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Abstract. In this paper, we present some new fixed point theorems for both single-valued
and multi-valued maps controlled by the contraction conditions with perturbed linear op-
erators in continuous function spaces. Our results can be applied to various integral opera-
tors. Some previous results are generalized in this literature. As applications, the existence
and uniqueness of solutions of impulsive periodic boundary value problems and functional
differential inclusions are exhibited in the last section.
AMS subject classifications: 47H10, 34B37

Key words: fixed point theorem, multi-valued mapping, differential inclusions, periodic
boundary value problem

1. Introduction

It is well-known that inversions of various perturbed differential operators yield the
sum of a compact map and a contraction. Based on this observation, Krasnoselskii
[6] established a famous fixed point theorem to combine the Banach contraction
mapping principle and a Schauder fixed point theorem, and exhibited various ap-
plications and generalizations, see [1, 2, 3, 5, 8, 9, 13]. The Krasnoselskii’s theorem
can be seen as a compact operator having a fixed point property under a small per-
turbation. Symmetrically, the Krasnoselskii’s theorem can also be understood as a
contraction operator having a fixed point property under a small perturbation. In
this paper, starting from this direction, we try to establish some new fixed point
theorems controlled by the contraction conditions with perturbed linear operators.

Let I ⊂ R+ be an interval and E a Banach space equipped with the norm ‖ · ‖E .
BC(I, E) denotes the Banach space consisting of all bounded continuous mappings
from I into E with norm ‖u‖C = max{‖u(t)‖E : t ∈ I} for u ∈ BC(I, E). In 1999,
Lou [11] proved the fixed point theorem in continuous function spaces (see Corollary
2.1). Using the notion of K-normed spaces, de Pascale and de Pascale in [14] proved
a similar fixed point theorem (see Corollary 2.3). Then, de Pascale and Zabreiko
gave a generalization result in [15]. Recently, Suzuki [16] presented simple proofs for
the above theorems.
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In this manuscript, we present some new fixed point theorems controlled by
the contraction conditions with perturbed linear operators in continuous function
spaces. Our results can be applied to various integral operators arising in nonlinear
problems. Some previous results in [4, 11, 14] are generalized in this literature. As
applications, the existence and uniqueness of solutions of impulsive periodic bound-
ary value problems and differential inclusions are exhibited in the last section.

2. Some fixed point theorems

Let T : C(I, R)× I → R be an operator. We say the operator T (·, t) is an increasing
operator, if for any y1, y2 ∈ C(I,R), 0 ≤ y1(t) ≤ y2(t) implies T (y1, t) ≤ T (y2, t).
Then we have the following result.

Theorem 1. Let F be a nonempty closed subset of BC(I, E), A : F → F an
operator and T (·, t) a linear increasing operator. Suppose

(H1) there exists β ∈ [0, 1) such that for any u, v ∈ F and t ∈ I,

‖Au(t)−Av(t)‖E ≤ β‖u(t)− v(t)‖E + T (‖u(·)− v(·)‖E , t).

(H2) there exist an α ∈ [0, 1− β) and a positive bounded function y ∈ C(Ī , R) such
that

|T (y, t)| ≤ α|y(t)| for all t ∈ I.

Then A has a unique fixed point in F .

Proof. For any given x0 ∈ F , let xn = Axn−1, (n = 1, 2, . . . ). By (H1), we have

‖Axn+1(t)−Axn(t)‖E ≤ β‖xn+1(t)− xn(t)‖E + T (‖xn+1(·)− xn(·)‖E , t).

Set an(t) = ‖xn+1(t)− xn(t)‖E , then we get

an+1(t) ≤ βan(t) + T (an(·), t). (1)

In order to prove that the sequence {xn} is a Cauchy sequence with respect
to norm ‖ · ‖C , we introduce an equivalent norm and show that {xn} is a Cauchy
sequence with respect to the new one. Based on the condition (H2), we see that
there are two positive constants M and m such that m ≤ |y(t)| ≤ M for all t ∈ I.
Define the new norm ‖ · ‖1 by

‖u‖1 = sup{ 1
|y(t)| ‖u(t)‖E : t ∈ I}, u ∈ BC(I, E).

Then
1
M
‖u‖C ≤ ‖u‖1 ≤ 1

m
‖u‖C .
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Thus the two norms ‖ · ‖1 and ‖ · ‖C are equivalent.
Set an = ‖xn+1 − xn‖1, then we have an(t) ≤ y(t)an for t ∈ I. By (1) and the

monotonicity of function y, we have

1
y(t)

an+1(t) ≤ βan +
1

y(t)
|T (an(·), t)| ≤ βan +

1
y(t)

|T (y(·)an, t)|

= βan +
an

y(t)
|T (y(·), t)| ≤ (β + α)an.

Thus
an+1 ≤ (β + α)an ≤ (β + α)2an−1 ≤ · · · ≤ (β + α)n+1a0.

This means {xn} is a Cauchy sequence with respect to norm ‖ · ‖1. Therefore {xn}
is a Cauchy sequence with respect to norm ‖ · ‖C . Therefore, we see that {xn} has
a limit point in F , say u. It is easy to prove that u is the fixed point of A in F .

Now we prove the uniqueness of the fixed point. Suppose both u and v (u 6= v)
are fixed points of A, then Au = u, Av = v. Following (H1), we have

‖Au(t)−Av(t)‖E ≤ β‖u(t)− v(t)‖E + T (‖u(·)− v(·)‖E , t).

Based on the above arguments, it is easy to see that

‖u− v‖1 = ‖Au−Av‖1 ≤ (β + α)‖u− v‖1.

This is impossible. Thus the fixed point of A is unique. This completes the proof of
Theorem 1.

There are many integral operators satisfying the assumption (H2). We show
some popular examples for the inversions of various perturbed differential operators.

Example 1. Let I = [0, L] for some L > 0, T : C(I, R)× I → R be given by

T (u(·), t) =
K

tη

∫ t

0

u(s)ds, t ∈ (0, L],

where η ∈ [0, 1), K > 0 is a constant. Then the linear operator T satisfies (H2).

Proof. For given β ∈ (0, 1), we choose a k > 0 such that

β + 2k1−ηK < 1.

Take α = 2k1−ηK ∈ [0, 1− β). Define function y from I into R by

y(t) =
{

1, if t ∈ [0, k],
e−1+ t

k , if t ∈ (k, L].

It is easy to see that y is a positive bounded increasing function. Furthermore, for
t ∈ [0, k],

T (y, t) = T (1, t) = Kt1−η ≤ k1−ηK < αy(t).
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And for t ∈ (k, L], y(t) = e−1+ t
k and

T (y, t) =
K

tη

∫ t

0

y(s)ds =
K

tη
[
∫ k

0

y(s)ds +
∫ t

k

y(s)ds]

≤ Kk1−η + Kk−η

∫ t

k

e−1+ s
k ds ≤ 2k1−ηKy(t) = αy(t).

Thus
|T (y, t)| ≤ α|y(t)| for all t ∈ I.

Example 2. Let I = [0, L] for some L > 0, T : C(I, R)× I → R be given by

T (u(·), t) = K

∫ t

0

e−γ(t−s)u(s)ds, t ∈ I

where γ ∈ R and K > 0 are two constants. Then the operator T satisfies (H2).

Proof. For any given β ∈ (0, 1), we choose a constant c > 0 such that

β +
K

c + γ
< 1.

Take α = K
c+γ and y(t) = ect for t ∈ I, then it is easy to see that

|T (y, t)| ≤ α|y(t)| for all t ∈ I.

Example 3. Let I = [η, +∞) for some η > 0, T : C(I, R)× I → R be given by

T (u(·), t) =
K

tγ

∫ t

η

u(s)ds, t ∈ I

where γ ∈ (1,∞), K > 0 is a constant. Then the linear operator T satisfies (H2).

Proof. We choose two constants τ ≥ η and c > 0 such that

β +
K

cηγ
+ Kτ1−γ < 1.

Let α = K
cηγ + Kτ1−γ and define function y from I into R by

y(t) =
{

ect, if t ∈ (η, τ ],
ecτ , if t ∈ (τ,∞).

For t ∈ [η, τ ],

T (y, t) =
K

tγ

∫ t

η

ecsds ≤ K

cηγ
ect ≤ αy(t).
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For t ∈ (τ,∞),

T (y, t) =
K

tγ

∫ t

η

y(s)ds =
K

tγ

∫ τ

η

y(s)ds +
K

tγ

∫ t

τ

y(s)ds

≤ K

cηγ
ecτ +

K

tγ

∫ t

τ

ecτds ≤ (
K

cηγ
+ Kτ1−γ)ecτ

= αy(t).

Thus
|T (y, t)| ≤ α|y(t)| for all t ∈ I.

Example 4. Let I = [0, L] for some L > 0, T : C(I, R)× I → R be given by

T (u(·), t) = K

∫ t+L

t

e−γ(t−s)

eγL − 1
u(s)ds, t ∈ I

where γ > 0 and K > 0 are two constants. Then the linear operator T satisfies (H2)
provided K

γ < 1− β.

Proof. Since β + K
γ < 1, we choose a constant c > 0 such that

β +
K

c + γ
< 1.

Take α = K
c+γ and y(t) = ect for t ∈ I, then it is easy to prove that

|T (y, t)| ≤ α|y(t)| for all t ∈ I.

Based on Theorem 1 and Examples 1-3, we get the following Corollaries.

Corollary 1 (see [11]). Let I = (0, L] and let F be a nonempty closed subset of
C(I, E) and A : F → F an operator. If there exist α, β ∈ [0, 1) and K ≥ 0 such that
for any u, v ∈ F and t ∈ I,

‖Au(t)−Av(t)‖E ≤ β‖u(t)− v(t)‖E +
K

tα

∫ t

0

‖u(s)− v(s)‖Eds.

Then A has a unique fixed point.

Proof. It follows immediately from Theorem 1 and Example 1.

Corollary 2. Let I = [0, L] and let F be a nonempty closed subset of C(I, E) and
A : F → F an operator. If there exist γ ∈ R, β ∈ [0, 1) and K ≥ 0 such that for any
u, v ∈ F and t ∈ I,

‖Au(t)−Av(t)‖E ≤ β‖u(t)− v(t)‖E + K

∫ t

0

e−γ(t−s)‖u(s)− v(s)‖Eds.

Then A has a unique fixed point.
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Proof. It follows immediately from Theorem 1 and Example 2.

Corollary 3 (see [14]). Let I = [η,∞) and let F be a nonempty closed subset of
BC(I, E) and A : F → F an operator. If there exist α ∈ (1,∞), β ∈ [0, 1) and
K ≥ 0 such that for any u, v ∈ F and t ∈ I,

‖Au(t)−Av(t)‖E ≤ β‖u(t)− v(t)‖E +
K

tα

∫ t

η

‖u(s)− v(s)‖Eds.

Then A has a unique fixed point.

Proof. It follows immediately from Theorem 1 and Example 3.

2.1. Multi-valued fixed point theorems

Let (X, d) be a metric space, for x ∈ X, A ⊂ X, define D(x,A) = inf{d(x, y), y ∈ A}.
We denote CB(X) as the class of all nonempty bounded closed subsets of X. Let H
be the Hausdorff metric with respect to d, that is, H(A,B) = max{supx∈A D(x,B),
supy∈B D(y, A)}, for every A,B ∈ CB(X). Then, to some extent, we get the
following multi-valued version of Theorem 1.

Theorem 2. Let F be a nonempty closed subset of BC(I, E), A : F → CB(F )
a multi-valued operator and T (·, t) a linear nondecreasing operator for fixed t ∈ I.
Suppose

(H̃1) there exists β ∈ [0, 1) such that for any u, v ∈ F and t ∈ I,

H(Au,Av) ≤ β‖u(t)− v(t)‖E + T (‖u(·)− v(·)‖E , t).

If (H2) holds, then A has a fixed point in F .

Proof. By (H2), there is an α > 0 such that β + α < 1. Set λ = β + α. Following
the method in [10], we construct a fixed point iteration sequence in F . For any given
x0 ∈ F , since Ax0 is nonempty, there is an x1 ∈ F such that x1 ∈ Ax0. Noting that
Ax0 and Ax1 are closed sets and x1 ∈ Ax0, we can find x2 ∈ Ax1 such that

‖x1 − x2‖C ≤ H(Ax0, Ax1) + λ.

For x2 ∈ F , there exists an x3 ∈ Ax2 and

‖x2 − x3‖C ≤ H(Ax1, Ax2) + λ2.

We continue this process to obtain a sequence {xn} in F such that

‖xn+1 − xn‖C ≤ H(Axn−1, Axn) + λn, n = 1, 2, . . . .

Similarly, we shall prove {xn} is a Cauchy sequence in F . Let bn = ‖xn−xn+1‖1
and bn(t) = ‖xn(t)−xn+1(t)‖E , where ‖·‖1 has been defined in the proof of Theorem
1, then

‖xn+2 − xn+1‖C ≤ H(Axn+1, Axn) + λn+1

≤ βbn(t) + T (bn(·), t) + λn+1.
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Since bn(t) ≤ y(t)bn, we have

1
y(t)

‖xn+2 − xn+1‖C ≤ 1
y(t)

[βbn(t) + |T (bn(·), t)|+ λn+1]

≤ (β + α)bn +
1
m

λn+1,

where m = inf{y(t) : t ∈ I}. This implies

bn+1 ≤ (β + α)bn +
1
m

λn+1 = λbn +
1
m

λn+1.

So
bn ≤ λn(b0 +

n

m
) for n = 0, 1, 2, . . . .

It is easy to show limn→∞ bn = 0. Furthermore, it follows from
∑+∞

n=0 λn < ∞ and∑+∞
n=0 nλn < ∞ that

∑+∞
n=0 bn < ∞. Thus {xn} is a Cauchy sequence with respect

to norm ‖ · ‖1. Thus {xn} is a Cauchy sequence with respect to norm ‖ · ‖C .
Therefore, there is a u ∈ F such that limn→∞ xn = u. We claim that u ∈ Au.

Indeed, condition (H̃1) implies that

H(Au,Axn) ≤ β‖u(t)− xn(t)‖E + T (‖u(·)− xn(·)‖E , t)
≤ βy(t)‖u− xn‖1 + |T (y, t)|‖u− xn‖1
≤ M [β + α]‖u− xn‖1.

Since xn ∈ Axn−1, we obtain

D(Au, xn+1) ≤ H(Au,Axn) ≤ M [β + α]‖u− xn‖1.

Thus D(Au, u) = 0. This means u ∈ Au. Hence A has a fixed point u. This
completes the proof.

In order to investigate the existence of solutions of functional differential inclu-
sions by using the multi-valued fixed point theorems in continuous function spaces,
we consider the Banach space C[[−σ, 0], E] for some σ > 0 with supremum norm.
For I = [0, T ] and ϕ ∈ C[[−σ, 0], E], define a closed subset as F = {u ∈ C[I, E] :
u(0) = ϕ(0)}. Then following similar arguments in Theorem 2, we obtain a useful
result. Here we omit details of the proof.

Theorem 3. Let F be given as above, A : F → CB(F ) a multi-valued operator
and T (·, t) a linear nondecreasing operator for fixed t ∈ I. For any u, v ∈ F and
t ∈ [−σ, 0], define u(t) = v(t) = ϕ(t), if (H2) holds and there exists β ∈ [0, 1) such
that for t ∈ I,

H(Au,Av) ≤ β sup
s∈[−σ,0]

{‖u(t + s)− v(t + s)‖E}+ T (‖u(·)− v(·)‖E , t).

Then A has a fixed point in F .
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Following Theorem 2, we obtain two fixed point theorems, which contain a gen-
eralization of the multivalued contraction principle established by Covitz and Nadler
in [4].

Corollary 4. Let I = [0, L] and let F be a nonempty closed subset of C(I, E) and
A : F → CB(F ) a multi-valued operator. If there exist α, β ∈ [0, 1) and K ≥ 0 such
that for any u, v ∈ F and t ∈ I \ {0},

H(Au,Av) ≤ β‖u(t)− v(t)‖E +
K

tα

∫ t

0

‖u(s)− v(s)‖Eds.

Then A has a fixed point.

Corollary 5. Let I = [η,∞) and let F be a nonempty closed subset of BC(I, E)
and A : F → CB(F ) a multi-valued operator. If there exist α ∈ (1,∞), β ∈ [0, 1)
and K ≥ 0 such that for any u, v ∈ F and t ∈ I,

H(Au,Av) ≤ β‖u(t)− v(t)‖E +
K

tα

∫ t

η

‖u(s)− v(s)‖Eds.

Then A has a fixed point in F .

3. Applications to nonlinear problems

Our results can be applied to various nonlinear phenomena. Here we present an
illustrative example: a periodic boundary value problem with impulsive effects.

Example 5. Consider the following periodic boundary value problem with impulsive
effects: 




u′(t) + γu(t) = f(t, u(t)), t ∈ (0, 1) \ {t1, t2, . . . , tm},
∆u|t=tk

= Ik(u(t−k )), k = 1, 2, · · · ,m,
u(0) = u(1),

(2)

where f ∈ C([0, 1] × Rn, Rn), γ > 0, Ik ∈ C(Rn, Rn), 0 = t0 < t1 < t2 < · · · <
tm < tm+1 = 1, ∆u|t=tk

= u(t+k ) − u(t−k ), u(t+k ) and u(t−k ) represent the right and
left limits of u(t) at t = tk, respectively.

Many authors have investigated various impulsive periodic boundary value prob-
lems, see for example [7, 12]. Here we assume:

(A1) there exists constant l satisfying

|f(t, x)− f(t, y)| ≤ l|x− y|,

for x, y ∈ Rn.

(A2) there exist constants ck satisfying

|Ik(x)− Ik(y)| ≤ ck|x− y|,

for each k = 1, · · · ,m and all x, y ∈ Rn.
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In order to define the solution of (2), we introduce the space Ω = {u : [0, 1] →
Rn : u ∈ C((tk, tk+1), Rn), u(t−k ) and u(t+k ) exist and u(tk) = u(t−k ), k = 1, · · · ,m}.
Then Ω is a Banach space with the norm ‖u‖Ω := sup{|u(t)| : t ∈ [0, 1]}. A function
u ∈ Ω is said to be a solution of (2) if u satisfies the impulsive differential equations
(2) on [0, 1] \ {t1, t2, · · · , tm} and the boundary conditions.

Theorem 4. Assume (A1) and (A2) hold. Then the impulsive periodic boundary
value problem (2) has a unique solution on [0, 1] provided l

γ +
∑m

k=1 ck < 1.

Proof. Noting that u(t) is a solution of problem (2) if and only if u(t) is a 1-periodic
solution of equation

{
u′(t) + γu(t) = f(t, u(t)), t ∈ (0, 1) \ {t1, t2, . . . , tm},
∆u|t=tk

= Ik(u(t−k )), k = 1, 2, · · · ,m,
(3)

where f(t + 1, u) = f(t, u) for t ∈ R and u ∈ C1 := {u ∈ C(R, Rn) : u(t +
1) = u(t), t ∈ R}, we transform problem (3) into a fixed point problem. Consider
the map A : C1 → C1 defined by

Au(t) =
∫ t+1

t

e−γ(t−s)

eγ − 1
f(s, u(s))ds +

∑

0≤tk<t mod(1)

Ik(u(t−k )), t ∈ R.

For any u, v ∈ C1, following (A1) and (A2), we have (t ∈ [0, 1])

|Au(t)−Av(t)| ≤ l

∫ t+1

t

e−γ(t−s)

eγ − 1
|u(s)− v(s)|ds +

m∑

k=1

ck‖u− v‖C1 .

Let T (x(·), t) = l
∫ t+1

t
e−γ(t−s)

eγ−1 x(s)ds for x ∈ C([0, 1], R). By example 4, l
γ +∑m

k=1 ck < 1 and Theorem 1, we conclude that A has a unique fixed point u in
C1. Thus u(t) is the unique solution of boundary value problem (2).

Example 6. Consider the existence of solutions of the following differential inclu-
sions with distributed delay:

[x(t)−
∫ 0

−τ

k(s)x(t + s)ds]′ ∈ G(t,
∫ t

0

h(t, s)x(s)ds), (4)

where t ∈ I = [0, T ] for T > 0, τ > 0, G ∈ C[I × Rn, CB(Rn)], h ∈ C[Ω, Rn×n],
Ω = {(t, s) ∈ I2 : 0 ≤ s ≤ t ≤ T} and k ∈ C[I,Rn×n] with

∫ 0

−τ
|k(s)|ds = k < 1.

x(t) = ϕ(t) for t ∈ [−τ, 0] and ϕ ∈ C[[−τ, 0], Rn].

(A3) There exists a bounded function l such that, for any u, v ∈ Rn,

H(G(t, u), G(t, v)) ≤ l(t)|u− v|.

Theorem 5. Suppose that (A3) holds, then (4) has at least one solution on I.
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Proof. We transfer the existence of solution of (4) into a fixed point problem. Let
F = {u ∈ C[I, Rn] : u(0) = ϕ(0)}, define A : F → CB(F ) by

Au(t) = ϕ(0)−
∫ 0

−τ

k(s)ϕ(s)ds +
∫ 0

−τ

k(s)u(t + s)ds +
∫ t

0

G(s,
∫ s

0

h(s, r)u(r)dr)ds,

where u(t) = ϕ(t) for t ∈ [−τ, 0]. Then (4) has the solution

S(t) =
{

u(t), if t ∈ I,
ϕ(t), if t ∈ [−τ, 0]

if and only if u(t) is the fixed point of A. Furthermore, by direct computation, we
have

H(Au,Av) ≤ k sup
s∈[−τ,0]

{|u(t + s)− v(t + s)|}+ Lh

∫ t

0

|u(s)− v(s)|ds,

where L = max{|l(t)| : t ∈ I} and h = max{|h(t, s)| : (t, s) ∈ Ω}. Taking α = 0,
β = k and K = Lh, then it follows from Theorem 2.3 that A has a fixed point u in
C[I,Rn]. Thus (4) has a unique solution S(t). This completes the proof.
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