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Abstract. The purpose of this paper is to investigate the well-posedness issue of para-
metric quasivariational inequalities defined by bifunctions. We generalize the concept of
α-well-posedness to parametric quasivariational inequalities having a unique solution and
derive some characterizations of α-well-posedness. The corresponding concepts of α-well-
posedness in the generalized sense are also introduced and investigated for the problems
having more than one solution. Finally, we give some sufficient conditions for α-well-
posedness of parametric quasivariational inequalities.
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1. Introduction

The well-posedness issues, born for minimization problems, have been attracting
much attention of many researchers in the fields of economics and mathematics in
the last decade. Tykhonov [28] first considered the well-posedness of a minimization
problem, already known as Tykhonov well-posedness, which means the existence
and uniqueness of minimizers. Since then various concepts of well-posedness were
introduced and studied for minimization problems. For details we refer readers to
[3, 4, 9, 14, 29, 30] and the references therein. In recent years, the concept of well-
posedness was generalized to variational inequalities. Perhaps the main motivation
lies in the fact that a minimization problem is closely related to a variational inequal-
ity. The first notion of well-posedness for a classical variational inequality was due to
Lucchetti and Patrone [23]. Parametric variational inequalities are problems where
a parameter is allowed to vary in a certain subset of a metric space. It has been
shown that the parametric variational inequality is a central ingredient in the class of
Mathematical Programs with Equilibrium Constraints which appear in many applied
contexts and have been studied by many authors. See e.g. [11, 21, 24]. So it is inter-
esting and necessary to study well-posedness of parametric variational inequalities.
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Lignola and Morgan [21] introduced the concepts of the parametric well-posedness
for a family of variational inequalities and investigated its links with the extended
well-posedness [30] of the corresponding minimization problems. The definition of
well-posedness [21] for a classical variational inequality is inspired by the corre-
sponding one for a minimization problem in terms of the gap function introduced
by Auslender [1], known as Auslender gap function, which allows transformation of
a variational inequality into an equivalent minimization problem. The Auslender
gap function is applied to numerical methods for variational inequalities when it is
differentiable. But, the Auslender gap function is not always differentiable in gen-
eral. To overcome this, Fukushima [12] introduced another gap function, known as
Fukushima gap function, which is continuously differentiable and widely used in nu-
merical methods for variational inequalities. Motivated by the numerical method in
[12], Lignola and Morgan [8] introduced the concept of α-well-posedness for the clas-
sical variational inequality and proved that a variational inequality is α-well-posed if
and only if a corresponding minimization problem with the Fukushima gap function
being an objective function is Tykhonov well-posed (see Prop. 2.1 of [8]). A quasi-
variational inequality is an extension of the classical variational inequality in which
the defining set of the problem varies with a variable. The quasivariational inequal-
ity was first considered by Bensoussan and Lions [5] and has wide applications (see
[2, 11]). Recently, Lignola [20] further considered well-posedness of quasivariational
inequalities.

Meanwhile, some new contributions have been given to the theory of variational
inequalities. In terms of Dini directional derivative, Crespi et al. [6, 7] introduced a
class of generalized Minty variational inequalities, which includes the class of clas-
sical Minty variational inequalities as a special case, and investigated its links with
nondifferentiable minimization problems. Lalitha and Mehta [19] introduced a class
of variational inequalities defined by bifunctions and discussed the relationship be-
tween minimization problems and the variational inequalities by using generalized
monotonicity of bifunctions. Motivated and inspired by the above works, Fang and
Hu [10] studied well-posedness of Stampacchia and Minty variational inequalities
defined by bifunctions. The concepts of parametric well-posedness were introduced
for the variational inequalities defined by bifunctions and some metric characteriza-
tions of parametric well-posedness were derived. In this paper, we further generalize
the concept of α-well-posedness to parametric quasivariational inequalities defined
by bifunctions. We establish some characterizations of parametric α-well-posedness.
Our results generalize the corresponding results of [8, 10, 20].

2. Preliminaries and notations

Throughout this paper, unless otherwise specified, we always suppose that α ≥ 0 is
a fixed number, K is a nonempty subset of a real Banach space X, P is a parametric
norm space, S : P × K → 2K is a set-valued map and h : P × K × X → R̄ is a
function, where 2K denotes the family of all subsets of K and R̄ := R∪{+∞,−∞}.
We consider the following parametric Stampacchia and Minty quasivariational in-
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equalities defined by (h, S):

SQV Ip(h, S) : find x ∈ K such that x ∈ S(p, x), h(p, x, x− y) ≤ 0, ∀y ∈ S(p, x),
MQV Ip(h, S) : find x ∈ K such that x ∈ S(p, x), h(p, y, x− y) ≤ 0, ∀y ∈ S(p, x).

Note that SQV Ip(h, S) and MQV Ip(h, S) provide very general formulations of
variational inequalities, which include the classic Stampacchia and Minty variational
inequalities as special cases (see e.g. [11, 13, 15]), quasivariational inequalities (see
e.g. [2]), generalized Minty variational inequalities [6, 7] and variational inequalities
defined by a bifunction [10, 19].

Here, we show that a parametric nondifferentiable minimization problem leads to
a problem which can be incorporated in the MQV Ip(h, S) model but not included
in other models in [10, 20, 21, 23].

Consider the parametric minimization problem:

(MP )p : min
x∈K(p)

Ip(x),

where K(p) ⊂ K is a nonempty set and Ip : K(p) → R is a locally Lipschitz
continuous function. (MP )p can be regarded as a parametric version of the standard
minimization problem:

(MP ) : min
x∈K

I(x),

where I : K → R is a locally Lipschitz continuous function. It is well-known that
for each p, a point x∗ ∈ K(p) is a solution of (MP )p if and only if x∗ solves the
following variational inequality: find x ∈ K(p) such that

(V I)p : 〈∇Ip(x), x− y〉 ≤ 0, ∀y ∈ K(p)

whenever K(p) is convex and Ip is convex and differentiable, where ∇Ip(x) denotes
the derivative of Ip at x. In other words, a parametric differentiable minimization
leads to a parametric variational inequality problem. When Ip is nondifferentiable
and locally Lipshitz continuous, it shall be shown that (MP )p leads to a SQV Ip(h, S)
model but not a (V I)p model. Indeed, it is easy to see that every solution of (MP )p

must be a solution of the following problem: for each p, find x ∈ K(p) such that

(P1) : I◦p (x, y − x) ≥ 0, ∀y ∈ x + T (x; K(p)),

where

I◦p (x, v) := lim sup
u→x,t→+0

Ip(u + tv)− Ip(u)
t

denotes the Clarke directional derivative of Ip at x in the direction v and T (x;K(p))
denotes the tangent cone of K(p) at x ∈ K(p). For more details on the Clarke
directional derivative and the tangent cone, we refer the readers to [25, 26].

It is known that I◦p is positively homogeneous with degree 1 and subadditive in
the second variable, and that Ip is convex if and only if I◦p is monotone (defined
below). By standard arguments (as in the proof of Theorem 2.1 of [19]), it can be
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proved that under suitable conditions, (P1) is equivalent to the following problem:
for each p, find x ∈ K(p) such that

(P2) : I◦p (y, x− y) ≤ 0, ∀y ∈ x + T (x; K(p)).

Define
h(p, y, x− y) = I◦p (y, x− y), p ∈ P, x ∈ K, y ∈ X

and
S(p, x) = x + T (x; K(p)), ∀p ∈ P, x ∈ K.

Then a nondifferentiable (MP )p leads to (P2) which can be incorporated in the
MQV Ip(h, S) model but not included in other models in [10, 20, 21, 23].

Some concepts of approximating solutions and of well-posedness have been in-
troduced for the Stampacchia variational inequality, quasivariational inequality and
variational inequality defined by a bifunction. For more details we refer readers to
[8, 10, 20, 21, 22, 23] and the references therein. Inspired by the concept of α-well-
posedness for variational inequalities [22], we further introduce the concepts of α-
approximating solutions and of α-well-posedness for SQV Ip(h, S) and MQV Ip(h, S).

Definition 1. Let p ∈ P and {pn} ⊂ P with pn → p. A sequence {xn} is called
an α-approximating sequence for SQV Ip(h, S) [resp. MQV Ip(h, S)] corresponding
to {pn} if:

(i) xn ∈ K, ∀n ∈ N ;

(ii) there exist sequences {ηn} and {εn} with ηn ↓ 0 and εn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, xn, xn−y) ≤ α

2
‖xn−y‖2 +εn, ∀y ∈ S(pn, xn), ∀n ∈ N.

[resp. if:

(i) xn ∈ K, ∀n ∈ N ;

(ii) there exist sequences {ηn} and {εn} with ηn ↓ 0 and εn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, y, xn−y) ≤ α

2
‖xn−y‖2 + εn, ∀y ∈ S(pn, xn), ∀n ∈ N ].

Remark 1. Definition 1 generalizes Definition 2.1 of Lignola and Morgan [21], Def-
inition 3.1 of Del Prete et al. [8], Definition 2.3 of Lignola [20], and Definition 2.1
of Fang and Hu [10].

Definition 2. The family {SQV Ip(h, S) : p ∈ P} [resp. {MQV Ip(h, S) : p ∈ P}]
is said to be α-well-posed if for every p ∈ P , SQV Ip(h, S) [resp. MQV Ip(h, S)]
has a unique solution xp and for every sequence {pn} converging to p, every α-
approximating sequence for SQV Ip(h, S) [resp. MQV Ip(h, S)] corresponding to
{pn} norm-converges to xp.
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Remark 2. Definition 2 generalizes Definition 2.2 of Lignola and Morgan [21],
Definition 3.2 of Del Prete et al. [8], Definition 2.4 of Lignola [20], and Definition
2.2 of Fang and Hu [10].

When SQV Ip(h, S) [resp. MQV Ip(h, S)] has more than one solution, we can
introduce the corresponding concept of α-well-posedness in the generalized sense.

Definition 3. The family {SQV Ip(h, S) : p ∈ P} [resp. {MQV Ip(h, S) : p ∈ P}]
is said to be α-well-posed in the generalized sense if for every p ∈ P , SQV Ip(h, S)
[resp. MQV Ip(h, S)] has a nonempty solution set Sp [resp. Mp] and for every
sequence {pn} converging to p, every α-approximating sequence for SQV Ip(h, S)
[resp. MQV Ip(h, S)] corresponding to {pn} has a subsequence which norm-converges
to some point of Sp [resp. Mp].

To investigate the α-well-posedness of SQV Ip(h, S) and MQV Ip(h, S), we need
the following concepts and results.

Definition 4 (see [18]). Let A be a nonempty subset of X. The measure of non-
compactness µ of the set A is defined by

µ(A) = inf{ε > 0 : A ⊂ ∪n
i=1Ai, diamAi < ε, i = 1, 2, · · · , n},

where diam means the diameter of a set.

Definition 5. Given a set A and a sequence {An} of nonempty subsets of X, the
Kuratowski-Painlevé lower and upper limits are defined as follows:

LiminfAn = {x ∈ X : x = lim
n→∞

xn, xn ∈ An, for all sufficiently large n},
LimsupAn = {x ∈ X : x = lim

s→∞
xs, xs ∈ Ans , {ns} is a subsequence of {n}}.

We say that {An} converges to A in the sense of Kuratowski-Painlevé iff

LimsupAn ⊂ A ⊂ LiminfAn.

Definition 6. Let (E, d) be a metric space and let A,B be nonempty subsets of E.
The Hausdorff metric H(·, ·) between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)},
where e(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B d(a, b). Let {An} be a se-
quence of nonempty subsets of E. We say that An converges to A in the sense of
Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0 if and only
if d(an, A) → 0 for all selection an ∈ An. For more details on this topic see e.g.
[16, 18].

Definition 7 (see [18]). Let (E, τ) and (F, σ) be two first countable topological
spaces. A set-valued map G : E → 2F is said to be

(i) (τ, σ)-closed if for every x ∈ E, for every sequence {xn} τ -converging to x,
and for every sequence {yn} σ-converging to y, such that yn ∈ G(xn) for all
n ∈ N , one has y ∈ G(x), i.e., G(x) ⊃ lim supn G(xn);
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(ii) (τ, σ)-lower semicontinuous if for every x ∈ E, for every sequence {xn} τ -
converging to x, and for every y ∈ G(x), there exists a sequence {yn} σ-
converging to y, such that yn ∈ G(xn) for all sufficiently large n, i.e.,
G(x) ⊂ lim infn G(xn);

(iii) (τ, σ)-subcontinuous if for every x ∈ E, for every sequence {xn} τ -converging
to x, and every sequence {yn} with yn ∈ G(xn),{yn} has a σ-convergent sub-
sequence.

Definition 8 (see [17, 19]). A bifunction f : K ×X → R̄ is said to be

(i) monotone if f(x, y − x) + f(y, x− y) ≤ 0, ∀x, y ∈ K.

(ii) pseudomonotone if for any x, y ∈ K, f(x, y − x) ≥ 0 ⇒ f(y, x− y) ≤ 0.

Definition 9. A bifunction f : K×X → R̄ is said to be hemicontinuous if for every
x, y ∈ K and t ∈ [0, 1], the function t 7→ f(x + t(y − x), y − x) is continuous at 0+.
Clearly, the continuity of f implies the hemicontinuity of f , but the converse is not
true in general.

Definition 10 (see [27]). A bifunction f : K ×X → R̄ is said to be subodd if

f(x, d) + f(x,−d) ≥ 0, ∀x ∈ K, d ∈ X.

Definition 11. A function g : X → R̄ is said to be positively homogeneous with
degree ρ > 0 if g(λx) = λρg(x) for all x ∈ X and λ > 0.

By the same arguments as in [19, Theorem 2.1], we have the following Minty
type lemma.

Lemma 1. Let K be convex, and f : K × X → R̄ a hemicontinuous, subodd and
pseudomonotone bifunction. If f is positively homogeneous with degree ρ > 0 in the
second variable, then the following problems are equivalent:

(i) find x ∈ K such that f(x, x− y) ≤ 0, ∀y ∈ K;

(ii) find x ∈ K such that f(y, x− y) ≤ 0, ∀y ∈ K.

Lemma 2. Let K be convex, f : K ×X → R̄ positively homogeneous with degree ρ
(0 < ρ < 2) in the second variable, and x ∈ K a given point. Then

f(x, x− y) ≤ 0, ∀y ∈ K

if and only if
f(x, x− y) ≤ α

2
‖x− y‖2, ∀y ∈ K.

Proof. The necessity is obvious. For the sufficiency, suppose that

f(x, x− y) ≤ α

2
‖x− y‖2, ∀y ∈ K.
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For any v ∈ K, let y(t) = x + t(v − x), ∀t ∈ [0, 1]. It follows that y(t) ∈ K and so

f(x, x− y(t)) ≤ α

2
‖x− y(t)‖2.

Since f is positively homogeneous with degree ρ in the second variable, we get

f(x, x− v) ≤ t2−ρα

2
‖x− v‖2, ∀v ∈ K.

Letting t → 0 in the above inequality, we have

f(x, x− v) ≤ 0, ∀v ∈ K.

Lemma 3. Let K be convex, and f : K × X → R̄ a hemicontinuous, subodd and
pseudomonotone bifunction. Assume that f is positively homogeneous with degree ρ
(0 < ρ < 2) in the second variable and x ∈ K is a given point. Then

f(y, x− y) ≤ 0, ∀y ∈ K

if and only if

f(y, x− y) ≤ α

2
‖x− y‖2, ∀y ∈ K.

Proof. The necessity is obvious. For the sufficiency, suppose that

f(y, x− y) ≤ α

2
‖x− y‖2, ∀y ∈ K.

For any v ∈ K, let y(t) = x + t(v − x), ∀t ∈ [0, 1]. It follows that y(t) ∈ K and so

f(y(t), x− y(t)) ≤ α

2
‖x− y(t)‖2.

Since f is positively homogeneous with degree ρ in the second variable, we get

f(y(t), x− v) ≤ t2−ρα

2
‖x− v‖2, ∀v ∈ K.

Letting t → 0 in the above inequality, we have

f(x, x− v) ≤ 0, ∀v ∈ K.

It follows from Lemma 1 that

f(v, x− v) ≤ 0, ∀v ∈ K.
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3. Metric characterizations of α-well-posedness

In this section we shall give some metric characterizations of α-well-posedness for
parametric Stampacchia and Minty quasivariational inequalities defined by bifunc-
tions. For SQV Ip(h, S) and MQV Ip(h, S), the sets of α-approximating solutions
are defined by

TS
p (δ, ε, η) = ∪p′∈B(p,δ){x ∈ K : d(x, S(p′, x))

≤ η, h(p′, x, x− y) ≤ α

2
‖x− y‖2 + ε, ∀y ∈ S(p′, x)}

and

TM
p (δ, ε, η) = ∪p′∈B(p,δ){x ∈ K : d(x, S(p′, x))

≤ η, h(p′, y, x− y) ≤ α

2
‖x− y‖2 + ε, ∀y ∈ S(p′, x)}, respectively,

where B(p, δ) denotes the closed ball centered at p with radius δ.

Theorem 1. Let K be closed, h : P×K×X → R̄ positively homogeneous with degree
ρ (0 < ρ < 2) in the third variable and s-continuous, and let S : P × K → 2K be
convex-valued, (s, w)-closed, (s, s)-lower semicontinuous and (s, w)-subcontinuous.
Then, the family {SQV Ip(h, S) : p ∈ P} is α-well-posed if and only if for every
p ∈ P ,

TS
p (δ, ε, η) 6= ∅,∀ε, δ, η > 0, and diamTS

p (δ, ε, η) → 0 as (δ, ε, η) → (0, 0, 0). (1)

Proof. Suppose that for every p ∈ P ,

TS
p (δ, ε, η) 6= ∅, ∀ε, δ, η > 0, and diam TS

p (δ, ε, η) → 0 as (δ, ε, η) → (0, 0, 0).

We first prove that Sp has at most one solution. Let u, v ∈ Sp with u 6= v. It follows
that

u ∈ S(p, u), h(p, u, u− y) ≤ 0, ∀y ∈ S(p, u)

and
v ∈ S(p, v), h(p, v, v − y) ≤ 0, ∀y ∈ S(p, v).

It is easily seen that u, v ∈ TS
p (δ, ε, η) for all δ, ε, η ≥ 0. Taking (1) into account, we

have u = v, a contradiction.
Let pn → p and {xn} ⊂ K be an α-approximating sequence for {SQV Ip(h, S) :

p ∈ P} corresponding to {pn}. Then there exist sequences {ηn} and {εn} with ηn ↓ 0
and εn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, xn, xn − y) ≤ α

2
‖xn − y‖2 + εn,∀y ∈ S(pn, xn), ∀n ∈ N.

This implies that xn ∈ TS
p (δn, εn, ηn) with δn = ‖pn − p‖. By condition (1), {xn} is

a Cauchy sequence and it converges strongly to a point x ∈ K. We will prove x is
the unique solution of SQV Ip(h, S) by two steps.
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Step I: Since d(xn, S(pn, xn)) ≤ ηn < ηn + 1
n , there exists yn ∈ S(pn, xn) such

that
‖xn − yn‖ < ηn +

1
n

.

Further, since S is (s, w)-closed and (s, w)-subcontinuous, {yn} has a subsequence
{ynk

} which converges weakly to y ∈ S(p, x). It follows that

d(x, S(p, x)) ≤ ‖x− y‖ ≤ lim inf
k

‖xnk
− ynk

‖ ≤ lim
k

(ηnk
+

1
k

) → 0.

Thus x ∈ S(p, x).
Step II: Consider an arbitrary z ∈ S(p, x). Since S is (s, s)-lower semicontinuous,

there exists zn ∈ S(pn, xn) such that zn → z. It follows that

h(pn, xn, xn − zn) ≤ α

2
‖xn − zn‖2 + εn,∀n ∈ N.

Since h is s-continuous, we get

h(p, x, x− z) ≤ α

2
‖x− z‖2, ∀z ∈ S(p, x).

It follows from Lemma 2 that

h(p, x, x− z) ≤ 0, ∀z ∈ S(p, x),

which together with x ∈ S(p, x) implies that x is the unique solution of SQV Ip(h, S).
Conversely, let {SQV Ip(h, S) : p ∈ P} be α-well-posed. Clearly,

TS
p (δ, ε, η) ⊃ Sp 6= ∅, ∀ε, δ, η > 0.

Suppose by contradiction that there exists some p ∈ P such that diamTS
p(δ, ε, η) 6→

0 as (δ, ε, η) → (0, 0, 0). Then there exist a positive number l and sequences
{δn}, {εn}, {ηn} with δn ↓ 0, εn ↓ 0, ηn ↓ 0, and un, vn ∈ K with un ∈ TS

p (δn, εn, ηn),
vn ∈ TS

p (δn, εn, ηn) such that

‖un − vn‖ > l, ∀n ∈ N. (2)

Since un, vn ∈ TS
p (δn, εn, ηn), there exist pn, p′n ∈ B(p, δn, ηn) such that

d(un, S(pn, un)) ≤ ηn, h(pn, un, un − y) ≤ α

2
‖un − y‖2 + εn, ∀y ∈ S(pn, un),∀n ∈ N

and

d(vn, S(p′n, vn)) ≤ ηn, h(p′n, vn, vn − y) ≤ α

2
‖vn − y‖2 + εn, ∀y ∈ S(p′n, vn), ∀n ∈ N.

Therefore, {un} and {vn} are α-approximating sequences for SQV Ip(h, S) corre-
sponding to {pn} and {p′n}, respectively. Since {SQV Ip(h, S) : p ∈ P} is α-well-
posed, they have to converge to the unique solution of SQV Ip(h, S). This gives a
contradiction to (2). Thus condition (1) holds.
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When the condition TS
p (δ, ε, η) 6= ∅,∀ε, δ, η > 0 is replaced by Sp 6= ∅, the conti-

nuity assumptions on h and S can be dropped.

Theorem 2. Assume that h : P ×K×X → R̄ is positively homogeneous with degree
ρ (0 < ρ < 2) in the third variable and S : P × K → 2K is convex-valued. Then,
the family {SQV Ip(h, S) : p ∈ P} is α-well-posed if and only if for every p ∈ P , the
solution set Sp of SQV Ip(h, S) is nonempty and

diamTS
p (δ, ε, η) → 0 as (δ, ε, η) → (0, 0, 0). (3)

Proof. The necessity has been proved in Theorem 1. For the sufficiency, let pn →
p ∈ P and {xn} be an α-approximating sequence for SQV Ip(h, S) corresponding to
{pn}. Then there exist sequences {εn} and {ηn} with εn ↓ 0 and ηn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, xn, xn−y) ≤ α

2
‖xn−y‖2+εn, ∀y ∈ S(pn, xn), ∀n ∈ N.

This means xn ∈ TS
p (δn, εn, ηn) with δn = ‖pn − p‖. Let xp be the unique solution

of SQV Ip(h, S). Clearly, xp ∈ TS
p (δn, εn, ηn) for all n. It follows from (3) that

‖xn − xp‖ ≤ diam TS
p (δn, εn, δn) → 0.

Thus {SQV Ip(h, S) : p ∈ P} is α-well-posed.

Remark 3. Theorems 1 and 2 generalize Proposition 2.3 of Lignola and Morgan
[21], Theorem 3.2 of Lignola [20] and Theorems 3.1 and 3.2 of Fang and Hu [10].
For the α-well-posedness of MQV Ip(h, S), we have the following analogous metric
characterizations.

Theorem 3. Let K be closed, h : P×K×X → R̄ positively homogeneous with degree
ρ (0 < ρ < 2) in the third variable and s-continuous, and let S : P × K → 2K be
convex-valued, (s, w)-closed, (s, s)-lower semicontinuous and (s, w)-subcontinuous.
Assume that h(p, ·, ·) is subodd and pseudomonotone for all p ∈ P . Then, the family
{MQV Ip(h, S) : p ∈ P} is α-well-posed if and only if for every p ∈ P ,

TM
p (δ, ε, η) 6= ∅,∀ε, δ, η > 0, and diamTM

p (δ, ε, η) → 0 as (δ, ε, η) → (0, 0, 0).

Proof. The proof follows similar arguments as in Theorem 1 with Lemma 2 being
replaced by Lemma 3.

When the condition TM
p (δ, ε, η) 6= ∅, ∀ε, δ, η > 0 is replaced by Mp 6= ∅, some

assumptions in Theorem 3 can be dropped.

Theorem 4. Assume that h : P ×K×X → R̄ is positively homogeneous with degree
ρ (0 < ρ < 2) in the third variable and S : P ×K → 2K is convex-valued. Then, the
family {MQV Ip(h, S) : p ∈ P} is α-well-posed if and only if for every p ∈ P , the
solution set Mp of MQV Ip(h, S) is nonempty and

diamTM
p (δ, ε, η) → 0 as (δ, ε, η) → (0, 0, 0).

Proof. The conclusion follows from similar arguments as in Theorem 2.
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Remark 4. Theorems 3 and 4 generalize Theorems 3.3 and 3.4 of Fang and Hu
[10].

Next we give two applications of metric characterization of α-well-posedness.

Example 1. Let X = K = l2, S(u) = {x ∈ K : ‖x‖ ≤ ‖u‖} and h(p, u, v) = ‖u‖2 ·
‖v‖ for all p ∈ P, u ∈ K, v ∈ X. Then h is positively homogeneous with degree
ρ = 1 in the third variable and continuous, and S is convex-valued, closed, lower
semicontinuous and subcontinuous. It follows that

TS
p (δ, ε, η) = {x ∈ K : d(x, S(x)) ≤ η, ‖x‖2 · ‖x− y‖ ≤ α

2
‖x− y‖2 + ε, ∀y ∈ S(x)}

= {x ∈ l2 : d(x, S(x)) ≤ η, ‖x‖2 ≤ α

2
‖x− y‖+

ε

‖x− y‖ ,∀y ∈ S(x)}

⊂ {x ∈ l2 : ‖x‖2 ≤
√

2αε}
for sufficiently small ε > 0. It follows that diamTS

p (δ, ε, η) → 0 as (δ, ε, η) → (0, 0, 0).
By Theorem 1, {SQV Ip(h, S) : p ∈ P} is α-well-posed.

Example 2. Let K be the closed unit ball of a real Banach space X and P = R. Let
S(u) = {x ∈ K : ‖x‖ ≤ 2‖u‖} and h(p, u, v) = p‖u‖ ·

√
‖v‖ for all p ∈ P, u ∈ K, v ∈

X. Then h is positively homogeneous with degree ρ = 1
2 in the third variable and

continuous, and S is convex-valued, closed, lower semicontinuous and subcontinuous.
It is easily seen that when TS

p (δ, ε, η) = K for all p ≤ 0 and so diamTS
p (δ, ε, η) = 2 6→

0 as (δ, ε, η) → (0, 0, 0). By Theorem 1, {SQV Ip(h, S) : p ∈ P} is not α-well-posed.

4. Metric characterizations of α-well-posedness in the general-
ized sense

In this section we shall give some metric characterizations of α-well-posedness in the
generalized sense for parametric quasivariational inequalities having more than one
solution. We first establish a metric characterization by considering the measure of
noncompactness of α-approximating solution sets.

Theorem 5. Assume that K is closed and P is finite dimensional. Let h : P ×K×
X → R̄ be positively homogeneous with degree ρ (0 < ρ < 2) in the third variable and
s-continuous, and let S : P ×K → 2K be convex-valued, (s, w)-closed, (s, s)-lower
semicontinuous and (s, w)-subcontinuous. Then, the family {SQV Ip(h, S) : p ∈ P}
is α-well-posed in the generalized sense if and only if for every p ∈ P ,

TS
p (δ, ε, η) 6= ∅, ∀δ, ε, η > 0, and µ(TS

p (δ, ε, η)) → 0 as (δ, ε, η) → (0, 0, 0). (4)

Proof. Suppose that {SQV Ip(h, S) : p ∈ P} is α-well-posed in the generalized
sense. Then TS

p (δ, ε, η) 6= ∅ for all p ∈ P, δ, ε, η > 0 since TS
p (δ, ε, η) ⊃ Sp 6= ∅. We

first show that Sp is compact. Let {xn} be a sequence in Sp. Clearly {xn} is an
α-approximating sequence for SQV Ip(h, S). Since {SQV Ip(h, S) : p ∈ P} is α-well-
posed in the generalized sense, {xn} has a subsequence converging strongly to some
point of Sp. Thus Sp is compact. Observe that for every δ, ε, η > 0,

H(TS
p (δ, ε, η), Sp) = max{e(TS

p (δ, ε, η), Sp), e(Sp, T
S
p (δ, ε, η))} = e(TS

p (δ, ε, η), Sp).
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By using the compactness of Sp, we get

µ(TS
p (δ, ε, η)) ≤ 2H(TS

p (δ, ε, η), Sp) + µ(Sp) = 2e(TS
p (δ, ε, η), Sp).

To prove (4), it is sufficient to show

e(TS
p (δ, ε, η), Sp) → 0 as (δ, ε, η) → (0, 0, 0).

If e(TS
p (δ, ε, η), Sp) 6→ 0 as (δ, ε, η) → (0, 0, 0). Then there exist τ > 0 and {δn},

{εn}, {ηn} with δn ↓ 0, εn ↓ 0, ηn ↓ 0, and xn ∈ K with xn ∈ TS
p (δn, εn, ηn) such

that

xn 6∈ Sp + B(0, τ), ∀n ∈ N. (5)

Being xn ∈ TS
p (δn, εn, ηn), {xn} is an α-approximating sequence for SQV Ip(h, S).

Since {SQV Ip(h,K) : p ∈ P} is α-well-posed in the generalized sense, there exists a
subsequence {xnk

} of {xn} converging strongly to some point of Sp. This contradicts
(5) and so

e(TS
p (δ, ε, η), Sp) → 0 as (δ, ε, η) → (0, 0, 0).

Conversely, assume that (4) holds. We first show that TS
p (δ, ε, η) is closed for all

δ, ε, η > 0. Let xn ∈ TS
p (δ, ε, η) with xn → x. Then there exists pn ∈ B(p, δ) such

that

d(xn, S(pn, xn)) ≤ η, h(pn, xn, xn − y) ≤ α

2
‖xn − y‖2 + ε, ∀y ∈ S(pn, xn). (6)

Since P is finite dimensional, without loss of generality, we may suppose that pn →
p′ ∈ B(p, δ).

Since d(xn, S(pn, xn)) ≤ η < η + 1
n , there exists yn ∈ S(pn, xn) such that

‖xn − yn‖ < η +
1
n

.

Further, since S is (s, w)-closed and (s, w)-subcontinuous, {yn} has a subsequence
{ynk

} which converges weakly to y ∈ S(p′, x). It follows that

d(x, S(p′, x)) ≤ ‖x− y‖ ≤ lim inf
k

‖xnk
− ynk

‖ ≤ lim inf
k

(η +
1
k

) = η. (7)

Consider an arbitrary z ∈ S(p′, x). Since S is (s, s)-lower semicontinuous, there
exists zn ∈ S(pn, xn) such that zn → z. It follows from (6) that

h(pn, xn, xn − zn) ≤ α

2
‖xn − zn‖2 + ε, ∀n ∈ N.

Since h is s-continuous, we get

h(p′, x, x− z) ≤ α

2
‖x− z‖2 + ε, ∀z ∈ S(p′, x). (8)

From (7) and (8) we get x ∈ TS
p (δ, ε, η), and so TS

p (δ, ε, η) is nonempty closed.
Observe that

Sp = ∩δ>0,ε>0,η>0T
S
p (δ, ε, η).
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Since
µ(TS

p (δ, ε, η)) → 0,

Theorem on p.412 in [18] can be applied and one concludes that Sp is nonempty,
compact, and

e(TS
p (δ, ε, η), Sp) = H(TS

p (δ, ε, η), Sp) → 0 as (δ, ε, η) → (0, 0, 0).

Let pn → p ∈ P and {xn} be an α-approximating sequence for SQV Ip(h, S) cor-
responding to {pn}. Then there exist {εn} and {ηn} with εn ↓ 0 and ηn ↓ 0 such
that

d(xn, S(pn, xn)) ≤ ηn, h(pn, xn, xn−y) ≤ α

2
‖xn−y‖2+εn, ∀y ∈ S(pn, xn), ∀n ∈ N.

Taking δn = ‖pn − p‖, we have xn ∈ TS
p (δn, εn, ηn). Then there exists a sequence

{x̄n} in Sp such that

‖xn − x̄n‖ = d(xn, Sp) ≤ e(TS
p (δn, εn, ηn), Sp) → 0.

Since Sp is compact, {x̄n} has a subsequence {x̄nk
} converging to x̄ ∈ Sp. Hence

the corresponding subsequence {xnk
} of {xn} converges strongly to x̄. Thus

{SQV Ip(h, S) : p ∈ P}

is α-well-posed in the generalized sense.

Example 3. Let K be the closed unit ball of a real Banach space X, and let S(u) =
{x ∈ K : ‖x‖ ≤ ‖u‖} and h(p, u, v) = −‖u‖· 3

√
‖v‖ for all p ∈ P, u ∈ K, v ∈ X. Then

h is positively homogeneous with degree ρ = 1
3 in the third variable and continuous,

and S is convex-valued, closed, lower semicontinuous and subcontinuous. It is easily
seen that TS

p (δ, ε, η) = K. Clearly, diamTS
p(δ, ε, η) = 2 6→ 0, but µ(TS

p (δ, ε, η)) = 0
as (δ, ε, η) → (0, 0, 0). By Theorems 1 and 5, {SQV Ip(h, S) : p ∈ P} is not α-well-
posed, but α-well-posed in the generalized sense.

When the condition TS
p (δ, ε, η) 6= ∅, ∀ε, δ, η > 0 is replaced by that Sp is nonempty

compact, some assumptions on h and S can be dropped.

Theorem 6. The family {SQV Ip(h, S) : p ∈ P} is α-well-posed in the generalized
sense if and only if for every p ∈ P , the solution set Sp of SQV Ip(h, S) is nonempty
compact and

e(TS
p (δ, ε, η), Sp) → 0 as (δ, ε, η) → (0, 0, 0). (9)

Proof. The necessity has been proved in Theorem 5. For the sufficiency, assume
that Sp is nonempty compact for all p ∈ P and condition (9) holds. Let pn → p ∈ P
and {xn} be an α-approximating sequence for SQV Ip(h, S) corresponding to {pn}.
Then there exist sequences {εn} and {ηn} with ηn ↓ 0 and εn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, xn, xn−y) ≤ α

2
‖xn−y‖2+εn, ∀y ∈ S(pn, xn), ∀n ∈ N.
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Taking δn = ‖pn − p‖, we have xn ∈ TS
p (δn, εn, ηn). Then there exists a sequence

{x̄n} in Sp such that

‖xn − x̄n‖ = d(xn, Sp) ≤ e(TS
p (δn, εn), Sp) → 0.

Since Sp is compact, there exists a subsequence {x̄nk
} of {x̄n} converging to x̄ ∈ Sp.

Hence the corresponding subsequence {xnk
} of {xn} converges strongly to x̄. Thus

{SQV Ip(h, S) : p ∈ P} is α-well-posed in the generalized sense.

Remark 5. Let us mention:

(i) Theorem 5 and 6 give a metric characterization of α-well-posedness in the
generalized sense by using the noncompact measure µ and Hausdorff metric,
respectively. When it is easy to compute the solution set Sp, it is better to use
Theorem 6 because it is difficult to compute the noncompact measure of a set.

(ii) Theorem 5 and 6 generalize Theorem 4.1 of Lignola [20] and Theorems 4.1
and 4.2 of Fang and Hu [10].

The following example shows that compactness of Sp is essential in Theorem 6.

Example 4. Let X = Rm, K = Rm
+ , S(u) = {x ∈ Rm

+ : ‖x‖ ≤ ‖u‖}, and
h(p, u, v) = −max1≤i≤m |vi| for all p ∈ P, u ∈ K, v = (v1, v2, · · · , vm) ∈ X. It
is easily seen that Sp = TS

p (δ, ε, η) = Rm
+ . It follows that e(TS

p (δ, ε), Sp) → 0 as
(δ, ε, η) → (0, 0, 0). However, {SQV Ip(h, S) : p ∈ P} is not α-well-posed in the
generalized sense since the diverging sequence xn = ne with e = (1, 1, · · · , 1) is an
α-approximating sequence.

Under pseudomonotonicity assumption, we have the following analogous metric
characterizations of α-well-posedness in the generalized sense of MQV Ip(h, S),

Theorem 7. Assume that K is closed and P is finite dimensional. Let h : P ×
K × X → R̄ be positively homogeneous with degree ρ (0 < ρ < 2) in the third
variable, s-continuous, and h(p, ·, ·) subodd and pseudomonotone for all p ∈ P , and
let S : P ×K → 2K be convex-valued, (s, w)-closed, (s, s)-lower semicontinuous and
(s, w)-subcontinuous. Then, the family {MQV Ip(h, S) : p ∈ P} is α-well-posed in
the generalized sense if and only if for every p ∈ P ,

TM
p (δ, ε, η) 6= ∅, ∀ε, δ, η > 0, and µ(TM

p (δ, ε, η)) → 0 as (δ, ε, η) → (0, 0, 0).

Proof. Observe that

∩δ>0,ε>0,η>0T
M
p (δ, ε, η) = {x ∈ K : x ∈ S(p, x), h(p, y, x− y)

≤ α

2
‖x− y‖2, ∀y ∈ S(p, x)}.

From Lemma 3 we get

Mp = ∩δ>0,ε>0,η>0T
M
p (δ, ε, η). (10)

Taking (10) into account, we can prove the conclusion by similar arguments as in
Theorem 5.
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When the condition TM
p (δ, ε, η) 6= ∅, ∀ε, δ, η > 0 is replaced by that Mp is

nonempty compact, some assumptions on h and S can be dropped.

Theorem 8. Assume that h : P ×K×X → R̄ is positively homogeneous with degree
ρ (0 < ρ < 2) in the third variable and S : P ×K → 2K is convex-valued. Then, the
family {MQV Ip(h, S) : p ∈ P} is α-well-posed in the generalized sense if and only
if for every p ∈ P , the solution set Mp of MV Ip(h, S) is nonempty and

e(TM
p (δ, ε, η),Mp) → 0 as (δ, ε, η) → (0, 0, 0).

Proof. The conclusion follows from similar arguments as in Theorem 6.

5. Conditions for α-well-posedness

Concerning well-posedness of the Stampacchia variational inequality in a finite di-
mensional space, a classic result is that under suitable conditions, well-posedness
is equivalent to the existence and uniqueness of solutions, and well-posedness in
the generalized sense is equivalent to the existence of solutions. In this section
we shall derive some analogous results for α-well-posedness of SQV Ip(h, S) and
MQV Ip(h, S) under suitable conditions.

Theorem 9. Let K be a nonempty closed subset of an Euclidean space X and
h : P × K × X → R̄ positively homogeneous with degree ρ (0 < ρ < 2) in the
third variable and s-continuous, and let S : P ×K → 2K be convex-valued, (s, w)-
closed, (s, s)-lower semicontinuous and (s, w)-subcontinuous. Assume that TS

p (ε, ε, ε)
is nonempty bounded for some ε > 0. Then, the family {SQV Ip(h, S) : p ∈ P} is
α-well-posed if and only if SQV Ip(h, S) has a unique solution for all p ∈ P .

Proof. The necessity is obvious. For the sufficiency, suppose that SQV Ip(h, S) has
a unique solution xp for all p ∈ P . Let pn → p and {xn} be an α-approximating
sequence for SQV Ip(h, S) corresponding to {pn}. Then there exist sequences {εn}
and {ηn} with εn ↓ 0 and ηn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, xn, xn − y) ≤ α

2
‖xn − y‖2 + εn,∀y ∈ S(pn, xn), ∀n ∈ N.

Setting δn = ‖pn − p‖, we have xn ∈ TS
p (δn, εn, ηn) for all n ∈ N . Let ε > 0 be

such that TS
p (ε, ε, ε) is nonempty bounded. Then there exists n0 ∈ N such that

xn ∈ TS
p (δn, εn, ηn) ⊂ TS

p (ε, ε, ε) for all n ≥ n0. Hence, {xn} is bounded. Let {xnk
}

be any convergent subsequence of {xn} with limit x. As proved in Theorem 1,
x solves SQV Ip(h, S). Since SQV Ip(h, S) has a unique solution xp, xn → xp.
Therefore, {SQV Ip(h, S) : p ∈ P} is α-well-posed.

The following example shows that the assumption that TS
p (ε, ε, ε) is nonempty

bounded for some ε > 0 is essential in Theorem 9.

Example 5 (see Example 3.1 of [20]). Let P = X = R and K = [0, +∞),
h(p, x, y) = −ye−x for all p ∈ P, x ∈ K, y ∈ X, and

S(u) =
{ {x : u ≤ x ≤ 1}, if u ≤ 1,
{x : 1 ≤ x ≤ 2u− 1}, if u > 1.
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Then h is positively homogeneous with degree ρ = 1 in the third variable, continuous,
and S is closed, convex-valued, lower semicontinuous and subcontinuous. It is easily
seen that Sp = {1}. When α = 0,

TS
p (ε, ε, ε) = {u ∈ [0, 1] : e−u(1− u) ≤ ε} ∪ {u ∈ (1, +∞) : e−u(u− 1) ≤ ε}

is unbounded for all ε > 0 and {SQV Ip(h, S) : p ∈ P} is not 0-well-posed since every
diverging sequence {un} is 0-approximating.

For α-well-posedness of MQV Ip(h, S) we have the analogous result:

Theorem 10. Let K be a nonempty closed subset of an Euclidean space X, h :
P × K × X → R̄ positively homogeneous with degree ρ (0 < ρ < 2) in the third
variable, s-continuous, and h(p, ·, ·) subodd and pseudomonotone for all p ∈ P , and
let S : P ×K → 2K be convex-valued, (s, w)-closed, (s, s)-lower semicontinuous and
(s, w)-subcontinuous. Assume that TM

p (ε, ε, ε) is nonempty bounded for some ε > 0.
Then, the family {MQV Ip(h, S) : p ∈ P} is α-well-posed if and only if MQV Ip(h, S)
has a unique solution for all p ∈ P .

Proof. The necessity is obvious. For the sufficiency, suppose that MQV Ip(h, S)
has a unique solution xp for all p ∈ P . Let pn → p and {xn} be an α-approximating
sequence for MQV Ip(h, S) corresponding to {pn}. Then there exist sequences {εn}
and {ηn} with εn ↓ 0 and ηn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, y, xn − y) ≤ α

2
‖xn − y‖2 + εn, ∀y ∈ S(pn, xn),∀n ∈ N.

Setting δn = ‖pn − p‖, we have xn ∈ TS
p (δn, εn, ηn) for all n ∈ N . Let ε > 0 be

such that TM
p (ε, ε, ε) is nonempty bounded. Then there exists n0 ∈ N such that

xn ∈ TM
p (δn, εn, ηn) ⊂ TM

p (ε, ε, ε) for all n ≥ n0. So {xn} is bounded. Let {xnk
} be

any convergent subsequence of {xn} with limit x. As proved in Theorem 3, x solves
MQV Ip(h, S). Since MQV Ip(h, S) has a unique solution xp, xn → xp. Therefore,
{MQV Ip(h, S) : p ∈ P} is α-well-posed.

The following results show that under suitable conditions α-well-posedness in the
generalized sense is equivalent to the existence of solutions.

Theorem 11. Let K be a nonempty closed subset of an Euclidean space X and
h : P × K × X → R̄ positively homogeneous with degree ρ (0 < ρ < 2) in the
third variable and s-continuous, and let S : P ×K → 2K be convex-valued, (s, w)-
closed, (s, s)-lower semicontinuous and (s, w)-subcontinuous. Assume that TS

p (ε, ε, ε)
is nonempty bounded for some ε > 0. Then the family {SQV Ip(h, S) : p ∈ P} is
α-well-posed in the generalized sense.

Proof. Let pn → p and {xn} be an α-approximating sequence for SQV Ip(h, S)
corresponding to {pn}. Then there exist sequences {εn} and {ηn} with ηn ↓ 0 and
εn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, xn, xn − y) ≤ α

2
‖xn − y‖2 + εn,∀y ∈ S(pn, xn), ∀n ∈ N.
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As proved in Theorem 9, {xn} is bounded. Then there exists a subsequence {xnk
} of

{xn} such that xnk
→ x as k →∞. As proved in Theorem 1, x solves SQV Ip(h, S).

Therefore, {SQV Ip(h, S) : p ∈ P} is α-well-posed in the generalized sense.

For α-well-posedness in the generalized sense of MQV Ip(h, S) we have the anal-
ogous result:

Theorem 12. Let K be a nonempty closed subset of an Euclidean space X and
h : P ×K ×X → R̄ positively homogeneous with degree ρ (0 < ρ < 2) in the third
variable, s-continuous, and h(p, ·, ·) subodd and pseudomonotone for all p ∈ P , and
let S : P ×K → 2K be convex-valued, (s, w)-closed, (s, s)-lower semicontinuous and
(s, w)-subcontinuous. Assume that TM

p (ε, ε, ε) is bounded for some ε > 0. Then the
family {MQV Ip(h, S) : p ∈ P} is α-well-posed in the generalized sense.

Proof. Let pn → p and {xn} be an α-approximating sequence for MQV Ip(h, S)
corresponding to {pn}. Then there exist sequences {εn} and {ηn} with ηn ↓ 0 and
εn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ηn, h(pn, y, xn − y) ≤ α

2
‖xn − y‖2 + εn, ∀y ∈ S(pn, xn),∀n ∈ N.

As proved in Theorem 10, {xn} is bounded. Then there exists a subsequence {xnk
} of

{xn} such that xnk
→ x as k →∞. As proved in Theorem 3, x solves MQV Ip(h, S).

Therefore, {MQV Ip(h, S) : p ∈ P} is α-well-posed in the generalized sense.

The following example shows that the assumption that TS
p (ε, ε, ε) (resp. TM

p (ε, ε,
ε)) is nonempty bounded for some ε > 0 is essential in Theorem 11 (resp. Theo-
rem 12).

Example 6. Let X = Rm, K = Rm
+ , and P = R, let S(u) = {x = (x1, x2, · · · , xm) ∈

Rm
+ : xi ≤ ui, i = 1, 2, · · · ,m}, and h(p, u, v) = 0 for all p ∈ P, u = (u1, u2, · · · , um) ∈

K, v ∈ X. It is easy to see that h is positively homogeneous with degree ρ (0 < ρ < 2)
in the third variable, continuous, h(p, ·, ·) is subodd and pseudomonotone for all
p ∈ P , and S is closed, convex-valued, lower semicontinuous and subcontinuous. It
is easily seen that TS

p (ε, ε, ε) = TM
p (ε, ε, ε) = Rm

+ for all ε > 0. Let pn → p. Clearly,
{ne}n∈N with e = (1, 1, · · · , 1) is an α-approximating sequence for SQV Ip(h, S) and
SMV Ip(h, S) corresponding to {pn}, but it has no convergent subsequences.
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