH € [vo, .., vt C
[vo, ... ,vn_1] and wi* € 7 C [vo,...,vn_1]. Hence, w € [vg,...,Vn_1]
and thus, also e* C [vg,...,v,—1]. Since [vg,...,v,—1] C Jo, one can have
only one n-cell, whose face is e*. O

REMARK 7.7. Let 0 € K and dimo = n. If an (n — 1)-cell e* from L'(0)
admits only one n-cell ¢* € L'(0) such that e* < ¢*, then e* is contained in
an (n — 1)-face ¢ of 0. Indeed, there is no loss of generality in assuming that
o = [vg,...,vs]. In the proof of Lemma 7.6, we found a second n-cell ¢} such
that e* < ¢] in all but the last Subcase II.3. However, in that situation we
proved that e* C ¢ = [vg, ..., Un_1].

7.6. Step (vi). In Step (ii), for every n-simplex o € K, we have defined a
function ¥7: L!,(c) — N/ (o) and in Step (iv), for every n-cell ¢* € L/ (o), we
have defined an affine isomorphism 6. : ¢* — ¢®, where ¢* = 97(c*). We will
now define functions ¥ : Lj.(¢) — N (o), 0 < k < n, which together with
99 form a morphism of cellular complexes 97 : L'(0) — N'(o). Moreover, for
every k-cell e* € L (o), we will define an affine isomorphism 67.: e* — e°,
where e* = 97 (e*).

If e* € L} (o), we choose an n-cell ¢* € L’(0) such that e* < ¢*. Then we
put

(7.50) 97 (e*) = 0%.(e").

Since 09. is an affine isomorphism, e®* = 0% (e*) is a k-face of ¢*. We define
07. by putting

(7.51) 7. = 0% ]e".

ex —
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The mapping 6%, hence also e® = 0% (e*), does not depend on the choice of
the n-cell ¢*. Indeed, if we have another n-cell ¢; € L] (o) such that e* < cf,
then e* C ¢f N¢* and thus, by Lemma 7.6, 67. |e* = 6.[e*. Note that (7.51)
and (7.50) imply

(7.52) 0%.(e*) = 97 (e¥).

To prove that the functions 7 preserve faces, consider two cells e* €
Li(0), ef € L}, (o) such that e} < e*. Choose an n-cell ¢* € L'(c) such
that e* < ¢*, hence also ef < c*. It follows that ¥(e*) = 6%.(e*) and
¥7 (e7) = 02.(e7). Being an affine isomorphism, 7. : ¢* — c* preserves faces.
Therefore, e} < e* implies 7. (e7) < 07.(e*) and thus, 97 (e}) < V7 (e*).

Now consider an m-face ¢ of an n-simplex 0 € K, 0 < m < n. Since
L'(¢) C L'(0), a k-cell e* of L1(¢), 0 < k < m, can also be viewed as a k-cell
of L'(0). Let us show that

(7.53) 05 = 0°..

It suffices to consider the case when o = [vg, ..., v,] and ¢ = [vg, . .., vn]. Let
us prove that 65, (w) = 07 (w), for all the vertices w of e*. These vertices are
of the form (7.32), where 0 < s < k', 0 <r <k—-Fk,0<[1<n-—k By
(7.33) for ¢ and ¢*, one sces that 65 (w) = w?* @ %(wg“'k k),

wS
Choose an n-cell ¢* € L'(o) such that e* < ¢*. Viewing e* as an element

of L) (o), one concludes that 8% (w) = 6% (w). However, (7.33) for o and ¢*

gives to 0% (w) again the value w2 % & %(wg'”k’” + wd ). The fact we

just proved implies that the restriction of the function ¥ : L} (o) — N (o) to
L, (¢) = L (¢) N ¢ coincides with 9% : L}, (¢) — NL(C), i.e.,

(7.54) 95 = 97| L (Q).

Indeed, if e* € L} (¢), (7.52) and (7.53) show that 192(6*) = 05 (er) =
0% (e*) = 97 (e¥).

LEMMA 7.8. Let o be an n-simplex from K. The functions 97,0 < k < n,
form an isomorphism of cellular complezes 97 : L'(o) — N'(o).

PROOF. We need a morphism of cellular complexes ¢?: N'(¢) — L'(o),
consisting of functions ¢7: Nj(0) — Li(0), 0 < k < n, which is inverse to
7. For k = n, we put 97 = (99)"1: N/ (¢) — L, (o). Since 99 is a bijection,
7 is well defined. If ¢* € N (o) and ¢* = ¢Z(c*), then ¢* = 9¥7(c*) and the
affine isomorphism 69, : ¢* — ¢® is defined. Therefore, ¢% = (09.)71: ¢® — c*
is also an affine isomorphism. For 0 < k < n and e®* € N/ (o), we now define
7 (e*), by choosing an n-cell ¢® € N/ (o) such that e®* < ¢* and by putting

(7.55) o (e) = ¢ (e®)
(formula (7.55) holds also in the case when k& = n, because then e®* = ¢*).

Clearly, ¢Z (e®) is a k-face of ¢% (c*) = ¢*. As in the case of 97, to see that

c®
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the functions ¢7, 0 < k < n, are well defined and preserve faces, it suffices to
prove that

(7.56) P l(c® Net) = ¢la|(c® Nct),

whenever ¢* and ¢} are n-cells of N'(o).

As in the proof of Lemma 7.6, it suffices to prove the assertion in the
special case, when ¢®* N ¢} is a common (n — 1)-face e® of the n-cells ¢* and cf.
In that case, e* = ¢%(€®) is an (n — 1)-face of ¢* = pZ(c*). We distinguish
two cases: Case (i), when ¢* is the only n-cell from L'(o) such that e* < ¢*
and Case (ii), when there is another n-cell ¢f from L’(¢) such that e* < ¢f.
In Case (i), Remark 7.7 shows that e* is contained in an (n — 1)-face ¢ of o
and thus, e* € L), _;(c)N¢ = L, _;(¢). Now (7.50) and (7.52) imply that
e = 07.(") = 95, (e") = ¥, (") € Ni_y(¢) and thus, e* C ¢ C .
However, this is impossible, because e® is the face of two n-cells ¢* and cj.
This shows that only Case (4i) is possible.

In Case (i1), ¢* # ¢} implies 97 (c*) # ¥2(c}), because 97 is a bijection.
Since 7. (c*) = U7 (c*) and 07, (cf) = U7 (c]), we conclude that 67.(c7) is an
n~cell from N'(c) such that 67, (c) # 62.(c*) = ¢*. Moreover, ¢*Ncj = e* and
Lemma 7.6 show that 67. |e* = 67.|e* and thus, 67, (") = 02.(e") = e®. Since
e* < cf implies 07.(e*) < 62 (1), we conclude that 6, (c]) is an n-cell from
N'(0), different from c® and such that the (n—1)-cell e* is a face of 67. (c]) and
c®. Since ¢* and ¢} are the only two such n-cells, it follows that 92’; () =¢
and thus, ¢7(c}) = ci. Moreover, ¢7,[e® = (92‘?)_1|e'. Since 7. |e* = 07
it follows that also (92’;)71|e' = (0%.)"']e* and thus, P le® = ¢lele®.

Let us now show that the functions ¢7: N (0) — Lj(0), 0 < k < n,
preserve faces and therefore, they form a morphism of cellular complexes
¢7: N'(0) — L'(0). Consider two cells e® € Nj (o) and e} € N, (o) such that
e} < e*. Choose an n-cell ¢®* € N/ (o) such that e® < ¢®, hence also e} < c°.
It follows, by (7.55), that ¢f (e®) = ¢%(e®) and ¢ (e7) = ¢Z(e?). Being an
affine isomorphism, ¢% : ¢® — ¢* = ©Z(c®) preserves faces. Therefore, e} < e®
implies ¢g (€]) < ¢% (e*) and thus, p7 (e7) < @7 (e®).

To complete the proof of Lemma 7.8, it suffices to show that, for 0 < k <
n, the function ¢f : Nj (o) — L} (o) is the inverse of the function 97 : L} (o) —
Nj (o), i.e.,

(7.57) 0797 = id, 9747 = id.

Indeed, ©Z097(c*) = c*, for ¢* € L] (o). If €* is a k-cell of L'(c), 0 < k < n,
and c¢* is an n-cell of L'(o) such that e* < ¢*, then (7.50) shows that ¥ (e*) =
7. (e*). Clearly, e®* = 0%.(e*) < 02.(c*) = c¢*. Consequently, p707(e*) =
702 (e%) = 9 () = 67 (¢*) = (62.) (62 (¢")) = e*. Similaly, 955 (c*) =
c®, for ¢* € N/ (o). If e* is a k-cell of N'(0), 0 < k < n, and ¢* is an n-
cell of N'(0) such that e®* < ¢®, then (7.55) shows that ¢f(e®) = ¢Z(e®).

e,
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Clearly, e* = ¢Z(€*) < ¢%(c*) = ¢*. Consequently, ¥7¢7(e®) = 97¢% (e*) =

99 (e*) = 0%.(e*) = 02.((02.)"(e®)) = e®. This completes the proof that ¢
is an inverse of 97 and thus, 97 is an isomorphism of cellular complexes. 0O

7.7. Step (vii). For every n-simplex o € K, we have defined in Step (vi)
functions 97 : Lj(¢) — Nj(0), 0 < k < n, which form an isomorphism of
cellular complexes ¥7: L'(c) — N'(o). Moreover, for every k-cell e* € L} (o),
we have defined an affine isomorphism 67, : e* — e°®, where e® = 97 (e*). We
will now define a sequence of face-preserving functions ¥y : L} (K) — N/ (K),
k € {0,1,...}, which form an isomorphism of cellular complexes ¥: L'(K) —
N'(K).

If e* € L}, (K), then there exists a simplex ¢ € K such that e* € L} (o).
We put

(7.58) D(e”) = 93 (e%).

Note that ¥ (e*) € N/, (0) C Nj(K). Let us prove that ¥x(e*) does not depend
on the choice of o. Indeed, assume that oy is another simplex of K such that
e* € L} (o1). Note that cNoy € K and oNoy < 0, oNoy < 01. Also note that
e* C oNoy. Consequently, by Theorem 5.1, e* € L} (0)N(oNoy) = L. (cNoy).
For ( = 0 Noy < o, (7.54) shows that 977" (e*) = ¥7(e*). Analogously,
oNo1 < oy implies 9777 (e*) = 97" (e*) and thus, 97 (e*) = I7" (e*).

To prove that the functions 1, preserve faces, consider two cells e* €
Li(K), ef € L (K) such that ef < e*. Choose a simplex 0 € K
such that e* € Lj(o). Then 9Ji(e*) = 97(e*). Since Lj (o) is a cellu-
lar complex, e* € L} (o) and ef < e* imply that also ef € L) (o). Con-
sequently, J, (e7) = 97 (e7). Taking into account that the functions 7,
0 < k < dimo, preserve faces, one concludes that 97 (e7) < 97(e*) and
thus, Ji(ef) < Vp(e*). Consequently, the functions ¥y : Lj(K) — N.(K),
k € {0,1,...}, form a morphism of cellular complexes ¢: L'(K) — N'(K).
By (7.58), ¥¢|L)(0) = ¥]|L)(0), 0 < k < n, dimo = n. Therefore, Lemma
7.8 shows that the restrictions ¥x|L}.(¢), 0 < k < n, form an isomorphism of
cellular complexes ¥7: L} (o) — Nj(0).

The proof of Theorem 7.1 will be completed if we prove the following
lemma.

LEMMA 7.9. The functions ¥y : Lj(K) — N.(K), k € {0,1,...}, form an
isomorphism of cellular complexes 9: L'(K) — N'(K).

PrOOF. To prove the lemma we need a sequence of functions ¢y : N} (K)
— L (K), k € {0,1,...}, which forms an inverse ¢: N'(K) — L'(K) of the
morphism of cellular complexes ¥: L'(K) — N'(K). If e* € N/ (K), then
there exists a simplex o € K such that e* € N/ (0). We put

(7.59) er(e®) = vr(e®),
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where ¢7 is the inverse of ¥7. Note that ¢7(e®) € Lj.(0) C Lj(K). We
will prove that ¢i(e®) does not depend on the choice of o and therefore,
o NL(K) — L, (K) is well defined.

Let us first prove the analogue of (7.54), i.e., let us prove that ¢ < o
implies

(7.60) o = RINL(O)-

For e* € NJ(C), put e* = ¢5(e®) € L(C). Then 95 (e*) = 0S¢5 (e*) = e°.
By (7.54), i( *) = "( *) and thus, ¥J(e*) = e®. Consequently, e* =
V707 (e*) = 7 (e ) Comparing this with e* = gai(e'), one concludes that

indeed, o7 (e®) = gak(e‘).

Now assume that 0,01 € K and e®* € N/ (o) N N/, (o1). We have to prove
that 7 (e*) = 7' (e®). Since |Nj (o) € o and |N(01)| C o1, it follows that
e®* C oNoy. Since ¢ = oNoy € K, one concludes that e® € Nj (o)N¢ = N.().
Since ¢ < o, (7.60) implies that ¢7(e®) = @i(e') = 7' (e®).

To prove that the functions ¢, preserve faces, consider two cells e® €
N'(K), e} € N'(K), such that e] < e*. Choose an n-simplex ¢ € K such
that e®* € N/ (o). Then ¢i(e®) = ¢f(e*). Since Nj(o) is a cellular com-
plex, e* € Nj (o) and e} < e® imply that also e} € N/(c). Consequently,
¢k, (e7) = ¢, (e1). Taking into account that the functions 7, 0 < k < n, pre-
serve faces, one concludes that ¢f (e}) < 7 (e*) and thus, yr(e?) < @i (e®).
Consequently, the functions ¢y: N/ (K) — L, (K), k € {0,1,...}, form a
morphism of cellular complexes ¢: N'(K) — L'(K).

To complete the proof of Lemma 7.9, it suffices to show that the morphism
@ is an inverse of 9, i.e., for k € {0,1,...},

(761) Sakﬁk = id, 19199019 =id.

If e* € L} (K), choose a simplex o € K such that e* € L) (0). By (7.58),
Ii(e*) = 97 (e*) € Nj (o) and by (7.59) and (7.57), prdx(e*) = <pk19”( ) =
e*. Analogously, if e* € N/ (K), choose a simplex o € K such that e®* € N/ (o).
By (7.59), pr(e®) = ¢7(e®) € Lj(o) and by (7.58) and (7.57), Jrppr(e®) =
(e = 0
7.8. Step (viii). In Step (v), for an n-simplex o € K, we have defined a
mapping 67 : o — o, by putting 67|c* = 2., for every n-cell ¢* € L/ (o).

LEMMA 7.10. For every n-simpler o € K, the mapping 0°: 0 — o is a
selfhomeomorphism. For every k-cell ¢* € L) (o), 0 < k < n, the restriction
07 |c* is an affine isomorphism ¢* — 9 (c*).

PRrROOF. We will define a mapping ¢°: ¢ — o, which is the inverse of 67,
by putting

(7.62) ¢7]c* = ¢fe,
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where ¢* € N/ (o). This mapping is well defined, because of (7.56). One has
to show that

(7.63) ¢707 =id, 67¢° = id.
Since ¢% = (0%.)~t, where ¢* = 9¥7(c*), we see that 67¢7|c® = 67 ¢S

o =

0%. ¢% = id. Since the n-cells ¢®* € N/ (o) cover o, we conclude that 87 ¢7 = id.

c® —

Analogously, ¢?0° = id. O
Step (ixz). We now define a mapping : P — P, P = |K|, by putting
(7.64) flo =67,

for 0 € K. To see that this mapping is well defined, it suffices to show that,
for any two simplices 0,01 € K, one has 67|(c No1) = 07'|(c N o1). Let us
first show that

(7.65) 0°|¢ = 6°,

for ¢ < o. Indeed, if dim¢ = m, then ¢ = |L!,(¢)|. Therefore, it suffices to
show that 07 |e* = 0¢|e*, for every m-cell e* € L! (). Since e* € ¢ C o, (7.28)
shows that 6¢|e* = #5. and 07 |e* = 6% . However, (7.53) shows that 5. = 6°.
and thus, 87 |e* = 0¢|e*. Now put ( = 0 Noy and note that ¢ < o and ¢ < ;.
Consequently, (7.64) implies that 07|¢ = 6 = §°1|(, as desired. Note that
(7.63) and Lemma 7.10 imply that the mapping : P — P has the following
property. For every o € K and every k-cell ¢* € L'(o), the restriction 6|c* is
an affine isomorphism between ¢* and the k-cell 94 (c*) € N'(K).

7.9. In view of Lemma 7.10, the following lemma will complete the proof
of Theorem 7.2.

LEMMA 7.11. The mapping 6: P — P is a selfhomeomorphism of P.
Moreover, for every simplex o € K, the restriction 0|0 is a selfhomeomor-
phism of o.

PROOF. We define a mapping ¢: P — P, which is the inverse of 6, by
putting

(7.66) plo = ¢7,
for 0 € K. To see that this mapping is well defined, it suffices to show that, for
any two simplices 0,01 € K, one has ¢7|(cNo1) = ¢7*|(cNo1). An argument
already used in Step (iz) shows that it suffices to prove that ¢|¢ = ¢¢, for
¢ < o. If dim¢ = m, then the m-cells e®* € N/ ({) cover (. Therefore,
it suffices to show that ¢7|e® = ¢¢|e®, for every m-cell e* € N/ (¢). Since
N/, (¢) C N! (o), (7.62) shows that ¢¢|e® = ¢S and ¢7|e® = ¢%. However,
by (7.53), one has 65. = 6%.. Since ¢S = (65.)"" and ¢% = (6%.)"", one
concludes that ¢S = ¢% and thus, ¢7|e® = ¢¢|e®.

To complete the proof that # is a selthomeomorphism, we now only have
to prove that ¢f = id and 6¢ = id. To prove the first of these relations, it
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suffices to prove that (¢8)|c = id, because the simplices o € K cover P = |K]|.
However, by (7.64) and (7.66), one has (¢0)|oc = ¢07 = ¢°6? and by (7.63),
one has ¢70° = id. Consequently, 0 = id. One proves analogously, that also
O = id.

To complete the proof of Lemma 7.11, it only remains to see that 8|o: o —
o is a selfhomeomorphism, for every simplex o € K. Indeed, (7.64) shows that
flo = 67 and Lemma 7.10 asserts that 67 is a selthomeomorphism of o. O
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