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Abstract. Among fitted-operator methods for solving one-dimensional singular pertur-
bation problems one of the most accurate is the collocation by linear combinations of
{1, x, exp (±px)}, known as tension spline collocation. There exist well established results
for determining the ‘tension parameter’ p, as well as special collocation points, that pro-
vide higher order local and global convergence rates. However, if the advection–diffusion–
reaction problem is specified in such a way that two boundary internal layers exist, the
method is incapable of capturing only one boundary layer, which happens when no reac-
tion term is present. For a pure advection-diffusion problem we therefore modify the basis
accordingly, including only one exponential, i.e. project the solution to the space locally
spanned by {1, x, x2, exp (px)} where p > 0 is the tension parameter. The aim of the paper
is to show that in this situation it is still possible to construct a basis of C1-locally sup-
ported functions by a simple knot insertion technique, commonly used in computer aided
geometric design. We end by showing that special collocation points can be found, which
yield better local and global convergence rates, similar to the tension spline case.
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1. Introduction

Let the following singularly perturbed boundary value problem

−ε u′′(x) + q u′(x) = f(x), u(a) = α, u(b) = β, (1)

ε, q > 0, ε ¿ q, and f ∈ C3([a, b]) be the ’model’ equation. Note that the advection
term is constant. For this kind of equation the tension spline method [10] may not
converge uniformly, since the presence of the reaction term bounded from below is
required. Instead of using classical exponential tension splines [20, 2], which are a
piecewise linear combination of {1, x, epx, e−px}, we use a space of splines piecewisely
spanned by {1, x, x2, epx}. Let us put simply p := q/ε > 0. We call such splines
exponential advection–diffusion splines or just AD–splines for short.

∗Presented at the Sixth Conference on Applied Mathematics and Scientific Computing, Zadar,
Croatia, September 2009. This research was supported by Grant 037-1193086-2771, by the Ministry
of Science, Education and Sports of the Republic of Croatia
†Corresponding author. Email address: tinab@math.hr (T.Bosner)

http://www.mathos.hr/mc c©2010 Department of Mathematics, University of Osijek



2 T.Bosner

It is not trivial to find a numerically stable algorithm which will produce values
and derivatives of the local basis, usually called a B-spline basis. We show first that
such a basis can be constructed in the setting of the general theory of Chebyshev
splines in Section 2, and then apply the collocation method [8, 17, 5] to find an
approximate solution to (1). The second issue is the choice of optimal collocation
points. In Section 3 we give an explicit formula for such points.

2. Exponential advection–diffusion B–splines

A choice of the function space is dictated by the differential operator in (1); since
we consider the operator fitted method, a natural choice is, at least for a sufficiently
smooth right–hand side in (1), the space L{1, x, x2, epx} = KerD2(−ε D2 +q D). By
using product form of the given fourth order differential operator, we can define the
measure vector dσ = (dσ2, dσ3, dσ4)T := (dτ2, e

pτ3dτ3, e
−pτ4dτ4)T and a Canonical

Complete Chebyshev system (CCC–system) [22, 21, 1]:

u1(x) = 1,

u2(x) =
∫ x

a

dτ2 = x− a,

u3(x) =
∫ x

a

dτ2

∫ τ2

a

epτ3dτ3 =
1
p2

epx − epa

p
x +

epa

p

(
a− 1

p

)
,

u4(x) =
∫ x

a

dτ2

∫ τ2

a

epτ3dτ3

∫ τ3

a

e−pτ4dτ4

=
e−pa

p3
epx − 1

2p
x2 +

1
p

(
a− 1

p

)
x +

1
p

(
a

p
− a2

2
− 1

p2

)
.

Now S(4, dσ) := L{1, x, x2, epx} = L{u1, u2, u3, u4}. The first generalized derivative
is the same as the ordinary one

L1u(x) = Du(x)

and it maps the functions from the CCC–system to the first reduced space L{1, x, epx},
while the second and the third generalized derivatives

L2u(x) = e−pxD2u(x), L3u(x) = epxD L2u(x)

map S(4, dσ) to the second and the third reduced space L{1, e−px}, L{1}, respec-
tively.

Further, we take an arbitrary partition ∆ = {xi}l+1
i=0 of [a, b] and multiplicity

vector m = (4, 2, . . . , 2, 4), which together define the extended partition T whose
elements are called knots. T := {tr}2l+8

r=1 , and all the interior knots are of multiplicity
2:

t1 6 t2 6 t3 6 t4 = x0 = a,

t2i+3, t2i+4 = xi, i = 1, . . . , l,

b = xl+1 = t2l+5 6 t2l+6 6 t2l+7 6 t2l+8.
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Chebyshev spline space S(4, dσ,T) is spanned by functions being piecewise in the
CCC–space S(4, dσ), where the first generalized derivative is continuous across xi

for i = 1, . . . , l. Thus we have that S(4, dσ,T) ⊆ C1([a, b]) that will be needed for
the collocation method. It is generally agreed that the best choice of the basis are
B-splines T 4

i because of their nice properties like non–negativity, compact supports
and the partition of unity [22, 21]. The B-splines associated to the first (second)
reduced system are denoted by T 3

i (T 2
i ).

For the collocation matrix we need to calculate the values of derivatives of B-
splines at certain points. To reconstruct the solution, we also need the B-splines
themselves. One way to do it is the Chebyshev spline knot insertion technique
[11, 12, 13, 15, 1, 18, 19], which uses scalar products of positive quantities only. To
this end, we use the derivative formula:

L1T
k
i (x) =

T k−1
i (x)
Ck−1

i

− T k−1
i+1 (x)

Ck−1
i+1

. (2)

Here,

C1
i =

∫ ti+1

ti

T 1
i (τ4)e−pτ4dτ4,

C2
i =

∫ ti+2

ti

T 2
i (τ3)epτ3dτ3,

C3
i =

∫ ti+3

ti

T 3
i (τ2)dτ2.

If the extended partition contains only interior knots of multiplicity one, the integrals
are

C1
i =

1
p

(
e−pti − e−pti+1

)
,

C2
i =

epti+1

p

(
`1(phi)
`0(phi)

+
`1(−phi+1)
−`0(−phi+1)

)
,

C3
i =

`1(phi)
`0(phi)

`1(phi)
`0(phi)

+ `1(−phi+1)
−`0(−phi+1)

1
p

(
`2(phi)
`1(phi)

+
−`2(−phi+1)
`1(−phi+1)

)
(3)

+
hi+1

2
`0(−phi+1)

(
2`0(−phi+1) + phi+1(e−phi+1 + 1)

)

`0(−phi+1)
(
`0(−phi+1) + phi+1(e−phi+1 + 1)

)
+ p2h2

i+1e
−phi+1

+
`1(−phi+2)
−`0(−phi+2)

`1(phi+1)
`0(phi+1)

+ `1(−phi+2)
−`0(−phi+2)

1
p

(
`2(phi+1)
`1(phi+1)

+
−`2(phi+2)
`1(−phi+2)

)
,

where

hi := xi+1 − xi,

`i(x) := ex −
i∑

k=0

xk

k!
, i = 0, 1, 2, . . . .
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For extended partitions with multiple knots, we just take the limits by coalescing
the knots in (3). We used the integral version of the derivative formula (2) for C2

i ,
and for C3

i the following Oslo type algorithm [2]: let T 3
i and T 2

i be the Chebyshev
3rd and 2nd order B-spline associated with the extended partition T with all interior
knots of multiplicity one, and let us assume that T̃ 3

i , T̃ 2
i are B-splines associated with

the extended partition T̃ on the same knot sequence, but with all interior knots of
multiplicity two. If T = {tj}n+4

j=1 and T̃ = {t̃j}2n
j=1, and r is an index such that

ti = t̃r < t̃r+1, then for i = 2, . . . , n:

T 3
i =

C̃2
r

C2
i

T̃ 3
r + T̃ 3

r+1 +
C̃2

r+3

C2
i+1

T̃ 3
r+2,

C2
j =

∫ tj+2

tj

T 2
j (τ3)epτ3dτ3,

C̃2
j =

∫ t̃j+2

t̃j

T̃ 2
j (τ3)epτ3dτ3.

From now on, let T be the primary extended partition with interior knots of multi-
plicity two. Next, let xi = tr < tr+1 and x ∈ (xi, xi+1), then let us introduce some
new extended partitions T̄ = {t̄j}, T̃ = {t̃j} and T̂ = {t̂j} where

t̄j = tj for j = 1, . . . , r, t̄r+1 = x, t̄j = tj−1 for j = r + 2, . . . , n + 5,

t̃j = tj for j = 1, . . . , r, t̃r+1 = t̃r+2 = x,

t̃j = tj−2 for j = r + 3, . . . , n + 6,

t̂j = tj for j = 1, . . . , r, t̂r+1 = t̂r+2 = t̂r+3 = x,

t̂j = tj−3 for j = r + 4, . . . , n + 7,

with n := 2l+4. The B-splines associated with these extended partitions are denoted
by T 4−l

j , T̄ 4−l
j , T̃ 4−l

j and T̂ 4−l
j for l = 0, . . . , 3, respectively, as well as the integrals

of these B-splines:

C4−l
j :=

∫ tj+4−l

tj
T k−l

j (τl+1) dσl+1(τl+1),

C̄4−l
j :=

∫ t̄j+4−l

t̄j
T̄ k−l

j (τl+1) dσl+1(τl+1),

C̃4−l
j :=

∫ t̃j+4−l

t̃j
T̃ k−l

j (τl+1) dσl+1(τl+1),

Ĉ4−l
j :=

∫ t̂j+4−l

t̂j
T̂ k−l

j (τl+1) dσl+1(τl+1),

for l = 1, . . . , 3. Then, the generalized deBoor algorithm [9, 3, 2, 1] for the third
order AD–B-spline s is

s(x) =
n∑

j=2

cjT
3
j (x) =

n+2∑

j=2

c̃j T̃
3
j (x) = c̃i,
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with

c̃i =
C̄1

i+1 C̃2
i+1

C1
i C2

i−1

ci−2 +

(
C̃2

i+1 C̄2
i−1

C̄2
i C2

i−1

+
C̃2

i C̄2
i+1

C̄2
i C2

i

)
ci−1 +

C̄1
i C̃2

i

C1
i C2

i

ci.

For x = xi we just take x → x+
i , whenever it appears in the above algorithm.

For the fourth order AD–B-spline s and x ∈ (xi, xi+1), the de Boor algorithm is:

s(x) =
n∑

j=1

cjT
4
j (x) =

n+3∑

j=1

ĉj T̂
4
j (x) = ĉi,

with

ĉi = ci−3

Ĉ3
i+1C̃

2
i+1C̄

1
i+1

C1
i C2

i−1C
3
i−2

+ ci−2

(
Ĉ3

i+1C̃
2
i+1C̄

3
i−2

C̄2
i C̄3

i−1C
3
i−2

+
Ĉ3

i+1C̃
3
i−1C̄

2
i+1C̄

3
i

C̃3
i C̄3

i−1C
2
i C3

i−1

+
Ĉ3

i C̃3
i+1C̄

2
i+1

C̃3
i C2

i C3
i−1

)
+ ci−1

(
Ĉ3

i+1C̃
3
i−1C̄

2
i−1

C̃3
i C2

i−1C
3
i−1

+
Ĉ3

i C̃3
i+1C̄

2
i−1C̄

3
i−1

C̃3
i C̄3

i C2
i−1C

3
i−1

(4)

+
Ĉ3

i C̃2
i C̄3

i+1

C̄2
i C̄3

i C3
i

)
+ ci

Ĉ3
i C̃2

i C̄1
i

C1
i C2

i C3
i

.

If x = xi, we do the same as for order three. As mentioned before, for the derivatives
of B-splines we use the derivative formula (2).

It is well known that the limiting case of exponential tension splines are cubic
splines for p → 0, and linear splines for p →∞. (Though easily observed, it cannot
be easily proved for variable tension parameters, see [4]). There is a similar limiting
behavior for AD-splines; for the p → 0 it is the same as for tension splines, while for
p → ∞, AD–spline becomes the parabolic splines. That this is indeed the case can
be shown by taking limit p → 0 or p →∞ in (4), and by noting that, among others:

lim
p→0

C3
i = ti+3−ti

3 , lim
p→∞

C3
i = ti+3−ti+1

2 ,

lim
p→0

C̃2
i C̄1

i

C1
i C2

i

= (x−ti)
2

(ti+1−ti)(ti+2−ti)
, lim

p→∞
C̃2

i C̄1
i

C1
i C2

i

= 0,

lim
p→0

C̃2
i+1

C̄2
i

= ti+1−x
ti+1−ti

, lim
p→∞

C̃2
i+1

C̄2
i

= 1.

Thus AD–splines are ‘in between’ cubic and parabolic ones, at least for one tension
parameter, which is the only case we consider here.

3. Collocation

To solve the boundary value problem (1), we seek the approximating solution s ∈
S(4, dσ,T), s(x) =

∑n
j=1 cjT

4
j (x), satisfying the collocation equations

−ε s′′(τi) + q s′(τi) = f(τi), i = 1, . . . , 2(l + 1) (5)
s(a) = α, s(b) = β,
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for τ2j+m ∈ (xj , xj+1), j = 0, . . . l, m = 1, 2. The question is if the choice of the collo-
cation points {τi}2(l+1)

i=1 can decrease the error of the approximation. We propose one
possible way, which follows the well known method of finding the optimal collocation
points on each interval, leading to the so called superconvergence phenomenon.

First, we introduce the Green’s function [14] for our problem. Without loss of
generality, we may assume homogeneous Dirichlet boundary values, α = β = 0 in
(1). Then the Green’s function G is:

G(x, y) :=





(ep(x−a) − 1)(ep(b−y) − 1)
q
(
ep(b−a) − 1

) , for x < y,

(ep(x−b) − 1)(ep(a−y) − 1)
q
(
1− ep(a−b)

) , for y < x.

For fixed x, G(x, y) is piecewisely in {1, ep y}, on each subinterval [xj , xj+1), j
= 0, . . . l, motivating us to choose collocation points τ2j+1, τ2j+2 satisfying

(x− τ2j+1)(x− τ2j+2) ⊥ span{1, ep x}. (6)

The sequence {τi}2l+2
i=1 is called generalized Gaussian points [8, 7, 16, 5]. From (6)

we get that
τ2j+1 = sj − hτj , τ2j+2 = sj + hτj ,

with

sj := xj +
hj

3
f2(phj)
f1(phj)

,

hτj := hjf3(phj),

f1(x) :=
2(1− e−x)− x(1 + e−x)

x3
,

f2(x) :=
6(e−x − 1 + x)− x2(2 + e−x)

x4
,

f3(x) :=

√
e−x(1− 72

x4 ) + e−2x( 36
x4 + 36

x3 + 18
x2 + 6

x + 1) + 36
x4 − 36

x3 + 18
x2 − 6

x + 1

3
(

2
x (e−x − 1) + e−x + 1

) .

Functions f1, f2 and f3 are arranged to get nice behavior in the limits to zero and
infinity. On interval [xj , xj+1) = [0, 1) one easily shows that

lim
p→0

τ2j+1 =
1
6
(3−

√
3), lim

p→∞
τ2j+1 =

1
3
,

lim
p→0

τ2j+2 =
1
6
(3 +

√
3), lim

p→∞
τ2j+2 = 1

is in agreement with the known result for collocation by polynomial splines. In
our case there is no translation invariance, meaning that Gaussian points must be
recomputed on each subinterval.

This choice of collocation points guarantees the following error estimates:



Singularly perturbed advection–diffusion problems 7

Theorem 1. Let f from (1) be in C3([a, b]), and let us choose the collocation points
τ2j+m ∈ (xj , xj+1), m = 1, 2 for each j = 0, . . . l so that

∫ xj+1

xj

z(x)(x− τ2j+1)(x− τ2j+2) dx = 0, (7)

for every z ∈ span{1, ep x}. Then there exist constants K1 and K2 independent of ∆
and ε such that the solution u to (1) and the solution s to the collocation equation
(5) satisfy

|(u− s)(x)| 6 K1h
3, (8)

for x ∈ {x0, . . . , xl+1}, and globally

‖u− s‖∞ 6 1
ε
K2h

3,

where h := max {h0, . . . , hl}.
Proof. The proof is a variation of the idea in [6]. Let x ∈ [a, b], then

(u− s)(x) =
l∑

j=0

Ej(x),

where
Ej(x) :=

∫ xj+1

xj

G(x, y)r(y) dy, j = 0, . . . , l

with
r(x) := (Lu− Ls)(x), Lg(x) := −εg′′(x) + q g′(x).

If we denote the classical second order divided difference of the function r over the
points τ2j+1, τ2j+2, y with ∆2(y) := r[τ2j+1, τ2j+2, y], then

r(y) = (y − τ2j+1)(y − τ2j+2)r[τ2j+1, τ2j+2, y],

and
∆2(y) = ∆2(xj) + (y − xj)(∆2)′(θ1), θ1 ∈ (xj , y).

Let

Ej(x) :=
∫ xj+1

xj

G(x, y)(y − τ2j+1)(y − τ2j+2)
(
∆2(xj) + (y − xj)(∆2)′(θ1)

)
dy (9)

for j = 0, . . . , l. First, let x /∈ (xj , xj+1). Because of orthogonality (7)

Ej(x) :=
∫ xj+1

xj

G(x, y)(y − τ2j+1)(y − τ2j+2)(y − xj)(∆2)′(θ1) dy. (10)

Since
G(x, y) 6 1

q
(11)
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and

(∆2)′(θ1) = r[τ2j+1, τ2j+2, θ1, θ1] =
r′′′(θ2)

3!
=

f ′′′(θ2)
6

(12)

equation (10) gives

|Ej(x)| 6 M3

q
h4

j ,

with
M3 := max

x∈[a,b]
|f ′′′(x)| (13)

hence (8) follows.
On the other hand, if x ∈ (xj , xj+1) (9) leads to

Ej(x) :=
∫ xj+1

xj

(
G(x, x) +

∫ y

x

∂

∂y
G(x, z) dz

)
(y − τ2j+1)(y − τ2j+2)

×(
∆2(xj) + (y − xj)(∆2)′(θ1)

)
dy,

and again, because of orthogonality (7) we have

Ej(x) :=
∫ xj+1

xj

(y − τ2j+1)(y − τ2j+2)

(
G(x, x)(y − xj)(∆2)′(θ1)

+
(∫ y

x

∂

∂y
G(x, z) dz

) (
∆2(xj) + (y − xj)(∆2)′(θ1)

)
)

dy.

By (11),
∣∣∣ ∂
∂y G(x, y)

∣∣∣ 6 1
ε , (12), (13) and

∆2(xj) = r[τ2j+1, τ2j+2, xj ] =
r′′(θ3)

2!
=

f ′′(θ3)
2

we finally get

|Ej(x)| 6
(

M3

6q
+

M2

2ε
+

M3h

6ε

)
h4 6 const

1
ε
h4,

for j = 0, . . . , l, with M2 := maxx∈[a,b] |f ′′(x)|.

4. Example

The exact solution to the problem

εu′′(x)− u′(x) = ex, u(0) = u(1) = 0,

is

u(x) =
e

x
ε (1− e) + ex

(
e

1
ε − 1

)
+ e− e

1
ε

(
e

1
ε − 1

)
(ε− 1)

.
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We fix ε and compare the approximation by AD–splines and exponential tension
splines on the same extended partition. For the tension spline we used the appro-
priate generalized Gaussian points, as described in [10]. From Figures 1 and 2, with
ε = 2−10 and the number of the subintervals in the partition n = 26, and Tables 1,
2, 3 and 4, where ε = 2−k for k = 6, . . . , 14, and n = 2m, for m = 5, . . . , 11 it is
obvious that the AD–tension spline approximates the solution better.

k \ m 5 6 7 8 9 10 11
6 1.97E-07 1.33E-08 8.44E-10 5.32E-11 1.89E-12 1.63E-11 7.11E-11
7 3.19E-07 2.57E-08 1.73E-09 1.10E-10 6.55E-12 4.70E-12 2.17E-11
8 3.26E-07 4.06E-08 3.30E-09 2.23E-10 1.35E-11 2.60E-13 6.60E-12
9 1.77E-07 4.14E-08 5.14E-09 4.19E-10 2.86E-11 5.33E-13 2.38E-12

10 1.40E-08 2.23E-08 5.21E-09 6.50E-10 5.29E-11 3.87E-12 2.83E-12
11 9.72E-08 1.61E-09 2.81E-09 6.54E-10 8.16E-11 6.71E-12 1.69E-12
12 1.61E-07 1.25E-08 1.92E-10 3.52E-10 8.20E-11 1.02E-11 8.75E-13
13 1.95E-07 2.07E-08 1.59E-09 2.34E-11 4.41E-11 1.05E-11 9.81E-13
14 2.13E-07 2.51E-08 2.62E-09 2.01E-10 2.86E-12 5.65E-12 1.73E-12

Table 1. The maximal error at the knots for the AD–spline

k \ m 5 6 7 8 9 10 11
6 3.96E-04 2.69E-05 1.71E-06 1.08E-07 6.75E-09 4.07E-10 1.64E-11
7 2.48E-03 2.08E-04 1.41E-05 9.02E-07 5.67E-08 3.56E-09 1.92E-10
8 8.59E-03 1.27E-03 1.07E-04 7.28E-06 4.65E-07 2.92E-08 1.84E-09
9 1.55E-02 4.40E-03 6.45E-04 5.46E-05 3.70E-06 2.36E-07 1.48E-08

10 2.01E-02 7.93E-03 2.23E-03 3.27E-04 2.75E-05 1.87E-06 1.19E-07
11 2.28E-02 1.03E-02 4.01E-03 1.12E-03 1.64E-04 1.38E-05 9.39E-07
12 2.42E-02 1.17E-02 5.21E-03 2.02E-03 5.61E-04 8.24E-05 6.94E-06
13 2.49E-02 1.24E-02 5.90E-03 2.62E-03 1.01E-03 2.81E-04 4.13E-05
14 2.53E-02 1.28E-02 6.26E-03 2.96E-03 1.31E-03 5.06E-04 1.41E-04

Table 2. The maximal error at the knots for the tension spline

k \ m 5 6 7 8 9 10 11
6 2.72E-07 2.08E-08 1.46E-09 9.81E-11 6.46E-12 1.63E-11 7.11E-11
7 4.60E-07 3.40E-08 2.60E-09 1.83E-10 1.23E-11 5.53E-12 2.17E-11
8 8.51E-07 5.83E-08 4.25E-09 3.25E-10 2.30E-11 1.83E-12 6.74E-12
9 1.21E-06 1.08E-07 7.41E-09 5.31E-10 4.06E-11 3.14E-12 2.58E-12

10 1.48E-06 1.52E-07 1.35E-08 9.34E-10 6.64E-11 4.99E-12 3.23E-12
11 1.63E-06 1.87E-07 1.91E-08 1.70E-09 1.17E-10 8.27E-12 1.69E-12
12 1.70E-06 2.05E-07 2.35E-08 2.40E-09 2.12E-10 1.47E-11 1.01E-12
13 1.73E-06 2.14E-07 2.57E-08 2.94E-09 3.00E-10 2.68E-11 1.65E-12
14 1.75E-06 2.18E-07 2.68E-08 3.21E-09 3.68E-10 3.76E-11 3.77E-12

Table 3. The maximal global error for the AD–spline

5. Conclusion

The emphasis of the paper is placed more on the construction of the local basis suit-
able for collocation for advection–diffusion problems, rather than on the collocation
method itself. Indeed, for a general problem there is much to be done, for instance
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k \ m 5 6 7 8 9 10 11
6 4.17E-04 2.85E-05 1.82E-06 1.14E-07 7.15E-09 4.32E-10 1.74E-11
7 2.54E-03 2.15E-04 1.46E-05 9.28E-07 5.83E-08 3.66E-09 1.99E-10
8 8.84E-03 1.30E-03 1.09E-04 7.38E-06 4.71E-07 2.96E-08 1.86E-09
9 1.62E-02 4.44E-03 6.53E-04 5.49E-05 3.73E-06 2.38E-07 1.49E-08

10 2.11E-02 8.10E-03 2.23E-03 3.28E-04 2.76E-05 1.87E-06 1.20E-07
11 2.39E-02 1.06E-02 4.05E-03 1.12E-03 1.65E-04 1.39E-05 9.40E-07
12 2.54E-02 1.19E-02 5.27E-03 2.03E-03 5.61E-04 8.25E-05 6.95E-06
13 2.62E-02 1.27E-02 5.97E-03 2.64E-03 1.01E-03 2.81E-04 4.13E-05
14 2.66E-02 1.31E-02 6.34E-03 2.98E-03 1.32E-03 5.07E-04 1.41E-04

Table 4. The maximal global error for the tension spline

the method has not been proved to be robust in the sense it is nowadays generally
agreed upon, i.e. the estimate is not parameter uniform (except at the knots). Also,
non-constant advection is much more interesting, and one must find suitable piece-
wise constant approximations to the advection term to apply the method. Numerical
tests performed well for various choices, but the proof may be much more involved
than the one given in Theorem 1. Finally, the choice of tension parameters in a
general situation is an open question. By analogy to the tension spline collocation,
it should follow from either asymptotic expansions of the solution or the properties
of the collocation matrix. The situation is thus very much alike to the early days
of tension splines, when only one tension parameter was used, the so called uniform
tension case. However, the construction of the appropriate ‘variable tension’ AD–
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Figure 1. Global error (red) and the error at the knots (green) for the collocation by
AD–spline
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Figure 2. Global error (red) and the error at the knots (green) for the collocation by
tension spline

spline spaces should present no difficulties, following the same approach as for the
uniform ones.
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