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Abstract. In this paper we prove the existence of coincidence points and common fixed
points for a large class of almost contractions in cone metric spaces. These results generalize,
extend and unify several well-known recent related results in literature.
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1. Introduction

In a very recent paper [19], the authors established some fixed point theorems in
cone metric spaces, an ambient space which is obtained by replacing the real axis
in the definition of the distance, by an ordered real Banach space whose order is
induced by a normal cone P .

Thereafter, Abbas and Jungck [1] used this setting as ambient space in order to
formulate and prove several common fixed point theorems that extend well-known
fixed point theorems for contractive type mappings from the case of usual metric
spaces. In direct relation to these results, in [26] the authors pointed out that all
the fixed point theorems, established in [19] for the case of a cone metric space
ordered by a normal cone P with a normal constant K, could be formulated and
proved in a more general case of a cone metric space. Moreover, they presented
several interesting and useful facts about normal and regular cones, illustrated with
appropriate examples.

On the other hand, the author [13] obtained coincidence and common fixed point
theorems, similar to the ones in [1], but for a more general class of almost contrac-
tions, by restricting the ambient space to the case of usual metric spaces.

Although in view of the very recent paper by Du [16], the category of cone metric
spaces and that of metric spaces are the same, reviewing some results in cone metric
spaces is interesting yet, especially the existence of maximum and minimum.

It is therefore the main aim of the present paper to extend and unify all the
results in [19, 1, 13, 14, 26], in view of the important considerations from [26]. To
this end, we present in the next two sections some definitions and basic results that
will be needed to state and prove our main results.
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For other very recent fixed point and common fixed point results in cone metric
spaces, we also refer to [2, 3, 17, 18, 22, 25, 27, 28, 36].

2. Preliminaries

Definition 1. Let E be a real Banach space and P a subset of E. P is called a
cone if

(i) P is closed, nonempty and P 6= {0};
(ii) ax + by ∈ P for all x, y ∈ P and nonnegative real numbers a, b;

(iii) P ∩ (−P ) = {0}.
Note also that the relations intP + intP ⊆ intP and λintP ⊆ intP (λ > 0) hold.
For a given cone P ⊆ E, we can define on E a partial ordering ≤ with respect

to P by putting x ≤ y if and only if y − x ∈ P . Further, x < y stands for x ≤ y
and x 6= y, while x ¿ y stands for y− x ∈ int P , where as usually int P denotes the
interior of P .

Definition 2. Let X be a non-empty set. A mapping d : X ×X → E satisfying

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X,

is called a cone metric on X, while (X, d) is called a cone metric space.

Note that in papers [5] and [6] these notions were termed as “generalized metric”
and “generalized metric space”, respectively.

Definition 3. Let (X, d) be a cone metric space, x ∈ X and {xn}n≥1 a sequence in
X. Then

(i) {xn}n≥1 converges to x whenever for every ε ∈ E with 0 ¿ ε, there is a
natural number N such that d(xn, x) ¿ ε for all n ≥ N . We denote this by
lim

n→∞
xn = x or xn → x, as in the usual case.

(ii) {xn}n≥1 is a Cauchy sequence whenever for every ε ∈ E with 0 ¿ ε there is a
natural number N such that d(xn+p, xn) ¿ ε for all n ≥ N and all p;

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 4 (see [1]). Let S and T be selfmaps of a nonempty set X. If there exists
x ∈ X such that Sx = Tx then x is called a coincidence point of S and T , while
y = Sx = Tx is called a point of coincidence of S and T . If Sx = Tx = x, then x
is a common fixed point of S and T .

Definition 5 (see [21]). Let S and T be selfmaps of a nonempty set X. The pair
of mappings S and T is said to be weakly compatible if they commute at their coin-
cidence points.
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The next Proposition, which is given in [1] as Proposition 1.4, will be needed to
prove the last part of our main result.

Proposition 1. Let S and T be weakly compatible selfmaps of a nonempty set X.
If S and T have a unique point of coincidence y = Sx = Tx, then y is the unique
common fixed point of S and T .

3. Some classical fixed point theorems

The classical Banach’s contraction principle is one of the most useful results in
nonlinear analysis. In a metric space setting its statement is given by the next
theorem.
Theorem B. Let (X, d) be a complete metric space and T : X −→ X a map
satisfying

d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X , (1)

where 0 ≤ a < 1 is constant. Then:

(p1) T has a unique fixed point x∗ in X;

(p2) The Picard iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . . (2)

converges to x∗, for any x0 ∈ X.

(p3) The following estimate holds:

d(xn+i−1, x
∗) ≤ ai

1− a
d(xn, xn−1) , n = 0, 1, 2, . . . , i = 1, 2, . . . (3)

(p4) The rate of convergence of Picard iteration is given by

d(xn, x∗) ≤ a d(xn−1, x
∗) , n = 1, 2, . . . (4)

3.1. Remarks

Theorem B has many applications in solving nonlinear equations. Its merit is not
only to state the existence and uniqueness of the fixed point of the strict contraction
T but also to show that the fixed point can be approximated by means of Picard
iteration (2). Moreover, for this iterative method both a priori

d(xn, x∗) ≤ an

1− a
d(x0, x1) , n = 0, 1, 2, . . .

and a posteriori

d(xn, x∗) ≤ a

1− a
d(xn, xn−1) , n = 0, 1, 2, . . . , i = 1, 2, . . .

error estimates are available, which are both contained in (3).



232 V.Berinde

Despite these important features, Theorem B suffers from one drawback - the
contractive condition (1) forces T be continuous on X.

It was then natural to ask if there exist or not weaker contractive conditions
which do not imply the continuity of T . This was answered in the affirmative by R.
Kannan [23] in 1968, who proved a fixed point theorem which extends Theorem B to
mappings that need not be continuous on X (but are continuous at their fixed point,
(see [31]), by considering instead of (1) the next condition: there exists b ∈ [0, 1/2)
such that

d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X . (5)

Following the Kannan’s theorem, a lot of papers were devoted to obtaining fixed
point theorems or common fixed point theorems for various classes of contractive
type conditions that do not require the continuity of T , see for example, [32, 33, 10]
and the references therein.

One of them, actually a sort of dual of the Kannan fixed point theorem, due to
Chatterjea [15], is based on a condition similar to (5): there exists c ∈ [0, 1/2) such
that

d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X. (6)

For a presentation and comparison of such kind of fixed point theorems, see
[29, 30, 24, 7].

These fixed point results were then complemented by corresponding results re-
garding the existence of common fixed points of such contractive type mappings.
So, Jungck [20] proved in 1976 a common fixed point theorem for commuting maps,
thus generalizing Theorem B. In the same spirit, very recently M. Abbas and G.
Jungck [1], obtained coincidence and common fixed point theorems for the class
of Banach contractions, Kannan contractions and Chatterjea contractions in cone
metric spaces with a normal cone, without making use of the commutative property,
but based on the so called concept of weakly compatible mappings, introduced by
Jungck [21].

On the other hand, in 1972, Zamfirescu [35] obtained a very interesting fixed
point theorem, by combining the contractive conditions (1) of Banach, (5) Kannan
and (6) Chatterjea.

Note that, as shown later by Rhoades [29], the contractive conditions (1), (5)
and (6) are independent.

The Zamfirescu fixed point theorem has been further extended to almost con-
tractions [8], a class of contractive type mappings which exhibits totally different
features than the ones of the particular results incorporated, i.e., an almost contrac-
tion generally does not have a unique fixed point, see Example 1 in [8].

We give here the full statement of the main result from [8] in view of its extension
to coincidence and common fixed point theorems.

Theorem 1. Let (X, d) be a complete metric space and T : X → X an almost
contraction, that is, a mapping for which there exist a constant δ ∈ (0, 1) and some
L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (7)

Then
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1) F (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by (1.2) converges to some

x∗ ∈ F (T );

3) The following estimate holds

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . , i = 1, 2, . . . (8)

Starting from this background, it is the main aim of the next section to extend
and unify all the results in [19, 1, 13, 14, 26], in view of the important considerations
from [26].

4. Main results

In [1], the authors obtained three coincidence and common fixed point theorems,
corresponding to Banach contraction condition (Theorem 2.1), Kannan’s contrac-
tive condition (Theorem 2.3) and Chatterjea’s contractive conditon (Theorem 2.4),
respectively, in cone metric spaces with a normal cone P .

Then, the author [14] extended all the coincidence and common fixed point the-
orems in [1] to a more general class of discontinuous noncommuting mappings, and
in and [13] to almost contractions, by restricting the ambient space to the case of
usual metric spaces. We now establish the corresponding results from [1, 19, 13, 26],
in an arbitary cone metric space. Note that our technique of proof, adapted from
[13], is significantly different from the one used in [1].

We start this section by presenting a coincidence point theorem.

Theorem 2. Let (X, d) be a cone metric space and let T, S : X → X be two
mappings for which there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(Sx, Sy) + Ld(Sy, Tx) , for all x, y ∈ X . (9)

If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a coincidence point in X. Moreover, for any x0 ∈ X, the iteration
{Sxn} defined by (10) converges to some coincidence point x∗ of T and S.

Proof. Let x0 be an arbitrary point in X. Since T (X) ⊂ S(X), we can choose a
point x1 in X such that Tx0 = Sx1 Continuing in this way, for a xn in X, we can
find xn+1 ∈ X such that

Sxn+1 = Txn, n = 0, 1, . . . (10)

If x := xn, y := xn−1 are two successive terms of the sequence defined by (10),
then by (9) we have

d(Sxn, Sxn+1) = d(Txn−1, Txn) ≤ L · d(Sxn, Txn−1) + δ · d(Sxn−1, Sxn),

which in view of (10) yields d(Sxn, Txn−1) = 0 and hence

d(Sxn+1, Sxn) ≤ δ · d(Sxn, Sxn−1), n = 0, 1, 2 . . . . (11)
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Now by induction, from (11) we obtain

d(Sxn+k, Sxn+k−1) ≤ δk · d(Sxn, Sxn−1), n, k = 0, 1, . . . (k 6= 0), (12)

and then, for p > i, we get after straightforward calculations

d(Sxn+p, Sxn+i−1) ≤ δi(1− δp−i+1)
1− δ

· d(Sxn, Sxn−1), n ≥ 0, i ≥ 1. (13)

Take i = 1 (13). Then, by an inductive process, we get

d(Sxn+p, Sxn) ≤ δ

1− δ
· d(Sxn, Sxn−1) ≤ δn

1− δ
· d(Sx1, Sx0), n ≥ 0.

Let now 0 ¿ ε be given. Choose δ > 0 such that ε + Nδ(0) ⊂ P , where Nδ(0)
= {y ∈ E : ‖y‖ ≤ δ}. Also choose a natural number N1 such that

δn

1− δ
· d(Sx1, Sx0) ∈ Nδ(0), for all n ≥ N1.

Then
δn

1− δ
· d(Sx1, Sx0) ¿ ε, for all n ≥ N1

and hence

d(Sxn+p, Sxn) ≤ δ

1− δ
· d(Sxn, Sxn−1) ¿ ε, for all n ≥ N1 and all p,

which shows that {Sxn} is a Cauchy sequence.
Since S(X) is complete, there exists a x∗ in S(X) such that

lim
n→∞

Sxn+1 = x∗. (14)

We can find p ∈ X such that Sp = x∗. By (11) and (12) we further have

d(Sxn, Tp) = d(Txn−1, Tp) ≤ δd(Sxn−1, Sp) ≤ δn−1d(Sx1, Sp),

which shows that we also have

lim
n→∞

Sxn = Tp. (15)

By (14) and (15) it results now that Tp = Sp, that is, p is a coincidence point of T
and S (or x∗ is a point of coincidence of T and S).

Remark 1. Let us note that the coincidence point ensured by Theorem 2 is not
generally unique, see Example 1 in [8].

In order to obtain a common fixed point theorem from the coincidence Theorem 2,
we need the uniqueness of the coincidence point, which could be obtained by imposing
an additional contractive condition, similarly to (9).
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Theorem 3. Let (X, d) be a cone metric space and let T, S : X → X be two
mappings satisfying (9) for which there exist a constant θ ∈ (0, 1) and some L1 ≥ 0
such that

d(Tx, Ty) ≤ θ · d(Sx, Sy) + L1d(Sx, Tx) , for all x, y ∈ X . (16)

If the range of S contains the range of T and S(X) is a complete subspace of
X, then T and S have a unique coincidence point in X. Moreover, if T and S are
weakly compatible, then T and S have a unique common fixed point in X. In both
cases, for any x0 ∈ X, the iteration {Sxn} defined by (10) converges to the unique
common fixed point (coincidence point) x∗ of S and T .

Proof. By the proof of Theorem 2, we have that T and S have at least a point of
coincidence, say x∗ = Tp = Sp, p ∈ X. Now let us show that T and S actually have
a unique point of coincidence. Assume there exists q ∈ X such that Tq = Sq. Then,
by (16) we get

d(Sq, Sp) = d(Tq, Tp) ≤ 2δd(Sq, Tq) + δd(Sq, Tp) = δd(Sq, Sp)

which yields
(1− δ)d(Sq, Sp) ≤ 0.

As by definition, 0 ≤ d(Sq, Sp), that is, d(Sq, Sp) ∈ P , by the previous inequality
we obtain −d(Sq, Sp) ∈ P , since 1

1−δ > 0. This means that d(Sq, Sp) = 0, which
shows that Sq = Sp = x∗, that is T and S have a unique point of coincidence, x∗.

Now if T and S have are weakly compatible, by Proposition 1 it follows that x∗

is their unique common fixed point.

A stronger but simpler contractive condition that ensures the uniqueness of the
coincidence point and which actualy unifies (9) and (16), has been very recently
obtained by Babu et al. [4]. We state in the following the common fixed point
theorem corresponding to the fixed point result in [4].

Theorem 4. Let (X, d) be a cone metric space and let T, S : X → X be two
mappings for which there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty)≤δ ·d(Sx, Sy)+L min{d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)} ,(17)

for all x, y ∈ X. If the range of S contains the range of T and S(X) is a complete
subspace of X, then T and S have a unique coincidence point in X. Moreover, if T
and S are weakly compatible, then T and S have a unique common fixed point in X.
In both cases, for any x0 ∈ X, the iteration {Sxn} defined by (10) converges to the
unique common fixed point (coincidence point) x∗ of S and T .

Proof. If x := xn, y := xn−1 are two successive terms of the sequence defined by
(10), then by (17) we have

d(Sxn, Sxn+1) = d(Txn−1, Txn) ≤ δ · d(Sxn−1, Sxn) + L ·M,

where
M = min {d(Sxn, Txn), d(Sxn−1, Txn−1), d(Sxn, Txn−1),

d(Sxn−1, Txn)} = 0, since d(Sxn, Txn−1) = 0. The rest of the proof follows as in
the case of Theorem 3.
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5. Particular cases

1) If in (9) we have L ≡ 0, then by Theorem 2 we obtain a generalization of
Theorem 2.1 in [1]. If the cone metric space reduces to a usual metric space,
then by Theorem 2 we obtain Theorem 2 in [13] which, in turn, generalizes
the Jungck common fixed point [20];

2) If in Theorem 2, the cone P = R+, the nonnegative real semi-axis, then by
Theorem 2 we obtain the main result (Theorem 3) in [13];

3) Also note that by Theorem 2 we obtain a significant generalization of Theorem
2.8 in [26], which has been obtained there by imposing for the contractive
inequality (9) the very restrictive condition δ+L < 1. The following corollaries
are also obtained by our main results

Corollary 1. Let (X, d) be a cone metric space and let T, S : X → X be two
mappings for which there exist b ∈ [0, 1

2 ) such that for all x, y ∈ X,

d(Tx, Ty) ≤ b
[
d(Sx, Tx) + d(Sy, Ty)

]
.

If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a unique coincidence point in X. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X.
In both cases, the iteration {Sxn} defined by (10) converges to the unique (coinci-
dence) common fixed point x∗ of S and T , for any x0 ∈ X.

Corollary 2. Let (X, d) be a cone metric space and let T, S : X → X be two
mappings for which there exist c ∈ [0, 1

2 ) such that for all x, y ∈ X,

d(Tx, Ty) ≤ c
[
d(Sx, Ty) + d(Sy, Tx)

]
.

If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a unique coincidence point in X. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X.
In both cases, the iteration {Sxn} defined by (10) converges to the unique (coinci-
dence) common fixed point x∗ of S and T , for any x0 ∈ X.

By noting that Banach contraction condition does imply (9) (with L=0), by
Corollary 1, Corollary 2 and the similar result corresponding to condition (1), we
obtain the main result in [14].

Corollary 3. Let (X, d) be a cone metric space and let T, S : X → X be two
mappings for which there exist a ∈ [0, 1), b, c ∈ [0, 1

2 ) such that for all x, y ∈ X, at
least one of the following conditions is true:

(z1) d(Tx, Ty) ≤ a d(Sx, Sy),

(z2) d(Tx, Ty) ≤ b
[
d(Sx, Tx) + d(Sy, Ty)

]
,

(z3) d(Tx, Ty) ≤ c
[
d(Sx, Ty) + d(Sy, Tx)

]
.
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If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a unique coincidence point in X. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X.
In both cases, the iteration {Sxn} defined by (10) converges to the unique (coinci-
dence) common fixed point x∗ of S and T .

Several other results can be obtained as particular cases of our main results, see
[7, 9, 15, 23] and references therein.

6. An example

We present now a non-trivial example that illustrates how general and important
the result given by Theorem 2 in this paper is.

Note that all results established in this paper remain valid if we replace the
assumption “S(X) is a complete subspace of X” by “(X, d) is a complete metric
space”, which will be used in the following.

Example 1. Let E = R2 be a Euclidean plane, and

P = {(x, y) ∈ R2 : x, y ≥ 0}

its positive cone.
If we consider X = {(x, 0) ∈ R2 : 0 ≤ x ≤ 1} and define d : X ×X → P by

d((x, 0), (y, 0)) =
(
|x− y| , 1

2
|x− y|

)
, ∀(x, 0), (y, 0) ∈ X, (18)

then (X, d) is a complete cone metric space. Let T, S : X → X be defined by

T (x, 0) =





(
x

4
, 0

)
, 0 ≤ x <

2
3
,

(
2
3
, 0

)
,

2
3
≤ x ≤ 1

and

S(x, 0) =





(x, 0) , 0 ≤ x ≤ 2
3
,

(1, 0) ,
2
3

< x ≤ 1,

respectively.
We have T (X) = {(x, 0) : 0 ≤ x < 1/6} ∪ {(2/3, 0)} ⊂ {(x, 0) : 0 ≤ x ≤

2/3} ∪ {(1, 0)} = S(X). In order to show that S and T do satisfy the contractive
condition (9) in Theorem 2, let us denote

M1 = [0, 2/3)× [0, 2/3), M2 = [0, 2/3)× (2/3, 1],
M3 = [0, 2/3)× {2/3}, M4 = [2/3, 1]× [2/3, 1].
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Clearly, [0, 1]× [0, 1] = M1 ∪M2 ∪M3 ∪M4.
Case 1. (x, y) ∈ M1. In this case S and T satisfy (9). Indeed, by (9) we get

(∣∣∣x
4
− y

4

∣∣∣ ,
1
2

∣∣∣x
4
− y

4

∣∣∣
)
≤ a ·

(
|x− y| , 1

2
|x− y|

)
+ L ·

(∣∣∣y − x

4

∣∣∣ ,
1
2

∣∣∣y − x

4

∣∣∣
)

and both components reduce to the inequality
∣∣∣x
4
− y

4

∣∣∣ ≤ δ |x− y|+ L ·
∣∣∣y − x

4

∣∣∣ ,

which holds for all x, y ∈ [0, 2/3) and any constant L ≥ 0 if we simply take δ such
that δ ≥ 1/4.

Case 2. (x, y) ∈ M2. As T (x, 0) =
(x

4
, 0

)
, T (y, 0) =

(
2
3
, 0

)
and S(x, 0) = (x, 0),

S(y, 0) = (1, 0), in view of (18), condition (9) reduces to show that there exist the
constants δ and L, 0 ≤ δ < 1, and L ≥ 0, such that

∣∣∣∣
x

4
− 2

3

∣∣∣∣ ≤ δ |x− 1|+ L ·
∣∣∣1− x

4

∣∣∣ , ∀x ∈ [0,
2
3
). (19)

As for x ∈ [0,
2
3
) we have

∣∣∣∣
x

4
− 2

3

∣∣∣∣ ∈
(

1
2
,
2
3

]
and

∣∣∣1− x

4

∣∣∣ ∈
(

5
6
, 1

]
, in order to have

(19) fulfilled, it suffices to take L ≥ 4
5

and allow 0 ≤ δ < 1 be arbitrary.

Case 3. (x, y) ∈ M3. In this case, (9) reduces to show that there exist the constants
δ and L, 0 ≤ δ < 1, and L ≥ 0 such that

∣∣∣∣
x

4
− 2

3

∣∣∣∣ ≤ δ

∣∣∣∣x−
2
3

∣∣∣∣ + L ·
∣∣∣1− x

4

∣∣∣ , ∀x ∈ [0,
2
3
), (20)

which, by the previous case, is indeed satisfied for any 0 ≤ δ < 1 if we similarly take

L ≥ 4
5
.

Case 4. (x, y) ∈ M4. In this case (9) holds for any constants δ and L, 0 ≤ δ < 1,
and L ≥ 0, since its left hand-side is always equal to (0, 0).

By summarizing, we conclude that S and T satisfy the contractive condition (9)

in Theorem 2 with δ =
1
4

and L =
4
5
.

Hence, Theorem 2 applies and T and S have two common fixed points, namely
(0, 0) and (2/3, 0).

Remark 2. Note that T and S in Example 1 satisfy neither conditions (16) in
Theorem 3 and (17) in Theorem 3, nor the contractive conditions in Corollaries
1-3.

Let us check first for condition (16). In view of (18), for x = 0 and y =
2
3
,

condition (16) would require that there exist the constants θ and L1, with 0 < θ < 1
and L1 ≥ 0 such that:

∣∣∣∣0−
2
3

∣∣∣∣ ≤ θ

∣∣∣∣0−
2
3

∣∣∣∣ + L1 |0− 0| ,
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which yields the contradiction θ ≥ 1. Thus Theorem 2.1 in [1] does not apply to
Example 1.

T and S in Example 1 do not satisfy the contractive condition in Corrollary 1

either. Indeed, for x = 0 and y =
2
3

this condition would require the existence of a

constant b, 0 ≤ b < 1/2, such that
∣∣∣∣0−

2
3

∣∣∣∣ ≤ b

[
|0− 0|+

∣∣∣∣1−
2
3

∣∣∣∣
]

,

which obviously yields the contradiction 2 ≤ b < 1/2. Thus Corrollary 1 and Theo-
rem 2.3 in [1] do not apply to Example 1.

Moreover, T and S in Example 1 do not satisfy the contractive condition in

Corrollary 2. Indeed, for x =
2
3
− ε, ε > 0 and y =

2
3

this condition would require

the existence of a constant c, 0 ≤ c < 1/2, such that
∣∣∣∣

2
3 − ε

4
− 2

3

∣∣∣∣ ≤ c

[∣∣∣∣
2
3
− ε− 2

3

∣∣∣∣ +
∣∣∣∣
2
3
−

2
3 − ε

4

∣∣∣∣
]

,

which by letting ε → 0 obviously yields the contradiction 1 ≤ c < 1/2. Thus Corrol-
lary 2 and Theorem 2.4 in [1] do not apply to Example 1. As a direct consequence
of the arguments above, Corrollary 3 as well as Theorems 2 and 3 in [14] do not
apply to Example 1 either.
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