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Fadime Dirik1,∗and Kamil Demirci1

1 Department of Mathematics, Faculty of Arts and Sciences, Sinop University, TR-57 000
Sinop, Turkey

Received July 6, 2009; accepted December 26, 2009

Abstract. In this paper, we introduce a modification of the Szász-Mirakjan type opera-
tors of two variables which preserve f0 (x, y) = 1 and f3 (x, y) = x2 + y2. We prove that
this type of operators enables a better error estimation on the interval [0,∞) × [0,∞)
than the classical Szász-Mirakjan type operators of two variables. Moreover, we prove a
Voronovskaya-type theorem and some differential properties for derivatives of these mod-
ified operators. Finally, we also study statistical convergence of the sequence of modified
Szász-Mirakjan type operators.
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1. Introduction

Most of the approximating operators, Ln, preserve fi (x) = xi, (i = 0, 1), Ln(f0; x)
= f0(x), Ln(f1; x) = f1(x), n ∈ N, but Ln(f2; x) 6= f2(x) = x2. Especially, these
conditions hold for the Bernstein polynomials and the Szász-Mirakjan type operators
[1, 2, 3, 14]. Recently, King [13] presented a non-trivial sequence of positive linear
operators defined on the space of all real-valued continuous functions on [0, 1] which
preserves the functions f0 and f2. Duman and Orhan [4] have studied King’s results
using the concept of statistical convergence. Recently, Duman and Özarslan [5]
have investigated some approximation results on the Szász-Mirakjan type operators
preserving f2 (x) = x2.

Functions f0 (x, y) = 1, f1 (x, y) = x and f2 (x, y) = y are preserved by most of
approximating operators of two variables, Ln, i.e., Ln(f0; x, y) = f0(x, y), Ln(f1;x, y)
= f1(x, y) and Ln(f2; x, y) = f2(x, y), n ∈ N, but Ln(f3; x, y) 6= f3(x, y) = x2 +y2.
In this paper, we give a modification of the well-known Szász-Mirakjan type opera-
tors of two variables and show that this modification preserving f0 (x, y) and f3 (x, y)
has a better estimation than the classical Szász-Mirakjan of two variables. Also, we
obtain a Voronovskaya-type theorem and some differential properties of these mod-
ified operators. Finally, we study A-statistical convergence of this modification.

By C (D) we denote the space of all continuous real valued functions on D where
D = [0,∞) × [0,∞). By E2 we denote the space of all functions f : D → R of
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exponential type where R is the disk with |z| < R, R > 1. More precisely, f ∈ E2

if and only if there are three positive finite constants c, d and α with the property
|f(x, y)| ≤ αecx+dy. Let L be a linear operator from C (D) ∩ E2 into C (D) ∩ E2.
Then, as usual, we say that L is a positive linear operator provided that f ≥ 0
implies L(f) ≥ 0. Also, we denote the value of L(f) of a point (x, y) ∈ D by
L(f ; x, y).

Now fix a, b > 0. For proving our approximation results we use lattice homo-
morphism Ha,b maps C (D) ∩ E2 into C (E) ∩ E2 defined by Ha,b (f) = f |E where
E = [0, a]× [0, b] and f |E denote the restriction of the domain f to the interval E.
C (E) space is equipped with the supremum norm

‖f‖ = sup
(x,y)∈E

|f (x, y)| , (f ∈ C(E)) .

Following the paper by Erkuş and Duman [6], one can obtain the next Korovkin-type
approximation result in a statistical sense (see the last for the basic properties of
statistical convergence).

Theorem 1. Let A = (ank) be a non-negative regular summability matrix. Let {Ln}
be a sequence of positive linear operators acting from C (D)∩E2 into itself. Assume
that the following conditions hold:

stA − lim
n

Ln (fi; x.y) = fi (x, y) , uniformly on E, i = 0, 1, 2, 3,

where f0 (x, y) = 1, f1 (x, y) = x, f2 (x, y) = y and f3 (x, y) = x2 + y2. Then, for all
f ∈ C (D) ∩ E2, we have

stA − lim
n

Ln (f ; x.y) = f (x, y) , uniformly on E.

2. Construction of operators

The double Szász-Mirakjan was introduced by Favard [8]:

Sn(f ; x, y) = e−nxe−ny
∞∑

s=0

∞∑
t=0

f

(
s

n
,

t

n

)
(nx)s

s!
(ny)t

t!
, (1)

where (x, y) ∈ D; f ∈ C (D) ∩ E2. It is clear that

Sn(f0; x, y) = f0(x, y),
Sn(f1; x, y) = f1(x, y),
Sn(f2; x, y) = f2(x, y),

Sn(f3; x, y) = f3(x, y) +
x

n
+

y

n
.

Then, we observe that Sn (fi) → fi uniformly on E, where i = 0, 1, 2, 3. If we replace
matrix A by identity matrix in Theorem 1, then we immediately get classical result.
Hence, for Sn operators given by (1), we have for all f ∈ C (D) ∩ E2,

lim
n

Sn (f ; x, y) = f (x, y) , uniformly on E.
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Let {un (x)} and {vn (y)} be two sequences of exponential-type continuous func-
tions defined on interval [0,∞) with 0 ≤ un (x) < ∞, 0 ≤ vn (y) < ∞ . Let

Hn(f ;x, y) = Sn(f ;un (x) , vn (y))

= e−nun(x)e−nvn(y)
∞∑

s=0

∞∑
t=0

f

(
s

n
,

t

n

)
(nun (x))s

s!
(nvn (y))t

t!
(2)

for f ∈ C (D)∩E2. Hence, in the special case un (x) = x and vn (y) = y, n = 1, 2, ...
reduce to classical Szász-Mirakjan type operators given by (1).

It is clear that Hn are positive and linear. Also, we have

Hn(f0;x, y) = f0(x, y),
Hn(f1;x, y) = un (x) ,

Hn(f2;x, y) = vn (y) ,

Hn(f3;x, y) = u2
n (x) + v2

n (y) +
un (x)

n
+

vn (y)
n

, (3)

Now, the following result follows immediately from Theorem 1 for the case A = I,
the identity matrix.

Theorem 2. Let Hn denote the sequence of positive linear operators given by (2).
If

lim
n

un (x) = x, lim
n

vn (y) = y, uniformly on E,

then, for all f ∈ C (D) ∩ E2,

lim
n

Hn (f ;x, y) = f (x, y) ,uniformly on E.

Furthermore, we present the sequence {Hn} of positive linear operators defined
on C (D) ∩ E2 that preserve f0 (x) and f3 (x).

It is obvious that if we replace un (x) and vn (y) by u∗n (x) and v∗n (y) defined as

u∗n (x) =
−1 +

√
1 + 4n2x2

2n
, v∗n (y) =

−1 +
√

1 + 4n2y2

2n
, n = 1, 2, ..., (4)

then we obtain

Hn (f3; x, y) = f3 (x, y) = x2 + y2, n = 1, 2, .... (5)

Simple calculations show that for u∗n (x) and v∗n (y) given by (4),

u∗n (x) ≥ 0, v∗n (y) ≥ 0, n = 1, 2, ..., x, y ∈ [0,∞) . (6)

It is clear that

lim
n

u∗n (x) = x, lim
n

v∗n (y) = y, uniformly on E.
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3. Comparison with Szász-Mirakjan type operators

In this section, we compute the rates of convergence of operators Hn (f ; x, y) to
f (x, y) by means of the modulus of continuity. Thus, we show that our estimations
are more powerful than the operators given by (1) on the interval D.

By CB (D) we denote the space of all continuous and bounded functions on D.
For f ∈ CB (D)∩E2, the modulus of continuity of f , denoted by ω (f ; δ), is defined
to be

ω (f ; δ) = sup
{
|f (u, v)− f (x, y)| :

√
(u− x)2 + (v − y)2 < δ, (u, v) , (x, y) ∈ D

}
.

Then it is clear that for any δ > 0 and each (x, y) ∈ D

|f (u, v)− f (x, y)| ≤ ω (f ; δ)




√
(u− x)2 + (v − y)2

δ
+ 1


 .

After some simple calculations, for any sequence {Ln} of positive linear operators
on CB (D) ∩ E2, for f ∈ CB (D) ∩ E2, we can write

|Ln (f ; x, y)− f (x, y)| ≤ ω (f ; δ)
{

1 +
1
δ2

Ln

(
(u− x)2 + (v − y)2 ;x, y

)

+ |Ln (f0;x, y)− f0 (x, y)|} (7)
+ |f (x, y)| |Ln (f0; x, y)− f0 (x, y)| .

Now we have the following:

Theorem 3. If Hn is defined by (2), then for (x, y) ∈ D and any δ > 0, we have

|Hn (f ;x, y)− f (x, y)| ≤ ω (f, δ)
{

1 +
1
δ2

(
2(x2 + y2)− 2xHn (f1; x, y)

−2yHn (f2; x, y))
}

(8)

where Hn (f1; x, y) = u∗n (x) and Hn (f2; x, y) = v∗n (y) is given by (4).

Proof. Now, let f ∈ CB (D) ∩ E2. Using linearity and monotonicity Hn and from
(7), the proof is complete.

Furthermore, when (8) holds,

2(x2 + y2)− 2xHn (f1;x, y)− 2yHn (f2;x, y) ≥ 0 for (x, y) ∈ D.

Remark 1. For the Szász-Mirakjan type operators given by (1), from (7) we may
write that for every f ∈ CB (D) ∩ E2, n ∈ N,

|Sn (f ;x, y)− f (x, y)| ≤ ω (f, δ)
{

1 +
1
δ2

(x

n
+

y

n

)}
. (9)
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Estimate (8) is better than estimate (9) if and only if

2(x2 + y2)− 2xHn (f1; x, y)− 2yHn (f2; x, y) ≤ x

n
+

y

n
, (x, y) ∈ D. (10)

Thus, the order of approximation towards a function f ∈ CB (D) ∩E2 given by the
sequence Hn will be at least as good as that of Sn whenever the following function
φn (x, y) is non-negative:

φn (x, y) =
x

n
+

y

n
+ 2xHn (f1;x, y) + 2yHn (f2; x, y)− 2

(
x2 + y2

)

= 2x

√
x2 +

1
4n2

+ 2y

√
y2 +

1
4n2

− 2
(
x2 + y2

)
,

where

Hn (f1; x, y) = u∗n (x) =
−1 +

√
1 + 4n2x2

2n
and

Hn (f2;x, y) = v∗n (y) =
−1 +

√
1 + 4n2y2

2n
.

Since

2x

√
x2 +

1
4n2

≥ 2x2, for x ≥ 0,

2y

√
y2 +

1
4n2

≥ 2y2, for y ≥ 0,

(10) holds for every x, y ≥ 0 and n ∈ N. Therefore, our estimations are more
powerful than the operators given by (1) on the interval D.

4. A Voronovskaya-type theorem

In this section, as in [5], we prove a Voronovskaya-type theorem for the operators
Hn given by (2) with {un (x)} and {vn (y)} replaced by {u∗n (x)} and {v∗n (y)} ,where
u∗n (x) and v∗n (y) are defined by (4).

Lemma 1. Let x, y ∈ [0,∞). Then, we get

lim
n

n2Hn

(
(u− x)4 ;x, y

)
= 3x2, uniformly on E, (11)

and

lim
n

n2Hn

(
(v − y)4 ; x, y

)
= 3y2, uniformly on E. (12)

Proof. We shall prove only (11) because the proof of (12) is similar. After some
simple calculations, we can write from (11) that

n2Hn

(
(u− x)4 ; x, y

)
= − 4nx3

2nx +
√

1 + 4n2x2
+

2x2

2nx +
√

1 + 4n2x2

+2x

(
−1 +

√
1 + 4n2x2

n

)
+

(
1−√1 + 4n2x2

2n2

)
.
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Now taking the limit as n →∞ on both sides of the above equality we get

lim
n

n2Hn

(
(u− x)4 ;x, y

)
= −x2 + 0 + 4x2 + 0 = 3x2

unifomly with respect to x ∈ [0,∞). The proof is complete.

Theorem 4. For every f ∈ C (D)∩E2 such that fx, fy, fxx, fxy, fyy ∈ C (D)∩E2,
we have

lim
n

n {Hn (f ; x, y)− f (x, y)} =
1
2
{xfxx (x, y) + yfyy (x, y)− fx (x, y)− fy (x, y)} ,

uniformly on E.

Proof. Let (x, y) ∈ D and fx, fy, fxx, fxy, fyy ∈ C (D)∩E2. We define the function
φ: if (u, v) 6= (x, y), then

φ(x,y) (u, v) =
1√

(u− x)4 + (v − y)4

{
f (u, v)−

2∑

i=0

1
i!

(fx (x, y) (u− x)

+fy (x, y) (v − y))(i)
}

,

else φ(x,y) (u, v) = 0. g(i) is a derivative of function g for i = 0, 1, 2. It is not hard
to see that φ(x,y) (., .) ∈ C (D) ∩ E2. By the Taylor formula for f ∈ C (D) ∩ E2, we
have

f (u, v) = f (x, y) + fx (x, y) (u− x) + fy (x, y) (v − y) +
1
2

{
fxx (x, y) (u− x)2

+2fxy (x, y) (u− x) (v − y) + fy (x, y) (v − y)2
}

+φ(x,y) (u, v)
√

(u− x)4 + (v − y)4.

Since the operator Hn is linear, we obtain

n {Hn (f ; x, y)− f (x, y)} = fx (x, y)n (u∗n (x)− x) + fy (x, y)n (v∗n (y)− y)

+
1
2

{
fxx (x, y) n

(
2x2 − 2xu∗n (x)

)

+2fxy (x, y)n (x− u∗n (x)) (y − v∗n (y))
+fyy (x, y)n

(
2y2 − 2yv∗n (y)

)}

+nHn

(
φ(x,y)(u, v)

√
(u− x)4 + (v − y)4; x, y

)
. (13)

Applying the Cauchy-Schwarz inequality for the last term on the right-hand side of
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(13), we get
∣∣∣∣nHn

(
φ(x,y) (u, v)

√
(u− x)4 + (v − y)4;x, y

)∣∣∣∣

≤
(
Hn

(
φ2

(x,y) (u, v) ; x, y
))1/2 (

Hn

(
(u− x)4 + (v − y)4 ;x, y

))1/2

=
(
Hn

(
φ2

(x,y) (u, v) ; x, y
))1/2 (

Hn

(
(u− x)4 ; x, y

)

+Hn

(
(v − y)4

)
; x, y

)1/2

. (14)

Let η(x,y) (u, v) = φ2
(x,y) (u, v). In this case, observe that η(x,y) (x, y) = 0 and

η(x,y) (., .) ∈ C (D) ∩ E2. From Theorem 1 for A = I, which is the identity ma-
trix,

lim
n

Hn

(
φ2

(x,y) (u, v) ; x, y
)

= lim
n

Hn

(
η(x,y) (u, v) ; x, y

)

= η(x,y) (x, y) = 0, (15)

uniformly on E. Using (15) and Lemma 1, from (14) we obtain

lim
n

nHn

(
φ(x,y) (u, v)

√
(u− x)4 + (v − y)4; x, y

)
= 0, (16)

uniformly on E. Also, observe that by (4)

lim
n

n (u∗n (x)− x) = −1
2
,

lim
n

n (v∗n (y)− y) = −1
2
,

lim
n

n
(
2x2 − 2xu∗n (x)

)
= x,

lim
n

n
(
2y2 − 2yv∗n (y)

)
= y.

lim
n

n (u∗n (x)− x) (v∗n (y)− y) = 0. (17)

Then, taking limit as n →∞ in (13) and using (16) and (17), we have

lim
n

n {Hn (f ; x, y)− f (x, y)} =
1
2
{xfxx (x, y) + yfyy (x, y)

−fx (x, y)− fy (x, y)} ,

uniformly on E.

Theorem 5. For every f ∈ C (D) ∩ E2 such that fx, fy ∈ C (D) ∩ E2, we have

lim
n

∂

∂x
Hn (f ; x, y) =

∂f

∂x
(x, y) , x 6= 0, uniformly on E, (18)

lim
n

∂

∂y
Hn (f ; x, y) =

∂f

∂y
(x, y) , y 6= 0, uniformly on E. (19)
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Proof. We shall prove only (18) because the proof of (19) is identical. Let (x, y) ∈ D
and fx, fy ∈ C (D)∩E2. From (2) with {un (x)} and {vn (y)} replaced by {u∗n (x)}
and {v∗n (y)}, where u∗n (x) and v∗n (y) are defined by (4), we obtain

∂

∂x
Hn (f ; x, y) = − 2n2x√

1 + 4n2x2
e−nu∗n(x)e−nv∗n(y)

∞∑
s=0

∞∑
t=0

f

(
s

n
,

t

n

)

× (nu∗n (x))s

s!
(nv∗n (y))t

t!
+

4n3x

1 + 4n2x2 −√1 + 4n2x2
e−nu∗n(x)

×e−nv∗n(y)
∞∑

s=0

∞∑
t=0

s

n
f

(
s

n
,

t

n

)
(nu∗n (x))s

s!
(nv∗n (y))t

t!

= − 2n2x√
1 + 4n2x2

Hn (f (u, v) ; x, y) +
4n3x

1 + 4n2x2 −√1 + 4n2x2

×Hn (uf (u, v) ; x, y) . (20)

Define the function η by

η(x,y) (u, v) =

{
f(u,v)−f(x,y)−fx(x,y)(u−x)−fy(x,y)(v−y)√

(u−x)2+(v−y)2
, (u, v) 6= (x, y) ,

0 , (u, v) = (x, y) .

Then by assumption we get η(x,y) (x, y) = 0 and η(x,y) (., .) ∈ C (D) ∩ E2. By the
Taylor formula for f ∈ C (D) ∩ E2, we have

f (u, v) = f (x, y) + fx (x, y) (u− x) + fy (x, y) (v − y)

+η(x,y) (u, v)
√

(u− x)2 + (v − y)2.

Since the operator Hn is linear, we obtain

∂

∂x
Hn (f ; x, y) = fx (x, y) (x− u∗n (x))

2n2x + n
√

1 + 4n2x2 + n√
1 + 4n2x2

− 2n2x√
1 + 4n2x2

Hn

(
η(x,y) (u, v)

√
(u− x)2 + (v − y)2; x, y

)

+
4n3x

1 + 4n2x2 −√1 + 4n2x2

×Hn

(
uη(x,y) (u, v)

√
(u− x)2 + (v − y)2; x, y

)

= fx (x, y) (x− u∗n (x))
2n2x + n

√
1 + 4n2x2 + n√

1 + 4n2x2

+
4n3x

1 + 4n2x2 −√1 + 4n2x2
(21)

×Hn

(
(u− u∗n (x)) η(x,y) (u, v)

√
(u− x)2 + (v − y)2; x, y

)
.
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By the Cauchy-Schwarz inequality, we get

n

∣∣∣∣Hn

(
(u− u∗n (x)) η(x,y) (u, v)

√
(u− x)2 + (v − y)2; x, y

)∣∣∣∣

≤
(
Hn

(
η2
(x,y) (u, v) ; x, y

))1/2

·
(
n2Hn

(
(u− u∗n (x))2 (u− x)2

+ (u− u∗n (x))2 (v − y)2 ; x, y
))1/2

=
(
Hn

(
η2
(x,y) (u, v) ; x, y

))1/2

·
{

n2Hn

(
(u− u∗n (x))2 (u− x)2 ;x, y

)

+Hn

(
(u− u∗n (x))2 (v − y)2 ;x, y

)}1/2

. (22)

Let φ(x,y) (u, v) = η2
(x,y) (u, v). In this case, observe that φ(x,y) (x, y) = 0 and

φ(x,y) (., .) ∈ C (D) ∩ E2. From Theorem 1, we have

lim
n

Hn

(
η2
(x,y) (u, v) ; x, y

)
= lim

n
Hn

(
φ(x,y) (u, v)

)

= φ(x,y) (x, y) = 0, (23)

uniformly on E. We also obtain

lim
n

n2Hn

(
(u− u∗n (x))2 (v − y)2 ; x, y

)
= xy,

lim
n

n2Hn

(
(u− u∗n (x))2 (u− x)2 ; x, y

)
= 4x4 − 2x3 − 2x2. (24)

Using (23) and (24), from (22) we obtain

lim
n

n

∣∣∣∣Hn

(
(u− u∗n (x)) η(x,y) (u, v)

√
(u− x)2 + (v − y)2;x, y

)∣∣∣∣ = 0, (25)

uniformly on E. Since

lim
n

(x− u∗n (x))
2n2x + n

√
1 + 4n2x2 + n√

1 + 4n2x2
= 1,

considering (25) in (22), we have

lim
n

∂

∂x
Hn (f ;x, y) =

∂f

∂x
(x, y) , x 6= 0,

uniformly on E. So the proof is completed.

5. A-statistical convergence

Gadjiev and Orhan [11] have investigated the Korovkin-type approximation theory
via statistical convergence. In this section, using the concept of A-statistical con-
vergence, we give the Korovkin-type approximation theorem for Hn operators given
by (2).
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Now, we first recall the concept of A-statistical convergence.
Let A = (ank) be an infinite summability matrix. For a given sequence x := (xk),

the A-transform of x, denoted by Ax := ((Ax)n), is given by

(Ax)n =
∞∑

k=1

ankxk,

provided the series converges for each n ∈ N. We say that A is regular if limn(Ax)n

= L whenever limn xn = L [12]. Assume that A is a non-negative regular summa-
bility matrix. Then x = (xn) is said to be A-statistically convergent to L if, for every
ε > 0, lim

n

∑
k∈N:|xk−L|≥ε

ankxk = 0, which is denoted by stA − lim
n

xn = L [9] (see also

[15]). We note that by taking A = C1, the Cesáro matrix, A-statistical convergence
reduces to the concept of statistical convergence (see [7, 10, 16] for details). If A
is the identity matrix, then A-statistical convergence coincides with the ordinary
convergence. It is not hard to see that every convergent sequence is A-statistically
convergent.

For example, for A = C1, the Cesáro matrix and the sequence x = (xn) defined
as

xn =
{

1, if n is square,
0, otherwise,

it is easy to see that stC1 − lim
n

xn = 0.

The Korovkin-type approximation theorem is given by Theorem 1 as follows:

Theorem 6. Let A = (ank) be a non-negative regular summability matrix. Let Hn

denote the sequence of positive linear operators given by (2). If

stA − lim
n

un (x) = x, stA − lim
n

vn (y) = y, uniformly on E,

then, for all f ∈ C (D) ∩ E2,

stA − lim
n

Hn (f ; x, y) = f (x, y) , uniformly on E.

Now, we choose a subset K of N such that δA (K) = 1. Define the function
sequence {p∗n} and {q∗n} by

p∗n (x) =
{

0, n /∈ K
u∗n (x) , n ∈ K

, q∗n (y) =
{

0, n /∈ K
v∗n (y) , n ∈ K

(26)

where u∗n (x) and v∗n (y) is given by (4).
It is clear that p∗n and q∗n are continuous and exponential-type on [0,∞) and

stA − lim
n

u∗n (x) = x, stA − lim
n

v∗n (y) = y (27)

uniformly on E.
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We turn to {Hn} given by (2) with {un (x)} and {vn (y)} replaced by {p∗n (x)}
and {q∗n (y)}, where p∗n (x) and q∗n (y) are defined by (26). Show that {Hn} are
positive linear operators and

Hn (f1; x, y) = p∗n (x)
Hn (f2; x, y) = q∗n (x) (28)

and

Hn (f3;x, y) =
{

f3 (x, y) , n ∈ K,
0, otherwise, (29)

where K is any subset of N such that δA (K) = 1.
Since δA (K) = 1, it is clear that

stA − lim
n

Hn (f3; x, y) = f3 (x, y) , (30)

uniformly on E.
Relations (3), (27), (28) and (29) and Theorem 1 yield the following:

Theorem 7. Let A = (ank) be a non-negative regular summability matrix. {Hn}
denotes the sequence of positive linear operators given by (2) with {un (x)} and
{vn (y)} replaced by {p∗n (x)} and {q∗n (y)} , where p∗n (x) and q∗n (y) are defined by
(26). Then

stA − lim
n

Hn (f ; x, y) = f (x, y) ,

uniformly on E.

We note that {Hn} is the sequence of positive linear operators given by (2) with
{un (x)} and {vn (y)} replaced by {p∗n (x)} and {q∗n (y)}, where p∗n (x) and q∗n (y) are
defined by (26) which does not satisfy the condition of the Theorem 2.
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