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On an application of almost increasing sequences
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Abstract. In the present paper, a general theorem on | N, pp;§ |, summability factors of
infinite series has been proved under weaker conditions. Some new results have also been
obtained dealing with | N, p, |, and | C,1;6 |, summability factors.
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1. Introduction

Let > a,, be a given infinite series with partial sums (s,,). We denote by u% and t%
the n-th Cesaro means of order «, with a@ > —1, of the sequence (s,) and (na,),
respectively, i.e.,

e} 1 a—
u,, = ﬁ An_11}SU7 (1)
m v=0
o = L zn:Aaflva (2)
n A% —~ n—uv vy
where
A =0(n%), a> -1, Af=1and A%, =0 for n > 0. (3)
A series Y a,, is said to be summable | C, « |, k > 1, if (see [8], [11])
- k—1 a o k__ - | tg ‘k
Zn ‘ U’n unfl | - Z n < oo. (4)
n=1 n=1

and it is said to be summable | C,a;6 |, k> 1 and § > 0, if (see [9])
[e.e]
Z nh 12 R < oo (5)
n=1

Let (pn) be a sequence of positive numbers such that

Pn:vaHooaanoo, (P_;=p_;=0,i>1). (6)
v=0
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The sequence-to-sequence transformation

= PL vasv (7)
" w=0

defines the sequence (o,) of the Riesz mean or simply the (N,p,) mean of the
sequence (s,) generated by the sequence of coefficients (p,) (see [10]). The series
> ay is said to be summable | N, p, |, k > 1, if (see [2], [3])

ZP/pn“|Aan1|<oo (®)

and it is said to be summable | N, p,;6 |,, k> 1 and § > 0, if (see [5])

oo

S (P/pa) | Ay < o0, (9)

n=1

where

ZP’U 10y, n Z 1. (10)

AO'nfl =0np —0Op—-1 = —
P, Pn 1

In the special case p,, = 1 for all values of n (resp. §=0)| N,pn;6 |, summability
is the same as | C,1;0 |, (resp. | N,p, |,) summability. Also, if we take 6 = 0 and
k =1, then we get | N, p,, | summability.

2. Known results

Bor [4] has proved the following theorem for | N, p,, |, summability factors.

Theorem 1. Let (X,,) be a positive non-decreasing sequence and let there be se-
quences (By,) and (A\,) such that

| AXn [< Bn, (11)
Bn — 0 as n — oo, (12)
> n | ABy | Xy < o0, (13)
n=1

| An ‘ Xn = O(l) (14)

If

X,) asn — oo, (15)

> Ll
=
v=1
where (t,) is the n-th (C,1) mean of the sequence (na,), and (py) is a sequence such
that
P, = O(npy), (16)
PpApn, = O(papnt1), (17)

then the series > .o a, Ij;‘p)‘" is summable | N,py |, k > 1.
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Recently, Bor [7] has generalized Theorem 1 for the | N,p,;§ |, summability
factors.

Theorem 2. Let (X,,) be a positive non-decreasing sequence and the sequences (Gy)
and (An) are such that conditions (11)-(17) of Theorem A are satisfied with condition
(15) replaced by:

f: (pv) Lo l® _ 0%, as n — oo, (18)

v=1
If
m—+1
Poispa 1 Py sk 1
— —— =0((—)"=) as m — o0, 19
POl il 2 (19)

then the series > -, anip’\" is summable | N,pp;0 |, k> 1 and 0 < § < 1/k.

It should be noted that if we take 6 = 0 in Theorem 2, then we get Theorem 1.
In this case condition (19) reduces to

m—+1 m—+1 1 1 1
> pp = X (pn_l‘pn>:0(pv> as m — 0o,

n=v+1 n=v+1

which always holds.

3. The main result

The aim of this paper is to prove Theorem 2 under weaker conditions. For this we
need the concept of an almost increasing sequence. A positive sequence (b,,) is said
to be almost increasing if there exist a positive increasing sequence (c,) and two
positive constants A and B such that Ac, < b, < Be, (see [1]). Obviously every
increasing sequence is almost increasing. However, the converse need not be true
as can be seen by taking the example, say b, = ne(~1". Now, we shall prove the
following theorem.

Theorem 3. Let (X,,) be an almost increasing sequence. If conditions (11)-(14)
and (16)-(19) are satisfied, then the series Y - a }ZLA" is summable | N,pp; 0 |,
k>1and0<0<1/k.

We need the following lemmas for the proof of Theorem 3.

Lemma 1 (see [12]). If (X,,) is an almost increasing sequence, then under conditions
(12)-(18) we have that

iﬁan < 00. (21)

n=1
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Lemma 2 (see [4]). If conditions (16) and (17) are satisfied, then we have

() -0(2)

Lemma 3 (see [4]). If conditions (11)-(14) are satisfied, then we have that

A = O(1) (23)
AN, = O (i) . (24)

4. Proof of Theorem 3

Let (T,) be the sequence of an (N,p,) mean of the series > o, %. Then, by
definition, we have

<

n

- T+ Tror v 'UA'U
Tnzpizpvza:” :%Z(PR—P_I)GP . (25)

v
Dr n o Po

Then, for n > 1

n

Dn Pvflpva'u)\'u

T, —Th1 =
" " PnPn—l o—1 UPv

n

Pn Z P’U 1P avv)\
Pnpnfl o—1 v pv

Using Abel’s transformation, we get

n

n -1 Ay A
T, —Th1 = Pn];n_l ;A ( 1 ) ZmT o Zvav

n—1 n—1
p’l’L P’U )\’U
= —(v+ Dtypy— + P,P,AN,(v+1
PnPn—lgpv( ) pv2 PPn lg ( )Upv
n—1
> P (v + Dt AP, /0py) + Antn(n + 1) /0
PPn 1

v=1
= Tn,l + Tn,2 + Tn,3 + Tn,4-

To complete the proof of Theorem 3, by Minkowski’s inequality, it is sufficient to
show that

oo P Sk+k—1
> (") | T |¥< 00, for r=1,2,3,4. (26)
Pn

n=1
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Now, applying Holder’s inequality, we have that

mtl g N Sktk-1 m+1 k
3 () [ Taalf = 0() Y (21 { pvmwu}
n=2 Dn n=2
m—+1 P n—1 1
=o' S Py LS (Bt &
n=2 pn v=1
1 n—1 k-1
g {Pn_l va}
v=1
m P k 1 m—+1 P 1
—omy () po 1o 2 b 25 Py L
=1 Du v n=v+1 DPn Pn—l
m k
1 1 P
— 1 v )\v k—1 )\v v |ty k = — (T VY\N6k
ouz(m) A L e (22)

m Py k—1 1 Pv
—om Y () il ey

v p’U

) SR PRTAT

1):1pv
- P \tlk
- 0(1 Ao AT B
<>;| G
m—1 |t |k
o(1) AIAUIZ )P
v=1
m 5k‘t1;
|Am|Z
m—1

=0(1) Y [ AN | Xy +0(1) | Ay | Xom
v=1
m—1
1) > B Xy +01) | A | Xon
v=1
= 0(1),

as m — oo, by (11), (14), (16), (18), (19), (22) and (24).
Now using the fact that (P,/v) = O(p,) by (16), we have that

k
m—+1 Sk+k—1 m—+1 n—1
P, P, 1 P,
S () mar - om Y ey 1Pk{2|mv |pv|tv|}

n=2 Pn n=2 Dn n—1 v=1
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m+1 n—1 k
P, o, 1 P,
= O(l) E ( )6k lp . E (p ) ‘ AN, |k| ty |]C Po

v=1

m—+1

o (P\" . Poospy 1
:O(l)Z(p) | AN, |k|tv |k Do Z (7)5]c 1P7_1

v n=v+1 Pn

m Pv k—1 Pu
—omy] (p) A P (e

v

k—1
(Lo yon (P) A Y AN [
DPov

P,
(p )RR AN [t [*

m

Zﬁu Pt F= 0 Y v (bl

P v=1 Do v
m—1 m .
ZA vfy) Z )‘%'tr| +O( )mgm;(P:)akltzl
m—1 m—1
(3 01 A0 [ X +0(1) 1 6uXo +OWmin X

= 0(1) as m — oo,

by (11), (13), (16), (18), (19), (21), (22) and (25).

Now, since A(pf’;z) = O(-%) by Lemma 2, we have that

k
m—+1 Sk+k—1 m—+1 n—1
P, P, lo+1
3 () Ts [ =0 (P L {ZP o | 6 |%z}

n=2 n n=2 pn
m—+1 n—1 k
P, 1 P 1
= O 1 - Ok— 17 ipv >\1) - tv
();(pn) PE ;pv [ Aotr | 1t
m-+1 n—1 k
P, 1 P, 1
- 0(1 S nN\dk—1 (’U) o— | Ay k ty k
<>Z=j<pn> A 2 () oy o Pl

m k
1>Z(P") Do | dor 57 g | o P
pv ka v v v

v=1
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m—+1

1
5k 1 -
x Z n n 1
n=v+1
0<1>i(P”)“1|A g [ (Foyon
p— DPov vk vt Y DPuv

i(i)é’“ P
>

ot ||t [*

|t |*

(=) 1 A1 |
v=q Pv

mZAl)‘vﬁ%'Z 6k|t| |)\m+1‘z 6k|tv|

=0 S | Aot | Xo +0) | At | Xim

v=1

m—1

= O(l) Z | A)‘v+1 | Xv+1 + 0(1) | )‘erl | Xm+1

v=1
Z | A)\U|)( +O( ) I)\m—H |Xm+1
v=2

1) B.X, +0(1) [ Amit | Ximgr = O(1)

as m — oo, by (11), (14), (16), (18), (19), (22) and (24). Finally, as in T}, 3, we have
that

m Sk+k—1 m k—1 k

Pn Pn Pn Tl+1 1
£ (5" o (5 (22 L
n=1 n=1

Pn Pn Pn
o Pu s k-1 k—1 k
:0(1)Z(p) klAnl [ An [l 0 |
tn k
Z|)\n| ‘Sk| | =0(1) as m — oo.
n=1
Therefore, we get that
m P Sk+k—1
> (”) | T |¥=0(1) as m — oo, for r =1,2,3,4.
Pn

This completes the proof of the Theorem.

If we take § = 0, then we get a result of Bor [6] for | N, p,, |, summability factors.
Also, if we take p, = 1 for all values of n, then we get a new result dealing with
| C,1;4 |, summability factors.
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