Modified double Szász-Mirakjan operators preserving $x^{2}+y^{2}$

Fadime Dirik ${ }^{1, *}$ and Kamil Demirci ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Sinop University, TR-57 000 Sinop, Turkey

Received July 6, 2009; accepted December 26, 2009

Abstract

In this paper, we introduce a modification of the Szász-Mirakjan type operators of two variables which preserve $f_{0}(x, y)=1$ and $f_{3}(x, y)=x^{2}+y^{2}$. We prove that this type of operators enables a better error estimation on the interval $[0, \infty) \times[0, \infty)$ than the classical Szász-Mirakjan type operators of two variables. Moreover, we prove a Voronovskaya-type theorem and some differential properties for derivatives of these modified operators. Finally, we also study statistical convergence of the sequence of modified Szász-Mirakjan type operators.

AMS subject classifications: 41A25, 41A36
Key words: Szász-Mirakjan type operators, A-statistical convergence, the Korovkin-type approximation theorem, modulus of continuity

1. Introduction

Most of the approximating operators, L_{n}, preserve $f_{i}(x)=x^{i},(i=0,1), L_{n}\left(f_{0} ; x\right)$ $=f_{0}(x), L_{n}\left(f_{1} ; x\right)=f_{1}(x), n \in \mathbb{N}$, but $L_{n}\left(f_{2} ; x\right) \neq f_{2}(x)=x^{2}$. Especially, these conditions hold for the Bernstein polynomials and the Szász-Mirakjan type operators [$1,2,3,14]$. Recently, King [13] presented a non-trivial sequence of positive linear operators defined on the space of all real-valued continuous functions on $[0,1]$ which preserves the functions f_{0} and f_{2}. Duman and Orhan [4] have studied King's results using the concept of statistical convergence. Recently, Duman and Özarslan [5] have investigated some approximation results on the Szász-Mirakjan type operators preserving $f_{2}(x)=x^{2}$.

Functions $f_{0}(x, y)=1, f_{1}(x, y)=x$ and $f_{2}(x, y)=y$ are preserved by most of approximating operators of two variables, L_{n}, i.e., $L_{n}\left(f_{0} ; x, y\right)=f_{0}(x, y), L_{n}\left(f_{1} ; x, y\right)$ $=f_{1}(x, y)$ and $L_{n}\left(f_{2} ; x, y\right)=f_{2}(x, y), n \in \mathbb{N}$, but $L_{n}\left(f_{3} ; x, y\right) \neq f_{3}(x, y)=x^{2}+y^{2}$. In this paper, we give a modification of the well-known Szász-Mirakjan type operators of two variables and show that this modification preserving $f_{0}(x, y)$ and $f_{3}(x, y)$ has a better estimation than the classical Szász-Mirakjan of two variables. Also, we obtain a Voronovskaya-type theorem and some differential properties of these modified operators. Finally, we study A-statistical convergence of this modification.

By $C(D)$ we denote the space of all continuous real valued functions on D where $D=[0, \infty) \times[0, \infty)$. By E_{2} we denote the space of all functions $f: D \rightarrow R$ of

[^0]exponential type where R is the disk with $|z|<R, R>1$. More precisely, $f \in E_{2}$ if and only if there are three positive finite constants c, d and α with the property $|f(x, y)| \leq \alpha e^{c x+d y}$. Let L be a linear operator from $C(D) \cap E_{2}$ into $C(D) \cap E_{2}$. Then, as usual, we say that L is a positive linear operator provided that $f \geq 0$ implies $L(f) \geq 0$. Also, we denote the value of $L(f)$ of a point $(x, y) \in D$ by $L(f ; x, y)$.

Now fix $a, b>0$. For proving our approximation results we use lattice homomorphism $H_{a, b}$ maps $C(D) \cap E_{2}$ into $C(E) \cap E_{2}$ defined by $H_{a, b}(f)=\left.f\right|_{E}$ where $E=[0, a] \times[0, b]$ and $\left.f\right|_{E}$ denote the restriction of the domain f to the interval E. $C(E)$ space is equipped with the supremum norm

$$
\|f\|=\sup _{(x, y) \in E}|f(x, y)|, \quad(f \in C(E))
$$

Following the paper by Erkuş and Duman [6], one can obtain the next Korovkin-type approximation result in a statistical sense (see the last for the basic properties of statistical convergence).

Theorem 1. Let $A=\left(a_{n k}\right)$ be a non-negative regular summability matrix. Let $\left\{L_{n}\right\}$ be a sequence of positive linear operators acting from $C(D) \cap E_{2}$ into itself. Assume that the following conditions hold:

$$
s t_{A}-\lim _{n} L_{n}\left(f_{i} ; x . y\right)=f_{i}(x, y), \text { uniformly on } E, i=0,1,2,3,
$$

where $f_{0}(x, y)=1, f_{1}(x, y)=x, f_{2}(x, y)=y$ and $f_{3}(x, y)=x^{2}+y^{2}$. Then, for all $f \in C(D) \cap E_{2}$, we have

$$
s t_{A}-\lim _{n} L_{n}(f ; x . y)=f(x, y), \text { uniformly on } E .
$$

2. Construction of operators

The double Szász-Mirakjan was introduced by Favard [8]:

$$
\begin{equation*}
S_{n}(f ; x, y)=e^{-n x} e^{-n y} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} f\left(\frac{s}{n}, \frac{t}{n}\right) \frac{(n x)^{s}}{s!} \frac{(n y)^{t}}{t!} \tag{1}
\end{equation*}
$$

where $(x, y) \in D ; f \in C(D) \cap E_{2}$. It is clear that

$$
\begin{aligned}
& S_{n}\left(f_{0} ; x, y\right)=f_{0}(x, y) \\
& S_{n}\left(f_{1} ; x, y\right)=f_{1}(x, y) \\
& S_{n}\left(f_{2} ; x, y\right)=f_{2}(x, y) \\
& S_{n}\left(f_{3} ; x, y\right)=f_{3}(x, y)+\frac{x}{n}+\frac{y}{n}
\end{aligned}
$$

Then, we observe that $S_{n}\left(f_{i}\right) \rightarrow f_{i}$ uniformly on E, where $i=0,1,2,3$. If we replace matrix A by identity matrix in Theorem 1, then we immediately get classical result. Hence, for S_{n} operators given by (1), we have for all $f \in C(D) \cap E_{2}$,

$$
\lim _{n} S_{n}(f ; x, y)=f(x, y), \quad \text { uniformly on } E .
$$

Let $\left\{u_{n}(x)\right\}$ and $\left\{v_{n}(y)\right\}$ be two sequences of exponential-type continuous functions defined on interval $[0, \infty)$ with $0 \leq u_{n}(x)<\infty, 0 \leq v_{n}(y)<\infty$. Let

$$
\begin{align*}
H_{n}(f ; x, y) & =S_{n}\left(f ; u_{n}(x), v_{n}(y)\right) \\
& =e^{-n u_{n}(x)} e^{-n v_{n}(y)} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} f\left(\frac{s}{n}, \frac{t}{n}\right) \frac{\left(n u_{n}(x)\right)^{s}}{s!} \frac{\left(n v_{n}(y)\right)^{t}}{t!} \tag{2}
\end{align*}
$$

for $f \in C(D) \cap E_{2}$. Hence, in the special case $u_{n}(x)=x$ and $v_{n}(y)=y, n=1,2, \ldots$ reduce to classical Szász-Mirakjan type operators given by (1).

It is clear that H_{n} are positive and linear. Also, we have

$$
\begin{align*}
& H_{n}\left(f_{0} ; x, y\right)=f_{0}(x, y) \\
& H_{n}\left(f_{1} ; x, y\right)=u_{n}(x) \\
& H_{n}\left(f_{2} ; x, y\right)=v_{n}(y) \\
& H_{n}\left(f_{3} ; x, y\right)=u_{n}^{2}(x)+v_{n}^{2}(y)+\frac{u_{n}(x)}{n}+\frac{v_{n}(y)}{n} \tag{3}
\end{align*}
$$

Now, the following result follows immediately from Theorem 1 for the case $A=I$, the identity matrix.

Theorem 2. Let H_{n} denote the sequence of positive linear operators given by (2). If

$$
\lim _{n} u_{n}(x)=x, \lim _{n} v_{n}(y)=y, \text { uniformly on } E
$$

then, for all $f \in C(D) \cap E_{2}$,

$$
\lim _{n} H_{n}(f ; x, y)=f(x, y), \text { uniformly on } E .
$$

Furthermore, we present the sequence $\left\{H_{n}\right\}$ of positive linear operators defined on $C(D) \cap E_{2}$ that preserve $f_{0}(x)$ and $f_{3}(x)$.

It is obvious that if we replace $u_{n}(x)$ and $v_{n}(y)$ by $u_{n}^{*}(x)$ and $v_{n}^{*}(y)$ defined as

$$
\begin{equation*}
u_{n}^{*}(x)=\frac{-1+\sqrt{1+4 n^{2} x^{2}}}{2 n}, v_{n}^{*}(y)=\frac{-1+\sqrt{1+4 n^{2} y^{2}}}{2 n}, n=1,2, \ldots \tag{4}
\end{equation*}
$$

then we obtain

$$
\begin{equation*}
H_{n}\left(f_{3} ; x, y\right)=f_{3}(x, y)=x^{2}+y^{2}, \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

Simple calculations show that for $u_{n}^{*}(x)$ and $v_{n}^{*}(y)$ given by (4),

$$
\begin{equation*}
u_{n}^{*}(x) \geq 0, v_{n}^{*}(y) \geq 0, n=1,2, \ldots, x, y \in[0, \infty) \tag{6}
\end{equation*}
$$

It is clear that

$$
\lim _{n} u_{n}^{*}(x)=x, \lim _{n} v_{n}^{*}(y)=y, \quad \text { uniformly on } E .
$$

3. Comparison with Szász-Mirakjan type operators

In this section, we compute the rates of convergence of operators $H_{n}(f ; x, y)$ to $f(x, y)$ by means of the modulus of continuity. Thus, we show that our estimations are more powerful than the operators given by (1) on the interval D.

By $C_{B}(D)$ we denote the space of all continuous and bounded functions on D. For $f \in C_{B}(D) \cap E_{2}$, the modulus of continuity of f, denoted by $\omega(f ; \delta)$, is defined to be
$\omega(f ; \delta)=\sup \left\{|f(u, v)-f(x, y)|: \sqrt{(u-x)^{2}+(v-y)^{2}}<\delta,(u, v),(x, y) \in D\right\}$.
Then it is clear that for any $\delta>0$ and each $(x, y) \in D$

$$
|f(u, v)-f(x, y)| \leq \omega(f ; \delta)\left(\frac{\sqrt{(u-x)^{2}+(v-y)^{2}}}{\delta}+1\right)
$$

After some simple calculations, for any sequence $\left\{L_{n}\right\}$ of positive linear operators on $C_{B}(D) \cap E_{2}$, for $f \in C_{B}(D) \cap E_{2}$, we can write

$$
\begin{align*}
\left|L_{n}(f ; x, y)-f(x, y)\right| \leq & \omega(f ; \delta)\left\{1+\frac{1}{\delta^{2}} L_{n}\left((u-x)^{2}+(v-y)^{2} ; x, y\right)\right. \\
& \left.+\left|L_{n}\left(f_{0} ; x, y\right)-f_{0}(x, y)\right|\right\} \tag{7}\\
& +|f(x, y)|\left|L_{n}\left(f_{0} ; x, y\right)-f_{0}(x, y)\right| .
\end{align*}
$$

Now we have the following:
Theorem 3. If H_{n} is defined by (2), then for $(x, y) \in D$ and any $\delta>0$, we have

$$
\begin{align*}
\left|H_{n}(f ; x, y)-f(x, y)\right| \leq & \omega(f, \delta)\left\{1+\frac{1}{\delta^{2}}\left(2\left(x^{2}+y^{2}\right)-2 x H_{n}\left(f_{1} ; x, y\right)\right.\right. \\
& \left.\left.-2 y H_{n}\left(f_{2} ; x, y\right)\right)\right\} \tag{8}
\end{align*}
$$

where $H_{n}\left(f_{1} ; x, y\right)=u_{n}^{*}(x)$ and $H_{n}\left(f_{2} ; x, y\right)=v_{n}^{*}(y)$ is given by (4).
Proof. Now, let $f \in C_{B}(D) \cap E_{2}$. Using linearity and monotonicity H_{n} and from (7), the proof is complete.

Furthermore, when (8) holds,

$$
2\left(x^{2}+y^{2}\right)-2 x H_{n}\left(f_{1} ; x, y\right)-2 y H_{n}\left(f_{2} ; x, y\right) \geq 0 \text { for }(x, y) \in D .
$$

Remark 1. For the Szász-Mirakjan type operators given by (1), from (7) we may write that for every $f \in C_{B}(D) \cap E_{2}, n \in \mathbb{N}$,

$$
\begin{equation*}
\left|S_{n}(f ; x, y)-f(x, y)\right| \leq \omega(f, \delta)\left\{1+\frac{1}{\delta^{2}}\left(\frac{x}{n}+\frac{y}{n}\right)\right\} . \tag{9}
\end{equation*}
$$

Estimate (8) is better than estimate (9) if and only if

$$
\begin{equation*}
2\left(x^{2}+y^{2}\right)-2 x H_{n}\left(f_{1} ; x, y\right)-2 y H_{n}\left(f_{2} ; x, y\right) \leq \frac{x}{n}+\frac{y}{n},(x, y) \in D \tag{10}
\end{equation*}
$$

Thus, the order of approximation towards a function $f \in C_{B}(D) \cap E_{2}$ given by the sequence H_{n} will be at least as good as that of S_{n} whenever the following function $\phi_{n}(x, y)$ is non-negative:

$$
\begin{aligned}
\phi_{n}(x, y) & =\frac{x}{n}+\frac{y}{n}+2 x H_{n}\left(f_{1} ; x, y\right)+2 y H_{n}\left(f_{2} ; x, y\right)-2\left(x^{2}+y^{2}\right) \\
& =2 x \sqrt{x^{2}+\frac{1}{4 n^{2}}}+2 y \sqrt{y^{2}+\frac{1}{4 n^{2}}}-2\left(x^{2}+y^{2}\right)
\end{aligned}
$$

where

$$
H_{n}\left(f_{1} ; x, y\right)=u_{n}^{*}(x)=\frac{-1+\sqrt{1+4 n^{2} x^{2}}}{2 n}
$$

and

$$
H_{n}\left(f_{2} ; x, y\right)=v_{n}^{*}(y)=\frac{-1+\sqrt{1+4 n^{2} y^{2}}}{2 n}
$$

Since

$$
\begin{aligned}
& 2 x \sqrt{x^{2}+\frac{1}{4 n^{2}}} \geq 2 x^{2}, \text { for } x \geq 0 \\
& 2 y \sqrt{y^{2}+\frac{1}{4 n^{2}}} \geq 2 y^{2}, \text { for } y \geq 0
\end{aligned}
$$

(10) holds for every $x, y \geq 0$ and $n \in \mathbb{N}$. Therefore, our estimations are more powerful than the operators given by (1) on the interval D.

4. A Voronovskaya-type theorem

In this section, as in [5], we prove a Voronovskaya-type theorem for the operators H_{n} given by (2) with $\left\{u_{n}(x)\right\}$ and $\left\{v_{n}(y)\right\}$ replaced by $\left\{u_{n}^{*}(x)\right\}$ and $\left\{v_{n}^{*}(y)\right\}$, where $u_{n}^{*}(x)$ and $v_{n}^{*}(y)$ are defined by (4).
Lemma 1. Let $x, y \in[0, \infty)$. Then, we get

$$
\begin{equation*}
\lim _{n} n^{2} H_{n}\left((u-x)^{4} ; x, y\right)=3 x^{2}, \text { uniformly on } E \text {, } \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n} n^{2} H_{n}\left((v-y)^{4} ; x, y\right)=3 y^{2}, \text { uniformly on } E . \tag{12}
\end{equation*}
$$

Proof. We shall prove only (11) because the proof of (12) is similar. After some simple calculations, we can write from (11) that

$$
\begin{aligned}
n^{2} H_{n}\left((u-x)^{4} ; x, y\right)= & -\frac{4 n x^{3}}{2 n x+\sqrt{1+4 n^{2} x^{2}}}+\frac{2 x^{2}}{2 n x+\sqrt{1+4 n^{2} x^{2}}} \\
& +2 x\left(\frac{-1+\sqrt{1+4 n^{2} x^{2}}}{n}\right)+\left(\frac{1-\sqrt{1+4 n^{2} x^{2}}}{2 n^{2}}\right) .
\end{aligned}
$$

Now taking the limit as $n \rightarrow \infty$ on both sides of the above equality we get

$$
\lim _{n} n^{2} H_{n}\left((u-x)^{4} ; x, y\right)=-x^{2}+0+4 x^{2}+0=3 x^{2}
$$

unifomly with respect to $x \in[0, \infty)$. The proof is complete.

Theorem 4. For every $f \in C(D) \cap E_{2}$ such that $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y} \in C(D) \cap E_{2}$, we have
$\lim _{n} n\left\{H_{n}(f ; x, y)-f(x, y)\right\}=\frac{1}{2}\left\{x f_{x x}(x, y)+y f_{y y}(x, y)-f_{x}(x, y)-f_{y}(x, y)\right\}$,
uniformly on E.
Proof. Let $(x, y) \in D$ and $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y} \in C(D) \cap E_{2}$. We define the function ϕ : if $(u, v) \neq(x, y)$, then

$$
\begin{aligned}
\phi_{(x, y)}(u, v)= & \frac{1}{\sqrt{(u-x)^{4}+(v-y)^{4}}}\left\{f(u, v)-\sum_{i=0}^{2} \frac{1}{i!}\left(f_{x}(x, y)(u-x)\right.\right. \\
& \left.\left.+f_{y}(x, y)(v-y)\right)^{(i)}\right\}
\end{aligned}
$$

else $\phi_{(x, y)}(u, v)=0 . g^{(i)}$ is a derivative of function g for $i=0,1,2$. It is not hard to see that $\phi_{(x, y)}(.,.) \in C(D) \cap E_{2}$. By the Taylor formula for $f \in C(D) \cap E_{2}$, we have

$$
\begin{aligned}
f(u, v)= & f(x, y)+f_{x}(x, y)(u-x)+f_{y}(x, y)(v-y)+\frac{1}{2}\left\{f_{x x}(x, y)(u-x)^{2}\right. \\
& \left.+2 f_{x y}(x, y)(u-x)(v-y)+f_{y}(x, y)(v-y)^{2}\right\} \\
& +\phi_{(x, y)}(u, v) \sqrt{(u-x)^{4}+(v-y)^{4}} .
\end{aligned}
$$

Since the operator H_{n} is linear, we obtain

$$
\begin{align*}
n\left\{H_{n}(f ; x, y)-f(x, y)\right\}= & f_{x}(x, y) n\left(u_{n}^{*}(x)-x\right)+f_{y}(x, y) n\left(v_{n}^{*}(y)-y\right) \\
& +\frac{1}{2}\left\{f_{x x}(x, y) n\left(2 x^{2}-2 x u_{n}^{*}(x)\right)\right. \\
& +2 f_{x y}(x, y) n\left(x-u_{n}^{*}(x)\right)\left(y-v_{n}^{*}(y)\right) \\
& \left.+f_{y y}(x, y) n\left(2 y^{2}-2 y v_{n}^{*}(y)\right)\right\} \\
& +n H_{n}\left(\phi_{(x, y)}(u, v) \sqrt{(u-x)^{4}+(v-y)^{4}} ; x, y\right) . \tag{13}
\end{align*}
$$

Applying the Cauchy-Schwarz inequality for the last term on the right-hand side of
(13), we get

$$
\begin{align*}
\mid n & H_{n}\left(\phi_{(x, y)}(u, v) \sqrt{(u-x)^{4}+(v-y)^{4}} ; x, y\right) \mid \\
\leq & \left(H_{n}\left(\phi_{(x, y)}^{2}(u, v) ; x, y\right)\right)^{1 / 2}\left(H_{n}\left((u-x)^{4}+(v-y)^{4} ; x, y\right)\right)^{1 / 2} \\
= & \left(H_{n}\left(\phi_{(x, y)}^{2}(u, v) ; x, y\right)\right)^{1 / 2}\left(H_{n}\left((u-x)^{4} ; x, y\right)\right. \\
& \left.+H_{n}\left((v-y)^{4}\right) ; x, y\right)^{1 / 2} . \tag{14}
\end{align*}
$$

Let $\eta_{(x, y)}(u, v)=\phi_{(x, y)}^{2}(u, v)$. In this case, observe that $\eta_{(x, y)}(x, y)=0$ and $\eta_{(x, y)}(.,.) \in C(D) \cap E_{2}$. From Theorem 1 for $A=I$, which is the identity matrix,

$$
\begin{align*}
\lim _{n} H_{n}\left(\phi_{(x, y)}^{2}(u, v) ; x, y\right) & =\lim _{n} H_{n}\left(\eta_{(x, y)}(u, v) ; x, y\right) \\
& =\eta_{(x, y)}(x, y)=0 \tag{15}
\end{align*}
$$

uniformly on E. Using (15) and Lemma 1 , from (14) we obtain

$$
\begin{equation*}
\lim _{n} n H_{n}\left(\phi_{(x, y)}(u, v) \sqrt{(u-x)^{4}+(v-y)^{4}} ; x, y\right)=0 \tag{16}
\end{equation*}
$$

uniformly on E. Also, observe that by (4)

$$
\begin{align*}
\lim _{n} n\left(u_{n}^{*}(x)-x\right) & =-\frac{1}{2}, \\
\lim _{n} n\left(v_{n}^{*}(y)-y\right) & =-\frac{1}{2}, \\
\lim _{n} n\left(2 x^{2}-2 x u_{n}^{*}(x)\right) & =x, \\
\lim _{n} n\left(2 y^{2}-2 y v_{n}^{*}(y)\right) & =y . \\
\lim _{n} n\left(u_{n}^{*}(x)-x\right)\left(v_{n}^{*}(y)-y\right) & =0 . \tag{17}
\end{align*}
$$

Then, taking limit as $n \rightarrow \infty$ in (13) and using (16) and (17), we have

$$
\begin{aligned}
\lim _{n} n\left\{H_{n}(f ; x, y)-f(x, y)\right\}= & \frac{1}{2}\left\{x f_{x x}(x, y)+y f_{y y}(x, y)\right. \\
& \left.-f_{x}(x, y)-f_{y}(x, y)\right\}
\end{aligned}
$$

uniformly on E.
Theorem 5. For every $f \in C(D) \cap E_{2}$ such that $f_{x}, f_{y} \in C(D) \cap E_{2}$, we have

$$
\begin{align*}
\lim _{n} \frac{\partial}{\partial x} H_{n}(f ; x, y) & =\frac{\partial f}{\partial x}(x, y), x \neq 0, \text { uniformly on } E, \tag{18}\\
\lim _{n} \frac{\partial}{\partial y} H_{n}(f ; x, y) & =\frac{\partial f}{\partial y}(x, y), y \neq 0, \text { uniformly on } E . \tag{19}
\end{align*}
$$

Proof. We shall prove only (18) because the proof of (19) is identical. Let $(x, y) \in D$ and $f_{x}, f_{y} \in C(D) \cap E_{2}$. From (2) with $\left\{u_{n}(x)\right\}$ and $\left\{v_{n}(y)\right\}$ replaced by $\left\{u_{n}^{*}(x)\right\}$ and $\left\{v_{n}^{*}(y)\right\}$, where $u_{n}^{*}(x)$ and $v_{n}^{*}(y)$ are defined by (4), we obtain

$$
\begin{align*}
\frac{\partial}{\partial x} H_{n}(f ; x, y)= & -\frac{2 n^{2} x}{\sqrt{1+4 n^{2} x^{2}}} e^{-n u_{n}^{*}(x)} e^{-n v_{n}^{*}(y)} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} f\left(\frac{s}{n}, \frac{t}{n}\right) \\
& \times \frac{\left(n u_{n}^{*}(x)\right)^{s}}{s!} \frac{\left(n v_{n}^{*}(y)\right)^{t}}{t!}+\frac{4 n^{3} x}{1+4 n^{2} x^{2}-\sqrt{1+4 n^{2} x^{2}}} e^{-n u_{n}^{*}(x)} \\
& \times e^{-n v_{n}^{*}(y)} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{s}{n} f\left(\frac{s}{n}, \frac{t}{n}\right) \frac{\left(n u_{n}^{*}(x)\right)^{s}}{s!} \frac{\left(n v_{n}^{*}(y)\right)^{t}}{t!} \\
= & -\frac{2 n^{2} x}{\sqrt{1+4 n^{2} x^{2}}} H_{n}(f(u, v) ; x, y)+\frac{4 n^{3} x}{1+4 n^{2} x^{2}-\sqrt{1+4 n^{2} x^{2}}} \\
& \times H_{n}(u f(u, v) ; x, y) . \tag{20}
\end{align*}
$$

Define the function η by

$$
\eta_{(x, y)}(u, v)=\left\{\begin{array}{cc}
\frac{f(u, v)-f(x, y)-f_{x}(x, y)(u-x)-f_{y}(x, y)(v-y)}{\sqrt{(u-x)^{2}+(v-y)^{2}}}, & (u, v) \neq(x, y) \\
0 & ,(u, v)=(x, y)
\end{array}\right.
$$

Then by assumption we get $\eta_{(x, y)}(x, y)=0$ and $\eta_{(x, y)}(.,.) \in C(D) \cap E_{2}$. By the Taylor formula for $f \in C(D) \cap E_{2}$, we have

$$
\begin{aligned}
f(u, v)= & f(x, y)+f_{x}(x, y)(u-x)+f_{y}(x, y)(v-y) \\
& +\eta_{(x, y)}(u, v) \sqrt{(u-x)^{2}+(v-y)^{2}}
\end{aligned}
$$

Since the operator H_{n} is linear, we obtain

$$
\begin{align*}
\frac{\partial}{\partial x} H_{n}(f ; x, y)= & f_{x}(x, y)\left(x-u_{n}^{*}(x)\right) \frac{2 n^{2} x+n \sqrt{1+4 n^{2} x^{2}}+n}{\sqrt{1+4 n^{2} x^{2}}} \\
& -\frac{2 n^{2} x}{\sqrt{1+4 n^{2} x^{2}}} H_{n}\left(\eta_{(x, y)}(u, v) \sqrt{(u-x)^{2}+(v-y)^{2}} ; x, y\right) \\
& +\frac{4 n^{3} x}{1+4 n^{2} x^{2}-\sqrt{1+4 n^{2} x^{2}}} \\
& \times H_{n}\left(u \eta_{(x, y)}(u, v) \sqrt{(u-x)^{2}+(v-y)^{2}} ; x, y\right) \\
= & f_{x}(x, y)\left(x-u_{n}^{*}(x)\right) \frac{2 n^{2} x+n \sqrt{1+4 n^{2} x^{2}}+n}{\sqrt{1+4 n^{2} x^{2}}} \\
& +\frac{4 n^{3} x}{1+4 n^{2} x^{2}-\sqrt{1+4 n^{2} x^{2}}} \tag{21}\\
& \times H_{n}\left(\left(u-u_{n}^{*}(x)\right) \eta_{(x, y)}(u, v) \sqrt{(u-x)^{2}+(v-y)^{2}} ; x, y\right)
\end{align*}
$$

By the Cauchy-Schwarz inequality, we get

$$
\begin{align*}
& n\left|H_{n}\left(\left(u-u_{n}^{*}(x)\right) \eta_{(x, y)}(u, v) \sqrt{(u-x)^{2}+(v-y)^{2}} ; x, y\right)\right| \\
& \leq\left(H_{n}\left(\eta_{(x, y)}^{2}(u, v) ; x, y\right)\right)^{1 / 2} \cdot\left(n ^ { 2 } H _ { n } \left(\left(u-u_{n}^{*}(x)\right)^{2}(u-x)^{2}\right.\right. \\
&\left.\left.+\left(u-u_{n}^{*}(x)\right)^{2}(v-y)^{2} ; x, y\right)\right)^{1 / 2} \\
&=\left(H_{n}\left(\eta_{(x, y)}^{2}(u, v) ; x, y\right)\right)^{1 / 2} \cdot\left\{n^{2} H_{n}\left(\left(u-u_{n}^{*}(x)\right)^{2}(u-x)^{2} ; x, y\right)\right. \\
&\left.+H_{n}\left(\left(u-u_{n}^{*}(x)\right)^{2}(v-y)^{2} ; x, y\right)\right\}^{1 / 2} . \tag{22}
\end{align*}
$$

Let $\phi_{(x, y)}(u, v)=\eta_{(x, y)}^{2}(u, v)$. In this case, observe that $\phi_{(x, y)}(x, y)=0$ and $\phi_{(x, y)}(.,.) \in C(D) \cap E_{2}$. From Theorem 1, we have

$$
\begin{align*}
\lim _{n} H_{n}\left(\eta_{(x, y)}^{2}(u, v) ; x, y\right) & =\lim _{n} H_{n}\left(\phi_{(x, y)}(u, v)\right) \\
& =\phi_{(x, y)}(x, y)=0 \tag{23}
\end{align*}
$$

uniformly on E. We also obtain

$$
\begin{align*}
& \lim _{n} n^{2} H_{n}\left(\left(u-u_{n}^{*}(x)\right)^{2}(v-y)^{2} ; x, y\right)=x y \\
& \lim _{n} n^{2} H_{n}\left(\left(u-u_{n}^{*}(x)\right)^{2}(u-x)^{2} ; x, y\right)=4 x^{4}-2 x^{3}-2 x^{2} \tag{24}
\end{align*}
$$

Using (23) and (24), from (22) we obtain

$$
\begin{equation*}
\lim _{n} n\left|H_{n}\left(\left(u-u_{n}^{*}(x)\right) \eta_{(x, y)}(u, v) \sqrt{(u-x)^{2}+(v-y)^{2}} ; x, y\right)\right|=0 \tag{25}
\end{equation*}
$$

uniformly on E. Since

$$
\lim _{n}\left(x-u_{n}^{*}(x)\right) \frac{2 n^{2} x+n \sqrt{1+4 n^{2} x^{2}}+n}{\sqrt{1+4 n^{2} x^{2}}}=1
$$

considering (25) in (22), we have

$$
\lim _{n} \frac{\partial}{\partial x} H_{n}(f ; x, y)=\frac{\partial f}{\partial x}(x, y), x \neq 0
$$

uniformly on E. So the proof is completed.

5. A-statistical convergence

Gadjiev and Orhan [11] have investigated the Korovkin-type approximation theory via statistical convergence. In this section, using the concept of A-statistical convergence, we give the Korovkin-type approximation theorem for H_{n} operators given by (2).

Now, we first recall the concept of A-statistical convergence.
Let $A=\left(a_{n k}\right)$ be an infinite summability matrix. For a given sequence $x:=\left(x_{k}\right)$, the A-transform of x, denoted by $A x:=\left((A x)_{n}\right)$, is given by

$$
(A x)_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k}
$$

provided the series converges for each $n \in \mathbb{N}$. We say that A is regular if $\lim _{n}(A x)_{n}$ $=L$ whenever $\lim _{n} x_{n}=L[12]$. Assume that A is a non-negative regular summability matrix. Then $x=\left(x_{n}\right)$ is said to be A-statistically convergent to L if, for every $\varepsilon>0, \lim _{n} \sum_{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \varepsilon} a_{n k} x_{k}=0$, which is denoted by $s t_{A}-\lim _{n} x_{n}=L[9]$ (see also [15]). We note that by taking $A=C_{1}$, the Cesáro matrix, A-statistical convergence reduces to the concept of statistical convergence (see $[7,10,16]$ for details). If A is the identity matrix, then A-statistical convergence coincides with the ordinary convergence. It is not hard to see that every convergent sequence is A-statistically convergent.

For example, for $A=C_{1}$, the Cesáro matrix and the sequence $x=\left(x_{n}\right)$ defined as

$$
x_{n}=\left\{\begin{array}{l}
1, \text { if } n \text { is square } \\
0, \quad \text { otherwise }
\end{array}\right.
$$

it is easy to see that $s t_{C_{1}}-\lim _{n} x_{n}=0$.
The Korovkin-type approximation theorem is given by Theorem 1 as follows:
Theorem 6. Let $A=\left(a_{n k}\right)$ be a non-negative regular summability matrix. Let H_{n} denote the sequence of positive linear operators given by (2). If

$$
s t_{A}-\lim _{n} u_{n}(x)=x, s t_{A}-\lim _{n} v_{n}(y)=y, \text { uniformly on } E,
$$

then, for all $f \in C(D) \cap E_{2}$,

$$
s t_{A}-\lim _{n} H_{n}(f ; x, y)=f(x, y), \text { uniformly on } E .
$$

Now, we choose a subset K of \mathbb{N} such that $\delta_{A}(K)=1$. Define the function sequence $\left\{p_{n}^{*}\right\}$ and $\left\{q_{n}^{*}\right\}$ by

$$
p_{n}^{*}(x)=\left\{\begin{array}{cc}
0, & n \notin K \tag{26}\\
u_{n}^{*}(x), & n \in K
\end{array}, \quad q_{n}^{*}(y)=\left\{\begin{array}{cc}
0, & n \notin K \\
v_{n}^{*}(y), & n \in K
\end{array}\right.\right.
$$

where $u_{n}^{*}(x)$ and $v_{n}^{*}(y)$ is given by (4).
It is clear that p_{n}^{*} and q_{n}^{*} are continuous and exponential-type on $[0, \infty)$ and

$$
\begin{equation*}
s t_{A}-\lim _{n} u_{n}^{*}(x)=x, s t_{A}-\lim _{n} v_{n}^{*}(y)=y \tag{27}
\end{equation*}
$$

uniformly on E.

We turn to $\left\{H_{n}\right\}$ given by (2) with $\left\{u_{n}(x)\right\}$ and $\left\{v_{n}(y)\right\}$ replaced by $\left\{p_{n}^{*}(x)\right\}$ and $\left\{q_{n}^{*}(y)\right\}$, where $p_{n}^{*}(x)$ and $q_{n}^{*}(y)$ are defined by (26). Show that $\left\{H_{n}\right\}$ are positive linear operators and

$$
\begin{align*}
& H_{n}\left(f_{1} ; x, y\right)=p_{n}^{*}(x) \\
& H_{n}\left(f_{2} ; x, y\right)=q_{n}^{*}(x) \tag{28}
\end{align*}
$$

and

$$
H_{n}\left(f_{3} ; x, y\right)=\left\{\begin{array}{cc}
f_{3}(x, y), \quad n \in K \tag{29}\\
0, & \text { otherwise }
\end{array}\right.
$$

where K is any subset of \mathbb{N} such that $\delta_{A}(K)=1$.
Since $\delta_{A}(K)=1$, it is clear that

$$
\begin{equation*}
s t_{A}-\lim _{n} H_{n}\left(f_{3} ; x, y\right)=f_{3}(x, y) \tag{30}
\end{equation*}
$$

uniformly on E.
Relations (3), (27), (28) and (29) and Theorem 1 yield the following:
Theorem 7. Let $A=\left(a_{n k}\right)$ be a non-negative regular summability matrix. $\left\{H_{n}\right\}$ denotes the sequence of positive linear operators given by (2) with $\left\{u_{n}(x)\right\}$ and $\left\{v_{n}(y)\right\}$ replaced by $\left\{p_{n}^{*}(x)\right\}$ and $\left\{q_{n}^{*}(y)\right\}$, where $p_{n}^{*}(x)$ and $q_{n}^{*}(y)$ are defined by (26). Then

$$
s t_{A}-\lim _{n} H_{n}(f ; x, y)=f(x, y)
$$

uniformly on E.
We note that $\left\{H_{n}\right\}$ is the sequence of positive linear operators given by (2) with $\left\{u_{n}(x)\right\}$ and $\left\{v_{n}(y)\right\}$ replaced by $\left\{p_{n}^{*}(x)\right\}$ and $\left\{q_{n}^{*}(y)\right\}$, where $p_{n}^{*}(x)$ and $q_{n}^{*}(y)$ are defined by (26) which does not satisfy the condition of the Theorem 2.

References

[1] P. N. Agrawal, H. S. Kasana, On simultaneous approximation by Szász-Mirakjan operators, Bull. Inst. Math. Acad. Sinica 22(1994), 181-188.
[2] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Application, Walter de Gruyter \& Co., Berlin, 1994.
[3] C. Bardaro, P.L.Butzer, R.L.Stens, G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis (Munich) 23(2003), 299-340.
[4] O. Duman, C. Orhan, An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen 69(2006), 33-46.
[5] O. Duman, M. A. Özarslan, Szasz-Mirakjan type operators providing a better error estimation, Appl. Math. Lett. 20(2007), 1184-1188.
[6] E. Erkuş, O. Duman, A Korovkin type approximation theorem in statistical sense, Studia Sci. Math. Hungarica 43(2006), 285-294.
[7] H. FAst, Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
[8] J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl. 23(1944), 219-247.
[9] A. R. Freedman, J. J. Sember, Densities and summability, Pacific J. Math. 95(1981), 293-305.
[10] J. A. Fridy, On statistical convergence, Analysis 5(1985),301-313.
[11] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(2002), 129-138.
[12] G. H. Hardy, Divergent series, Oxford Univ. Press, London, 1949.
[13] J. P. King, Positive linear operators which preserve x^{2}, Acta Math. Hungar. 99(2003), 203-208.
[14] P. P. Korovkin, Linear operators and the theory of approximation, Hindustan Publ. Corp., New Delhi, 1960.
[15] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13(1993), 77-83.
[16] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2(1951), 73-74.

[^0]: *Corresponding author. Email addresses: fgezer@sinop.edu.tr (F. Dirik), kamild@sinop.edu.tr (K. Demirci)

