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1. Introduction

Let p be a prime number and let Fq be a finite field of characteristic p with q elements.
Let A ∈ Fq[x] be a monic polynomial. We say that a divisor d of A is unitary if
d is monic and gcd (d, A/d) = 1. Let ω(A) denote the number of distinct monic
irreducible factors of A over Fq and let σ(A) (resp. σ∗(A)) denote the sum of all
monic divisors (resp. unitary divisors) of A (σ and σ∗ are multiplicative functions).
We denote by N the set of non-negative integers and by N∗ the set of positive integers.
We denote by R the set of real numbers and by C the set of complex numbers.

If σ(A) = A (resp. σ∗(A) = A), then we say that A is a perfect (resp. unitary
perfect) polynomial. In 1941, E. F. Canaday [4], the first doctoral student of Leonard
Carlitz, began the study of perfect polynomials by working on the prime field F2.
Later, in the seventies, J. T. B. Beard Jr. et al. extended this work in several
directions (see e.g. [2, 3, 1]). Recently, [6, 7, 8, 9, 11], we became interested in
this subject. In our first two papers, we considered the smallest nontrivial field
extension of the ground field, namely F4, while in the three others, (we continued to
work on the binary case, by considering “odd” and “even” perfect polynomials we
say that a polynomial is even (resp. odd) over Fq if it has some root in Fq (resp. if
it is not even)). A polynomial splits over Fq when all its roots are in Fq. Our first
results about splitting perfect polynomials are in [10] and [12], where the fields are
respectively Fpp and Fp2 , the Artin-Schreier extension and the quadratic extension
of Fp.

Beard [1] was the first to consider splitting polynomials over Fp. First of all, he
considered the case of perfect splitting polynomials and then in another paper [2]
the case of unitary splitting polynomials.
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In both cases he succeeded in classyfying these polynomials over Fp. However,
his methods are not able to work on more general settings, e.g., when considering
the analogous problem over finite extensions of Fp, instead of merely over the prime
field Fp.

In our papers (see [10, 12]), we introduced a new method, that uses some linear
algebra; more precisely, we use some properties of circulant matrices and more gen-
eral types of matrices of the same kind (see section 4) to translate some properties
of splitting perfect polynomials in properties of these matrices and vice versa. In
the present paper we are able to adapt the new method to work also in the case
of splitting unitary perfect polynomials. A priori this was not clear since while the
unitary perfect polynomials seem by definition simpler than the perfect polynomi-
als, to be able to get results about them is of the same order of difficulty. Indeed,
by using our linear algebra method, we discovered (see Theorem 3 and the end of
this section) a new family of unitary splitting perfect polynomials over Fp2 without
analogue in the classical case of splitting perfect polynomials.

The objective of this paper is to classify some splitting unitary perfect polyno-
mials over Fp2 , where p is a prime number (see sections 3 and 4).

For a positive integer m, we consider the set:

Ωm
p =

{ {N ∈ N : N | pm − 1}, if p = 2,
{N ∈ N : 2N | pm − 1}, if p ≥ 3.

If a splitting polynomial
A =

∏

γ∈Fpm

(x− γ)h(γ)

is unitary perfect over Fpm , then each integer h(γ) is of the form N(γ)pn(γ), where
N(γ) ∈ Ωm

p ∪ {0} and n(γ) ∈ N. Moreover, if h = min{h(γ) : γ ∈ Fpm , h(γ) ≥ 1},
then by Lemma 2, the integer card({γ ∈ Fpm : h(γ) = h}) is divisible by p.

Since the product of coprime unitary perfect polynomials is unitary perfect, the
following definition is useful for splitting polynomials. We say that A is trivially
unitary perfect over Fpm if it is unitary perfect and if it may be written as a product:
A = A0 · · ·Ar, where for each i, j one has





gcd(Ai, Aj) = 1, if i 6= j,

ω(Ai) = p and Ai is unitary perfect of the form:
∏

j∈Fp

(x− γi − j)Nip
ni

,

γi ∈ Fq, Ni ∈ Ωm
p , ni ∈ N.

Note that this definition is slightly different from that of a trivially perfect polyno-
mial in [12]. The case when q = p was already considered by Beard [2]. He showed
that a polynomial

A =
∏

γ∈Fp

(x− γ)N(γ)pn(γ)

is unitary perfect over Fp if and only if the following condition holds:

(¦) : There exist N, n ∈ N such that ∀ γ ∈ Fp : n(γ) = n, N(γ) = N ∈ Ω1
p.
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Thus, the only unitary splitting perfect polynomials over Fp are of the form:

(xp − x)Npn

, where n ∈ N and N ∈ Ω1
p.

If Fq is a nontrivial extension field of Fp, then condition (¦) remains sufficient (see
again [2]) but not necessary any more (see Theorem 1, in the case q = 22).

If a splitting polynomial

A =
∏

γ∈Fpm

(x− γ)N(γ)pn(γ)

is unitary perfect over Fpm , then two natural cases arise:

Case1: There exists N ∈ N such that ∀ γ ∈ Fpm : N(γ) = N ∈ Ωm
p

Case2: There exists n ∈ N such that ∀ γ ∈ Fpm : n(γ) = n.

In order to get some progress in the classification of unitary splitting perfect poly-
nomials over a nontrivial extension field of Fp, we work on the smallest nontrivial
extension field of Fp, namely the quadratic extension Fp2 . If p = 2, in Theorem 1
we obtain the list of all splitting unitary perfect polynomials over F4. We see in
particular that Case2 does not imply Case1. If p is odd, we would like to know if
Case1 implies Case2. The answer is positive only for some cases (see Theorems 2
and 3).

We fix an algebraic closure Fp of Fp. We put

Fq = Fp2 = {jα + i : i, j ∈ Fp} = Fp[α],

where α ∈ Fp is a root of
{

x2 + x + 1, if p = 2,
x2 − c, c is not a square in Fp if p is odd.

If p is odd, we consider the following condition:

(•) : N is even, N | p− 1 and
p− 1
N

is odd.

Observe that condition (•) implies that 2N - p− 1.

Our main results are the following. Let A be a nonconstant unitary splitting
perfect polynomial over Fq. Then A is of the form A = Bpn

for some n ∈ N where:

a) If q = 4:

B = (x + d)(x + d + 1), d ∈ F4,
B = (x2 + x)2

r

(x2 + x + 1)2
s

, r, s ∈ N,
B = (x4 + x)N , N ∈ {1, 3},
B = (x + d)3(x + d + α)3 (x + d + 1)2(x + d + ᾱ)2, d ∈ {0, 1},
B = x3(x + 1)3 (x + d)4(x + d + 1)6, d ∈ F4 \ {0, 1}.
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b) If q = p2, p odd and if B =
∏

γ∈Fq

(x− γ)Npn(γ)
, with 2N | q − 1:

B is trivially unitary perfect if 2N | p− 1,
B = (xq − x)N if 2N - p− 1 and if (•) does not hold,

B =
∏

i,j∈Fp

(x− jα− i)N.pni
, ni ∈ N for i ∈ Fp, if (•) holds.

If we compare our present results to those referring to perfect splitting perfect
polynomials given by [6, Theorem 3.4] for q = 4 and by [12, Theorem 1.1] for q = p2,
we see that we essentially obtain analogous results except that in the case of unitary
perfectness, there exists an additional family:

(x2 + x)3.2n

(x + d)2
n+2

(x + d + 1)3.2n+1
, d ∈ {α, α + 1}, n ∈ N, if q = 4,

∏

i,j∈Fp

(x− jα− i)N.pni
, ni ∈ N, if (q = p2 is odd, and N satisfies (•)).

2. Preliminary

We need the following results. Some of them are obvious, so we omit their proofs.
We put q = pm, for some m ∈ N∗.

Lemma 1. Let A =
∏

γ∈Fq

(x− γ)h(γ) be a unitary perfect polynomial over Fq. Then

each integer h(γ) is of the form N(γ)pn(γ), where N(γ) ∈ Ωm
p ∪ {0}.

Proof. The proof is obtained from the following two facts:

• every positive integer h may be written as h = Mpv, where p -M and v ∈ N.

• any nonconstant polynomial (x−γ)Mpv

+1 splits over Fq if and only if M ∈ Ωm
p .

Lemma 2 (see also [2], Theorem 1). If A = Ph1
1 · · ·Phr

r Qk1
1 · · ·Qks

s is a nonconstant
unitary perfect polynomial over Fq such that:

h1 deg(P1) = · · · = hr deg(Pr) < k1 deg(Q1) ≤ · · · ≤ ks deg(Qs).

Then r ≡ 0 (mod p).

Proof. By definition one has 0 = σ∗(A)−A =
A

Ph1
1

+ · · ·+ A

Phr
r

+ · · ·

In particular, the leading coefficient of
A

Ph1
1

+ · · ·+ A

Phr
r

equals 0.

Lemma 3. Assume that A = A1A2 is unitary perfect over Fq and that gcd(A1, A2)
= 1. Then A1 is unitary perfect if and only if A2 is unitary perfect.
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Lemma 4. If A(x) is unitary perfect over Fq, then for any a ∈ Fq and for any
n ∈ N, the polynomials A(x + a) and Apn

are also unitary perfect over Fq.

Remark 1. If A is a splitting unitary perfect polynomial over Fq, then ω(A) is not
a priori divisible by p. However, by Lemma 2: ω(A) ≥ p if A 6= 1.

Proposition 1. Let A =
∏

j∈Fp

(x− γj)Njpnj be a nonconstant unitary perfect poly-

nomial over Fq, where Nj ∈ Ωm
p ∪ {0} for all j ∈ Fp.

Then:

(i) There exist N,n ∈ N such that for each j: Njp
nj = Npn, p - N .

(ii) Moreover, if 2N | p−1, then there exists γ ∈ Fq such that, after a permutation
of indices: γj = γ + j, for each j ∈ Fp.

Proof. i): By Lemma 2, ω(A) = p and there exists h ∈ N∗ such that for each j:
Njp

nj = h = Npn for some N, n ∈ N, p - N .
Now, we may write

A =
∏

j∈Fp

(x− γj)Npn

.

ii): If 2N | p − 1, then there exists j ∈ Fp such that jN + 1 = 0. So the monomial
(x − γ0 − j) divides σ∗((x − γ0)Npn

) and hence it divides σ∗(A) = A. Thus, (x −
γ0− j)Npn

divides A. By the same argument, the monomial (x−γ0− lj)Npn

divides
A, for any l ∈ Fp. We are done.

Remark 2. Part ii) of the previous proposition may be false if 2N - p − 1. For
example, the polynomial x2(x+α)2(x+2α)2 is unitary perfect over F9, where α ∈ F9

is such that α2 + 1 = 0.

3. Case F4

We put F4 = {0, 1, α, ᾱ}, where α2 + α + 1 = 0 and ᾱ = α + 1. We shall use

Lemma 5 (see [6], Lemmas 2.1 and 2.5). Let P, Q ∈ F4[x] be irreducible and such
that 1 + · · ·+ P 2n = Qm for some m,n ∈ N, then n = m = 0.

We prove the following result:

Theorem 1. A splitting polynomial A is unitary perfect over F4 if and only if it
may be written as A = B2n

, where n ∈ N and B has one of the following forms:

i) 0,

ii) (x + d)(x + d + 1), d ∈ F4,

iii) (x2 + x)2
r

(x2 + x + 1)2
s

, r, s ∈ N,

iv) (x4 + x)N , N ∈ {1, 3},
v) (x + d)3(x + d + α)3(x + d + 1)2(x + d + ᾱ)2, d ∈ {0, 1},
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vi) x3(x + 1)3(x + d)4(x + d + 1)6, d ∈ {α, ᾱ}.
Sufficiency is obtained by direct computations. So, we only prove necessity.

According to Lemmas 1, 2 and 4, a nonconstant splitting unitary perfect polynomial
over F4 is, after a suitable translation, of the form:

A = xN.2n

(x + a)N.2n

(x + b)M.2m

(x + c)R.2r

, a 6= b 6= c,

where a, b, c ∈ {1, α, ᾱ}, N ∈ {1, 3},M,R ∈ {0, 1, 3} and n,m, r ∈ N.
We see that A is unitary perfect if and only if:





(E1) : 1 + xN.2n

= (x + a)b1(x + b)c1(x + c)d1 ,
(E2) : 1 + (x + a)N.2n

= xa2(x + b)c2(x + c)d2 ,
(E3) : 1 + (x + b)M.2m

= xa3(x + a)b3(x + c)d3 ,
(E4) : 1 + (x + c)R.2r

= xa4(x + a)b4(x + b)c4 ,

(1)

in which the exponents on the sides are non-negative numbers (so that some of them
may be zero) and satisfy:





b1 + c1 + d1 = N · 2n = a2 + c2 + d2 = a2 + a3 + a4 = b1 + b3 + b4,
a3 + b3 + d3 = M · 2m = c1 + c2 + c4,
a4 + b4 + c4 = R · 2r = d1 + d2 + d3.

(2)

3.1. Case N = 1

Subcase a = 1: In that case, x2n

(x + 1)2
n

is unitary perfect. So by Lemma 3, the
polynomial (x + b)M.2m

(x + c)R.2r

is also unitary perfect. Hence b = c + 1 ∈
{α, ᾱ}, M = R ∈ {0, 1}, m = r. We obtain parts i), ii) and iii) of Theorem 1.
Subcase a ∈ {α, ᾱ}: Since α and ᾱ play symmetric roles, we may suppose that a = α,
b = 1, c = ᾱ. In system (1), we obtain

b3 = d3, a4 = c4, c1 = 2n = d2, b1 = d1 = 0 = a2 = c2 = 0.

Thus system (2) gives 



a3 + a4 = 2n,
b3 + b4 = 2n,
c4 + 2n = M · 2m,
d3 + 2n = R · 2r,
a3 + b3 + d3 = M · 2m,
a4 + b4 + c4 = R · 2r.

It follows that:

M, R ≥ 1, b3 = d3 = R·2r−2n, a4 = c4 = M ·2m−2n, a3 = 2n−a4 = 2n+1−M ·2m.

So
M · 2m = a3 + b3 + d3 = −M · 2m + 2R · 2r.

Hence
M = R ∈ {1, 3} and m = r.
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If M = R = 1, then by equations (E3) and (E4), we have

a3 = 2m, b3 = d3 = 0 = a4 = c4.

Hence 2n = 2r = 2m and r = m = n.

We obtain part iv) of Theorem 1, with N = 1. If M = R = 3, then still by
equations (E3) and (E4), we have now:

a3 = b3 = d3 = 2m and a4 = b4 = c4 = 2r.

Thus:

2n − 2m = a4 = 2r, 3 · 2m − 2n = c4 = 2r, 2m = d3 = 3 · 2r − 2n.

We conclude that n = m + 1 = r + 1 and obtain part v) of Theorem 1, with d = 1.

3.2. Case N = 3

Subcase a = 1: We may suppose that b = α, c = ᾱ. Moreover, M (resp. m) and R
(resp. r) play symmetric roles. In system (1), we obtain the following:

b1 = c1 = d1 = 2n = a2 = c2 = d2, a3 = b3, a4 = b4.

Thus system (2) gives now:




2n + a3 + a4 = 3 · 2n,
2n + b3 + b4 = 3 · 2n,
2n + 2n + c4 = M · 2m,
2n + 2n + d3 = R · 2r,
a3 + b3 + d3 = M · 2m,
a4 + b4 + c4 = R · 2r.

It follows that M, R > 0 and hence M,R ∈ {1, 3}. If M = R = 1, then a3 = b3 = 0
= a4 = b4 and we get the contradiction: 2n = 2n +a3 +a4 = 3.2n. If M = 1, R = 3,
then we obtain a3 = b3 = 0, a4 = b4 = c4 = 2r. Thus, 2r + 2n = a3 + a4 + 2n = 3.2n

and 2n + 2n + 2r = 2n + 2n + c4 = 2m. We get r = n + 1, m = n + 2. We obtain
part vi) of Theorem 1, with d = α. If M = 3, R = 1, then we similarly have
m = n+1, r = n+2. We obtain part vi) of Theorem 1, with d = ᾱ. If M = R = 3,
then we obtain a3 = b3 = d3 = 2m, a4 = b4 = c4 = 2r. Hence r = m = n. Thus, we
obtain part iv) of Theorem 1, with N = 3.
Subcase a = α: We may suppose b = 1 and c = ᾱ. In system (1), we obtain

b1 = c1 = d1 = 2n = a2 = c2 = d2, b3 = d3, a4 = c4.

Thus system (2) gives 



2n + a3 + a4 = 3 · 2n,
2n + b3 + b4 = 3 · 2n,
2n + 2n + c4 = M · 2m,
2n + 2n + d3 = R · 2r,
a3 + b3 + d3 = M · 2m,
a4 + b4 + c4 = R · 2r.
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It follows that M, R > 0 and hence M,R ∈ {1, 3}
a4 = c4 = M · 2m − 2n+1,

b3 = d3 = R · 2r − 2n+1

a3 = M · 2m −R · 2r+1 + 2n+2,

b4 = R · 2r −M · 2m+1 + 2n+2.

If M = 1, then by equation (E3), we have 0 = b3 = d3 = R · 2r − 2n+1 and hence
R = 1, r = n + 1. So by equation (E4):

0 = a4 = c4 = M · 2m − 2n+1 = 2m − 2n+1.

Thus, m = n + 1. We obtain part v) of Theorem 1, with d = 0. If M = 3, R = 1,
then we get the contradiction: 0 = a4 = c4 = 3.2m − 2n+1. If M = R = 3, then
a3 = b3 = d3 = 2m, a4 = b4 = c4 = 2r. Thus, we get r = m = n. We obtain again
part iv) of Theorem 1, with N = 3.

4. Case Fp2, p odd

A bit of notation is necessary in this section. We put q = p2, where p is an odd
prime number.

4.1. Notation

Let N ∈ N be a positive integer such that 2N | q − 1. The set of integers
U = {0, 1, . . . , p − 1} will also be considered as the prime field Fp. We denote
by ζ1, . . . , ζN ∈ Fq the N -th roots of −1.
We recall (see the Introduction) that:

Fq = Fp2 = {jα + i : i, j ∈ U} = Fp[α], with α2 = c ∈ Fp, α 6∈ Fp.

We also recall the following condition:

(•) : N is even, N | p− 1 and
p− 1
N

is odd.

Each element jα+i ∈ Fq will be, if necessary, identified to the pair (j, i) ∈ Fp × Fp.
We define the two following order relations:

• on Fp : 0 ≤ 1 ≤ 2 ≤ · · · ≤ p− 1,

• on Fq (lexicographic order):

(j0, j1) ≤ (l0, l1) if: either (j0 < l0) or (j0 = l0, j1 ≤ l1).

For P,Q ∈ Fq[x], Pm || Q means that Pm | Q and that Pm+1 - Q.

For γ ∈ Fq, we put

Λγ = {δ ∈ Fq : (γ − δ)N = −1} = {γ − ζ1, . . . , γ − ζN}.
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Observe that:

Λγ 6= ∅, if 2N | q − 1,

Λγ ⊂ {γ + j : j ∈ Fp}, if 2N | p− 1,

Λγ+j = {δ + j : δ ∈ Λγ}, for any j ∈ Fp.

The following straightforward result is useful:

Lemma 6 (see [2], Lemma). A polynomial Q is unitary perfect if and only if for
any irreducible polynomial P ∈ Fq[x], and for any positive integers m1,m2, we have

(Pm1 || Q, Pm2 || σ∗(Q)) =⇒ (m1 = m2).

We obtain an immediate consequence:

Proposition 2. If N ≥ 1, then the polynomial A =
∏

γ∈Fq

(x− γ)Npn(γ)
is unitary

perfect if and only if
Npn(γ) =

∑

δ∈Λγ

pn(δ), ∀γ ∈ Fq.

Proof. For every γ ∈ Fq, we may apply Lemma 6 to the polynomial P = x − γ,
where m1 = Npn(γ) ≥ 1. By consideration of:

σ∗(A) =
∏

δ∈Fq

σ∗((x− δ)Npn(δ)
) =

∏

δ∈Fq

((x− δ)Npn(δ)

+ 1)

=
∏

δ∈Fq

N∏

j=1

(x− δ − ζj)pn(δ)
,

we see that the exponent of P in σ∗(A) is exactly the integer m2 =
∑

δ∈Λγ

pn(δ).

Moreover, m2 ≥ 1 since Λγ is not empty.

4.2. The results

Let
A =

∏

γ∈Fq

(x− γ)Npn(γ)

be a splitting unitary perfect polynomial over Fq.
Our first main result reads.

Theorem 2. If 2N | p − 1, then A is trivially unitary perfect, so that the integers
n(γ) may differ.

Our second main result follows.

Theorem 3. We have:
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i) If Condition (•) holds, then:

n(i) = n(α + i) = · · · = n((p− 1)α + i), for any i ∈ U.

ii) If 2N - p− 1 and if Condition (•) does not hold, then:

n(γ) = n(δ) := n(say), for any γ, δ ∈ Fq, so that A = (xq − x)Npn

.

As in the case of the splitting perfect polynomials (see [12]), we consider suitable
(block) circulant matrices (see [5, Sections 5.6 and 5.8]) to prove our results.

Observe that our method fails if q = pm with m ≥ 3, since we cannot ap-
ply Lemma 9.

4.3. Circulant matrices

In this section, we recall some results about circulant matrices and block circulant
matrices (see [5, Chapters 3 and 4]), that will be useful in the proof of our main
results.

Definition 1. Let n be a positive integer. A circulant matrix of order n is a square
matrix C = (cj

i )0≤i,j≤n−1 such that the entries cj
i satisfy

cj
i = cj−1

i−1 , c0
i = cn−1

i−1 , for 1 ≤ i, j ≤ n− 1.

Definition 2. Let n,m be positive integers. A block circulant matrix of type (n,m)
is a square matrix, of order nm: S = (Sj

i )0≤i,j≤n−1 such that
{

each matrix Sj
i is a square matrix of order m,

Sj
i = Sj−1

i−1 , S0
i = Sn−1

i−1 , for 1 ≤ i, j ≤ n− 1.

Furthermore, if every Sj
i is a circulant matrix, then S is called a block circulant with

circulant blocks.

Notation: If C is a circulant matrix of order n and if we denote, for 0 ≤ j ≤ n− 1:

cj = cj
0,

then C may be written as:

C = circ(c0, . . . , cn−1) =




c0 c1 ... cn−1

cn−1 c0 ... cn−2

...
...

...
...

c1 c2 ... c0


.

Analogously, a block circulant matrix S may be written as:

S = bcirc(S0, . . . , Sn−1) =




S0 S1 ... Sn−1

Sn−1 S0 ... Sn−2

...
...

...
...

S1 S2 ... S0


,
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where Sj = Sj
0, for 0 ≤ j ≤ n− 1.

We will use several times the following result for n = p.

Lemma 7 (see [5], Section 3.2). Let n be a positive integer. Any circulant matrix
C = circ(c0, . . . , cn−1) is diagonalizable on C, and admits the following eigenvalues:

c0 + c1ω
k + · · ·+ cn−1(ωk)n−1 =

n−1∑

l=0

cl(ωk)l, for k ∈ {0, . . . , n− 1},

where ω = cos(2π/n) + i sin(2π/n) ∈ C is an n-th primitive root of unity.

For the rest of the paper we put

ω = cos(2π/p) + i sin(2π/p) ∈ C.

Lemma 8. Let j ∈ U \ {0} and u0, . . . , up−1 ∈ Q such that
∑

r∈U

ur(ωj)r = 0,

then ur = us for any r, s ∈ U .

Proof. Since {1, ωj , . . . , (ωj)p−1} = {1, ω, . . . , ωp−1}, we may assume that j = 1.
It suffices to observe that the cyclotomic polynomial Φp(x) = 1 + · · · + xp−1,
which is irreducible, is the minimal polynomial of ω.

Corollary 1. Let C = circ(c0, . . . , cp−1) be a circulant matrix of order p such that

cj 6= ck for some j, k ∈ {0, . . . , p− 1}.

i) If
p−1∑

i=0

ci = 0, then 0 is a simple eigenvalue of C.

ii) If
p−1∑

i=0

ci 6= 0, then 0 is not an eigenvalue of C.

Proof. i): By Lemma 7, C admits the following eigenvalues:

c0 + · · ·+ cp−1 = 0,

c0 + c1ω
k + · · ·+ cp−1(ωk)p−1 6= 0, for any k ≥ 1, by Lemma 8.

So, 0 is a simple eigenvalue of C.
ii): By the same argument, 0 is not an eigenvalue of C. So we are done.

Lemma 9 (see [5], Theorem 5.8.1 and § 2.3). Let n be a positive integer and let
S = bcirc(S0, . . . , Sn−1) be a block circulant of type (n, n), with circulant blocks,
then S0, . . . , Sn−1 are simultaneously diagonalizable on C. Furthermore, a complex
number λ is an eigenvalue of S if and only if there exists k ∈ {0, . . . , n − 1} such
that λ is an eigenvalue of the circulant matrix Hk = S0 +ωkS1 + · · ·+(ωk)n−1Sn−1.
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Proof. The fact that S0, . . . , Sn−1 are simultaneously diagonalizable is given by
Theorem 5.8.1 in [5]. The same theorem says that the eigenvalues of S are given by
the following n matrices:

Υk = Γ0 + ωkΓ1 + · · ·+ (ωk)n−1Γn−1, 0 ≤ k ≤ n− 1,

where for each 0 ≤ j ≤ n− 1, the diagonal matrix Γj gives the eigenvalues of Sj .
It remains to observe, by simultaneous diagonalizability of S0, . . . , Sn−1, that for
each k, Υk gives the eigenvalues of Hk.

Corollary 2. For each l ∈ U , let Sl = circ(al,0, . . . , al,p−1) be a circulant matrix of
order p such that:

a0,0 ≥ 2, aj,i ∈ {−1, 0} if (j, i) 6= (0, 0),
∑

i,j∈U

aj,i = 0 and Sm 6= 0 for some m ≥ 1.

Then the following holds.

i) If H0 = S0 + · · ·+ Sp−1 6= 0, then H0 has rank p− 1.

ii) The matrix Hk = S0 + ωkS1 + · · ·+ (ωk)p−1Sp−1 has rank p, for any k ≥ 1.

Proof. i): Observe that H0 = circ(t0, . . . , tp−1), where ti =
p−1∑

j=0

aj,i, for any i ∈ U .

If H0 6= 0, since
t0 + · · ·+ tp−1 =

∑

i,j∈U

aj,i = 0,

there must exist j, k ∈ U such that tj 6= tk. Hence, Corollary 1 implies that 0 is a
simple eigenvalue of H0.

ii): Hk = circ(tk,0, . . . , tk,p−1), where tk,i =
p−1∑

j=0

aj,i(ωk)j , for any i ∈ U .

Since a0,0 ≥ 2 and since a0,1 ∈ {−1, 0}, we have a0,0 6= a0,1. So tk,0 6= tk,1, by Lemma
8. The fact that m ≥ 1 implies that am,i ∈ {−1, 0} for any i ∈ U . Moreover, since
Sm 6= 0, there exists l ∈ U such that am,l = −1. So we get

a0,0 + a0,1 + · · ·+ a0,p−1 ≥
∑

i,j∈U

aj,i = 0,

and:
am,0 + am,1 + · · ·+ am,p−1 ≤ −1.

It follows that: a0,0 + a0,1 + · · · + a0,p−1 6= am,0 + am,1 + · · · + am,p−1, and hence,
by Lemma 8:

p−1∑

i=0

tk,i =
p−1∑

j=0

(aj,0 + aj,1 + · · ·+ aj,p−1)(ωk)j 6= 0.

Thus, Corollary 1 implies that 0 is not an eigenvalue of Hk.
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Corollary 3. Let S = bcirc(S0, . . . , Sp−1) be a block circulant matrix, with circulant
blocks Sj = circ(aj,0, . . . , aj,p−1), for each j ∈ U . We suppose that:

a0,0 ≥ 2, aj,i ∈ {−1, 0} if (j, i) 6= (0, 0),
∑

i,j∈U

aj,i = 0 and Sm 6= 0 for some m ≥ 1.

Then the following holds.

i) If H0 = S0 + · · ·+ Sp−1 6= 0, then S has rank p2 − 1.

ii) If H0 = 0, then S has rank p2 − p.

Proof. i): If H0 6= 0, then by Corollary 2, H0 has rank p − 1 and Hk has rank p
for any k ≥ 1. Hence, by Lemma 9, 0 is a simple eigenvalue of S. So S has rank:
p(p− 1) + p− 1 = p2 − 1.
ii): By the same argument, if H0 = 0, then 0 is an eigenvalue of S of order p, and
the other eigenvalues are not equal to 0. So S has rank: p(p− 1) = p2 − p.

4.4. The proof

For γ ∈ Fq, we put xγ = pn(γ). If we identify γ = iα + j and δ = rα + s to the pairs
(i, j), (r, s) ∈ Fp

2, we may order the unknowns xij and xrs, as follows:

xij ≤ xrs ⇐⇒ (i, j) ≤ (r, s),

according to the order relation on Fq defined in Section 4.1. From Proposition 2, we
obtain a linear system of q equations in q unknowns the xγ ’s:

Nxγ =
∑

δ∈Λγ

xδ, γ ∈ Fq. (3)

We denote by S the matrix of that linear system. For i, j ∈ Fp, we consider
the square matrix Sj

i of order p corresponding to the coefficients of unknowns
xjα, xjα+1 . . . , xjα+p−1, in the p equations:

Nxγ =
∑

δ∈Λγ

xδ, where γ ∈ {iα, iα + 1, . . . , iα + p− 1}.

By direct computations, we have the following results:

Lemma 10. The matrix S can be written as a block matrix:

S = (Sj
i )0≤i,j≤p−1, where each Sj

i is a square matrix of order p.

From the definition of Λγ , for γ ∈ Fq, we obtain:

Lemma 11. If (ej
i )mn is the entry in row m and column n of Sj

i , for 0 ≤ m,n
≤ p− 1, then:





(ej
i )mn = N if (jα + n = iα + m),

(ej
i )mn = −1 if jα + n ∈ Λiα+m, i.e ((i− j)α + m− n)N = −1,

(ej
i )mn = 0 otherwise.
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It follows that:

Lemma 12. One has
{

Sj
i = Sj−1

i−1 , S0
i = Sp−1

i−1 , for 1 ≤ i, j ≤ p− 1,

(ej
0)mn = (ej

0)m−1 n−1, (ej
0)m0 = (ej

0)m−1 p−1, for 1 ≤ j, m, n ≤ p− 1.

By putting Sj
0 = Sj , from Lemma 12 we deduce the following two lemmas:

Lemma 13. The matrix S is a block circulant matrix:

S = bcirc(S0, . . . , Sp−1).

Lemma 14. Every matrix Sj , j ∈ U , is a circulant matrix of order p:

Sj = circ((ej
0)00, . . . , (e

j
0)0p−1).

In the following, for i, j ∈ {0, . . . , p− 1}, we put

aj,i = (ej
0)0i, (the entry in row 0 and column i of Sj).

Thus, the matrix Sj becomes

Sj = circ(aj,0, . . . , aj,p−1).

We immediately obtain

Lemma 15. One has

i) a0,0 = N, aj,i = −1, if jα + i ∈ Λ0, aj,i = 0 elsewhere;

ii)
∑

(i,j)∈U2

aj,i = 0;

iii) 2N divides p− 1 if and only if for any j 6= 0, Sj = 0.

Proof. We consider the equation corresponding to γ = 0 = (0, 0), in the linear
system (3). Part i) is obtained by direct computations. ii) is obtained from

∑

(i,j)∈U2

aj,i = a0,0 +
∑

δ∈Λ0

(−1) = N − card(Λ0) = 0,

since Λγ contains exactly N elements, for any γ ∈ Fq.
iii): If 2N divides p− 1 and if j 6= 0, then for any i ∈ Fp:

aj,i 6= N, and aj,i 6= −1 since ((0− j)α + 0− i)N 6= −1.

Thus, aj,i = 0 for any i ∈ U and Sj = 0. We prove the converse by contraposition.
If 2N does not divide p− 1, then consider a primitive element β of Fq. We see that
γ = β

q−1
2N is of order 2N . So, we must have: γN = −1. Moreover, γ 6∈ Fp since

2N - p − 1. We may write: γ = jα + i for some i, j ∈ Fp such that j 6= 0, then
aj,i = −1. Hence Sj 6= 0.
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If p is odd, by ` we denote the order of c in Fp, so that α is of order 2` in Fq.
Without loss of generality, we may assume c to be a primitive element, and hence
` = p− 1. We consider then the following condition:

(••) : N is even and xN + c−
N
2 splits in Fp.

Corollary 4. We have S0 + · · ·+ Sp−1 = 0 if and only if Condition (••) holds.

Proof. Necessity: Firstly, S0 + · · ·+ Sp−1 = 0 if and only if for each i ∈ U ,

p−1∑

j=0

aj,i = 0.

So by Lemma 15, aj,i = 0 for any i ≥ 1. Moreover, since a0,0 = N , there must exist
distinct j1, . . . , jN ∈ Fp such that:

aj1,0 = · · · = ajN ,0 = −1, and aj,0 = 0, for any j 6∈ {j1, . . . , jN}.
Hence, for each 1 ≤ l ≤ N , we have (−jl α)N = −1. It follows that αN ∈ Fp so that
N must be even. Moreover, for any l ∈ {1, . . . , N}:

(jl
N + c−

N
2 ) c

N
2 = jl

NαN + 1 = (−jlα)N + 1 = 0.

Hence, j1, . . . , jN are the roots in Fp of the polynomial: xN + c−
N
2 .

Sufficiency: Let j1, . . . , jN ∈ Fp be the roots of xN + c−
N
2 . For each 1 ≤ l ≤ N , we

have:
(−jl α)N = jl

N αN = −c−
N
2 αN = −1.

Hence, for any (j, i) 6∈ {(j1, 0), . . . , (jN , 0)}, (−j α− i)N 6= −1 so that aj,i = 0.

We recall that (•) denotes: N is even, N | p− 1 and
p− 1
N

is odd.

Observe that

Proposition 3. Condition (•) is equivalent to Condition (••).

Proof. Necessity: Put
p− 1
N

= M odd. If u ∈ Fp satisfies: uN + c−
N
2 = 0, then

up−1 = (uN )M = (−1)M c−
NM

2 = (−1) c−
p−1
2 = 1, c not being a square.

Thus, u ∈ Fp. So the polynomial xN + c−
N
2 splits over Fp.

Sufficiency: It is clear that N is even. Now, we prove that N divides p− 1.
If j1, . . . , jN ∈ Fp are the roots of xN + c−

N
2 , then (jl/j1)N = 1, for any l ∈

{1, . . . , N}. So the polynomial xN − 1 splits in Fp. Since p - N , we conclude that
N | p− 1. It remains to show that M = p− 1/N is odd. By hypothesis, any root u
of xN + c−N/2 lies in Fp, so that up−1 = 1. Hence, since c is not a square, we have

1 = up−1 = (uN )M = (−1)M c−
NM

2 = (−1)Mc−
p−1
2 = −(−1)M .

We are done.
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4.4.1. Proof of Theorem 2

Lemma 16. If 2N | p − 1, then S0 has rank p − 1 and S is the block diagonal
matrix:

S = bcirc(S0, 0, . . . , 0) = diag(S0, . . . , S0).

Proof. The rank of S0 is obtained by Corollary 1. By Lemma 15- iii), Sj = 0 for
all j ∈ U \ {0}, so that S = diag(S0, . . . , S0).

Corollary 5. If 2N | p − 1, then n(γ) = n(γ + 1) = · · · = n(γ + p − 1), for any
γ ∈ Fq.

Proof. By Lemma 16, the matrix S is exactly the diagonal matrix diag(S0, . . . , S0),
so the linear system (3) splits into p linear systems (each of which is of matrix S0)
in p unknowns xγ , xγ+1, . . . , xγ+p−1:

Nxγ+j =
∑

δ∈Λγ+j

xδ, for γ = iα, i, j ∈ Fp. (4)

Moreover, S0 has rank p − 1. It remains to observe that (1, . . . , 1) belongs to the
kernel of S0, since

a0,0 + · · ·+ a0,p−1 =
∑

i∈U

a0,i + 0 =
∑

i∈U

a0,i +
∑

i,j∈U,j 6=0

aj,i =
∑

(i,j)∈U2

aj,i = 0,

by Lemma 15 ii).

4.4.2. Proof of Theorem 3

In this subsection, we suppose that 2N does not divide p− 1. So, by Lemma 15 iii),
there exists m ≥ 1 such that Sm 6= 0. Moreover, a0,0 = N ≥ 2. Corollaries 3 and 4,
and Proposition 3 give

Proposition 4. One has

If Condition (•) holds, then the matrix S has rank p2 − p.

If Condition (•) does not hold, then the matrix S has rank p2 − 1.

We obtain now Theorem 3:

Corollary 6. One has

i) If Condition (•) holds, then:

n(i) = n(α + i) = · · · = n((p− 1)α + i), for any i ∈ U.

ii) If (•) does not hold, then n(γ) = n(δ) for any γ, δ ∈ Fq.
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Proof. i): In this case, the matrix S has rank p2 − p = q − p, so its kernel Ker(S)
is of rank p. Now, consider v = (x0,0, x0,1, . . . , x0,p−1) ∈ Rp and its transpose v>.
Since S = bcirc(S0, S1, . . . , Sp−1) with S0 + · · ·+ Sp−1 = 0, we get

S ·




v>

v>
...

v>


 =




S0 · v> + S1 · v> + · · ·+ Sp−1 · v>

Sp−1 · v> + S0 · v> + · · ·+ Sp−2 · v>
...

S1 · v> + · · ·+ Sp−1 · v> + S0 · v>


 =




0
0
...
0


 .

Hence, Ker(S) contains the vector space E of dimension p:

E = {(v, . . . , v) ∈ (Rp)p : v = (x0,0, x0,1, . . . , x0,p−1) ∈ Rp},
= {(x0,0, . . . , xj,i, . . . , xp−1,p−1) ∈ Rq : x0,i = · · · = xp−1,i, ∀ i ∈ U}.

We are done.
ii): Here, the matrix S has rank p2 − 1 = q − 1. Furthermore, (1, . . . , 1) belongs to
the kernel of S, since ∑

(i,j)∈U2

aj,i = 0,

by Lemma 15 ii).
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