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An accurate SVD algorithm for 2 by 2 triangular matrices∗
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1 Faculty of Economics and Business, University of Zagreb, Kennedyjev trg 6, HR-10 000
Zagreb, Croatia

Received November 2, 2009; accepted March 20, 2010

Abstract. Using a fine accuracy analysis and the results from [9], a new accurate algorithm
for computing the singular value decomposition of 2 by 2 triangular matrices is constructed.
It is obtained by combining the new algorithm which is derived in [9] and the algorithm
which is coded as an xLASV2 computational routine of LAPACK. Relative error bounds
for the output data of the hybrid algorithm are equal to or smaller than the same bounds
for any of these two algorithms.
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1. Introduction

In [9] we have considered two algorithms for computing the singular value decom-
position (SVD) of 2 by 2 triangular matrices. First, we have shown how to modify
the Voevodin formulas [18, 6] for rotation angles in order to obtain a new accurate
algorithm. Using a subtle rounding error analysis, we have derived sharp accuracy
bounds for that algorithm. We have also made a similar rounding error analysis for
the algorithm coded as LAPACK computational routine xLASV2. The analysis uses
natural assumptions which fully comply with the IEEE floating point standard. It
expresses final errors as functions of the errors of some initial or intermediate quanti-
ties. This enables us to obtain very sharp error bounds for the case of a general and
of almost diagonal 2 by 2 triangular matrix. Although most of the error bounds for
the new algorithm (in [9] we named it KOGUL) are better than those for xLASV2,
we have noticed that it is possible to define a simple hybrid algorithm whose error
bounds will be better than or equal to those for the constituent algorithms.

In this paper we use accuracy results from [9] to construct a new hybrid highly
accurate algorithm. In [9] it has been shown that relative error bounds for the most
of the output parameters are smaller if KOGUL is used. Only one output parameter
has a smaller error bound, in a general case, if xLASV2 is used. The main idea
how to construct a new algorithm is simply to choose those parts of each algorithm
which compute the output data with a better relative accuracy. Thus, we only need
to find where this switching should occur. By simple operation count, we show that
the hybrid algorithm is as efficient as the original algorithms.
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Note that SVD algorithms for 2 by 2 triangular matrices are mostly used as core
algorithms for the Kogbetliantz method which is used for computing SVD of n by n
triangular matrices (see [12, 13, 10, 2, 1]). Kogbetliantz method is well understood.
Its asymptotic quadratic convergence is studied in [5, 17, 1, 7, 8, 15] while its global
convergence is proved in [4] and [3]. Its implementation details and parallelization
attempts can be found in [2] and [11]. What still remains to prove is its relative
accuracy. The first attempt in this direction was made in [16]. It is obvious that in
obtaining sharp accuracy bounds for the Kogbetliantz method, one has to use the
sharpest available error bounds for the output data of the core algorithm. And here
the results of this paper come into play.

This paper is closely related to [9]. We use the same notation (without intro-
ducing it) and the same technique of the proofs. To keep the exposition short, we
assume the reader is acquainted with [9].

The paper is organized as follows. In Section 2, we illustrate the new approach to
accuracy analysis which is used in [14, 9, 16]. In Section 3 the new hybrid algorithm
is constructed and its accuracy is proved.

2. The subtle error analysis

Accuracy results from [9], which are used in this paper, are obtained by a new
approach to rounding error analysis. It is based on three assumptions:

• do not neglect any part of the error. Thus, we use proper error estimates (note
that nonlinear parts of the error ε, like the terms of higher order in ε, are
usually neglected).

• take into account the signs of the errors, which is the most important thing in
the analysis.

• assume that the unit round-off u satisfies

u ∈ {
2−23, 2−24, 2−52, 2−53, 2−64

}
. (1)

This assumption follows the trend of contemporary computers. Today they all
comply with the IEEE standard.

We shall see that by such approach error bounds can be significantly improved. We
use a standard model of the machine arithmetic: the floating point result for the
basic arithmetic operations ◦ satisfies

fl(a ◦ b) = (a ◦ b)(1 + ε), |ε| ≤ u, ◦ ∈ {+,−, ∗, /}, ε = ε(a, b, ◦) ,

fl(
√

a) =
√

a(1 + ε√), |ε√| ≤ u, ε√ = ε√(a).
(2)

In numerical expressions we frequently meet suppression and cancelation of the initial
errors. The new approach takes these into account. The following example illustrates
how suppression of errors takes place.

Example 1. Let us estimate the error in the evaluation of the expression

y =
1

1 + x
, x > 0. (3)
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Suppose that we have only an approximation of x, fl(x) = (1+ε)x at our disposal.
Now, we have

fl(y) =
1 + ε2

1 + ε1
· 1
1 + (1 + ε)x

=
1 + ε2

1 + ε1
· 1
1 + εx

1+x

· 1
1 + x

.

Here ε1 comes from addition and ε2 comes from division. Using the identity

1 + a

1 + b
= 1 + a− b +

b2 − ab

1 + b
,

we separate linear and nonlinear parts of errors in the above two terms,

1 + ε2

1 + ε1
= 1+ ε2− ε1 +

ε2
1 − ε1ε2

1 + ε1
,

1
1 + εx

1+x

= 1− εx

1 + x︸ ︷︷ ︸
suppression

+
ε2x2

(1 + x)(1 + x + εx)
.

Thus, we obtain

fl(y) =
(

1 + ε2 − ε1 − εx

1 + x
+ η1

)
· y , (4)

where |ε1|, |ε2| ≤ u (assumption (2)) and η1 stands for the nonlinear part of the
error,

η1 =
(ε1 − ε2)εx

1 + x
+

(
1− εx

1 + x

)
· ε2

1 − ε1ε2

1 + ε1

+
(

1 + ε2 − ε1 +
ε2
1 − ε1ε2

1 + ε1

)
· ε2x2

(1 + x)(1 + x + εx)
.

From relation (4) we can see that the initial error ε is suppressed by the factor
x/(1+x) which is less than 1. One may expect that the initial error in the subsequent
computations will increase but, in many instances, it is not true. For example, if
x = 0.1, then the obtained error for fl(y) is around 11 times smaller than the initial
one for fl(x).

The second example illustrates how cancelation takes place.

Example 2. We consider the expression

z =
x

1 + x
, x > 0 , (5)

and again we assume to have an approximation of x, fl(x) = (1 + ε)x. Similarly
to the above we have

fl(z) =
1 + ε4

1 + ε3
· (1 + ε)x
1 + (1 + ε)x

=
1 + ε4

1 + ε3
· 1 + ε

1 + εx
1+x

· x

1 + x
.

Since (1 + ε4)/(1 + ε3) = 1 + ε4 − ε3 + (ε2
3 − ε3ε4)/(1 + ε3), and

1 + ε

1 + εx
1+x

= 1+ ε− εx

1 + x︸ ︷︷ ︸
cancelation

+
ε2x2 − ε2x(1 + x)

(1 + x)(1 + x + εx)
= 1+

ε

1 + x
− ε2x

(1 + x)(1 + x + εx)
,
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we obtain

fl(z) =
(

1 + ε4 − ε3 +
ε

1 + x
+ η2

)
· z , (6)

where |ε3|, |ε4| ≤ u and

η2 =
(ε4 − ε3)ε

1 + x
+

(
1 +

ε

1 + x

)
· ε2

3 − ε3ε4

1 + ε3

−
(

1 + ε4 − ε3 +
ε2
3 − ε3ε4

1 + ε3

)
· ε2x

(1 + x)(1 + x + εx)
.

Here the cancelation takes place: the initial error cancels: ε − εx/(1 + x), and
the resulting error ε/(1 + x) is again smaller than the initial one. For example, if
x = 100 and ε = 10%, so that we start with a very bad approximation of x, then
ε/(1 + x) < 0.1%. This gives an extremely accurate result when compared with the
initial data. It is amazing. One may think that, with such bad approximation of
the initial data, nothing can be done. However, we have obtained a pretty accurate
approximation of z.

In a single Jacobi or Kogbetliantz transformation (see [14, 9]), we compute sinϕ
and cos ϕ from tan ϕ or tan 2ϕ which is computed from the matrix elements. If we
put x = tan2 ϕ in relations (3) and (5), then we have y = cos2 ϕ and z = sin2 ϕ. It
is obvious from relations (4) and (6) that the initial inaccuracy ε does not blow up
if we compute sin ϕ and cos ϕ in such way. Moreover, since

ε

1 + x
→ ε,

εx

1 + x
→ 0 as x → 0 and

ε

1 + x
→ 0,

εx

1 + x
→ ε as x →∞,

we can see that cos ϕ will have a high relative accuracy in spite of the initial inac-
curacy in tan ϕ provided that the rotation angle is small enough (x = tan2 ϕ → 0).
The same is true for sin ϕ in the case of a large rotation angle (x = tan2 ϕ → ∞).
This short analysis provides a deeper insight in the nature of relative error bounds
given in the table in [9, sec. 5] (see Table 1).

3. The hybrid algorithm

In [9] we have used a fine accuracy analysis of two SVD algorithms for 2 by 2
triangular matrices. The first one is the new algorithm KOGUL (see [9, Sec. 2]
for details) and the second one is a LAPACK auxiliary routine xLASV2. Here, we
combine these two algorithms to produce a new one which will have better accuracy
properties than any of them alone.

Relative error bounds for the two algorithms are summarized in Table 1. Here
s1, s2 and c1, c2 denote the sines and cosines of the first rotation angle ϕ and the
second angle ψ, respectively, while q denotes the multiplicative correcting factor for
updating the diagonal elements. It is important that the error bounds from Table
1 are attainable (or almost attainable in finite arithmetic). The arguments for this
fact lie in the analysis applied. Namely, the bounds have been obtained directly
from the exact expressions for the errors. The linear form of the errors has been
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error general |t1|, |t2| ≤ 1/10
KOGUL xLASV2 KOGUL xLASV2

|εc1| 2.82u 30.01u 2.26u 11.53u
|εs1| 10.44u 23.01u 10.44u 20.06u
|εc2| 14.80u 20.01u 2.88u 3.15u
|εs2| 14.80u 20.01u 14.80u 17.03u
|εq| 15.48u 6.01u 3.56u 6.01u

Table 1. Relative error bounds

obtained by replacing nonlinear parts with the bound of the form αu, where α is
obtained by replacing u with 2−23 (which corresponds to any mode of rounding in
single precision arithmetic, not just the default mode – rounding to the nearest).
Therefore, that α is good for all modes and all precisions of the finite arithmetic.
Since the inequalities in (2) are attainable, so are the final bounds.

We can see from Table 1 that the error bounds for s1, c1 and s2, c2 are smaller
if the algorithm KOGUL is used. On the other hand, the relative error bound for q
is smaller, in the general case, if an xLASV2 routine is used. The reason lies in the
fact that the LAPACK routine computes q first and after that all other quantities.
But, if the angles are small, then KOGUL has again better bounds.

Therefore, the idea how to construct a new hybrid algorithm is simple. In the
KOGUL algorithm we have to implement part of the xLASV2 routine which com-
putes the factor q, and to activate it when appropriate, for larger rotation angles.
So, let us find when this switching should occur.

We use [9, Lemma 3.7. (iii)] which corresponds to the case |ϕ| < π/8, |ψ| ≤ π/4.
We shall express εq as a function of the rotation angles and then compare it with
the bound 6.01u. Note that this bound 6.01u for q is independent of the angles in
xLASV2, since q is computed first from the matrix elements. Using the notation
from [9, Lemma 3.7. (iii)], we have

εq =
w

2
(
2ϑ(s2)2 + w − 1

)
εξ + (ϑηt1 + ηt2) (s2)2 +

ηµ2

2
+

ηα

2
+ ηq ,

where w = cos 2ϕ, ϑ = h · t1/(h · t1 + g) and ηt1, ηt2, ηµ2, ηα and ηq are estimated
by the relations [9, A.30, A.35, A.39, A.29] and [9, A.57], respectively. Here f and
h are the diagonal elements and g is the off-diagonal element of the initial upper-
triangular matrix. As explained in [9] one can assume f ≥ h > 0 and therefore
0 ≤ ϑ ≤ 1 holds.

Since w − 1 = −2 sin2 ϕ = −2(s1)2, we obtain

|εq| ≤ w

2

∣∣2ϑ(s2)2 − 2(s1)2
∣∣ · |εξ|+ (ϑ|ηt1|+ |ηt2|) (s2)2 +

|ηµ2|
2

+
|ηα|
2

+ |ηq|
≤ max

{
(s1)2, (s2)2

} |εξ|+
[
(3.026 + 3.001)(s2)2 + 0.751 + 1.188 + 1.501

] · u
≤ [

6.01max
{
(s1)2, (s2)2

}
+ 6.027(s2)2 + 3.44

] · u
≤ [

12.037max
{
(s1)2, (s2)2

}
+ 3.44

] · u , (7)

where we have also used [9, Lemma 3.4.] (for |εξ| ≤ 6.01u). The obtained bound
will be compared with 6.01u (which is the bound for |εq| in xLASV2, for the general
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case). Thus, we have

12.037max
{
(s1)2, (s2)2

}
+ 3.44 ≤ 6.01 ⇒ max

{
(s1)2, (s2)2

} ≤ 0.21351

and hence

max {|s1|, |s2|} ≤
√

0.21351 ≈ 0.4621 or max {|ϕ|, |ψ|} ≤ 0.4804 . (8)

Since [9, Lemma 3.7.(iii)] covers the case |ϕ| < π/8, |ψ| ≤ 0.4804 ≈ 1.22333 · (π/8),
it remains to consider the case π/8 ≤ |ϕ| ≤ 0.4804, |ψ| ≤ 0.4804 which is covered by
[9, Lemma 3.7.(i)]. We have

εq =
z

2
(
1− z − 2ϑ(s2)2

)
εξ + (ϑηt1 + ηt2) (s2)2 +

ηµ2

2
+

ηα

2
+ ηq,

where z = cos 2ϕ, ϑ = h · t1/(h · t1 + g) and ηt1, ηt2, ηµ2, ηα and ηq are estimated
by the relations [9, A.26, A.35, A.39, A.21] and [9, A.51], respectively. Since 1 −
z = 2 sin2 ϕ = 2(s1)2, in the same way as above we obtain

|εq| ≤ max
{
(s1)2, (s2)2

} · 6.01u

+
[
(3.026 + 3.001)(s2)2 + 0.751 + 1.07 + 1.501

] · u
≤ [

12.037max
{
(s1)2, (s2)2

}
+ 3.322

] · u . (9)

Thus, if 12.037max
{
(s1)2, (s2)2

}
+3.322 ≤ 6.01, then max

{
(s1)2, (s2)2

} ≤ 0.22332
or equivalently

max {|s1|, |s2|} ≤ 0.4726 which means max {|ϕ|, |ψ|} ≤ 0.4922. (10)

Now, using the relations (8), (10) and [9, Lemma 3.7.], we make the following con-
clusions:

• If |d| ≤ e and |h · t1 + g| ≤ f (that is, π
8 ≤ |ϕ| ≤ π

4 , |ψ| ≤ π
4 ), then

if |s1|, |s2| ≤ 0.46 (i.e. |ϕ|, |ψ| ≤ 0.48), then KOGUL, otherwise xLASV2 is
applied;

• If |d| ≤ e and |h · t1 + g| > f (that is, π
8 ≤ |ϕ| ≤ π

4 , π
4 < |ψ| ≤ π

2 ), then
xLASV2 is applied;

• If |d| > e and |h · t1 + g| ≤ f (that is, |ϕ| < π
8 , |ψ| ≤ π

4 ), then

if |s2| ≤ 0.46 (i.e. |ψ| ≤ 0.48), then KOGUL, otherwise xLASV2 is applied;

• If |d| > e and |h · t1 + g| > f (that is, |ϕ| < π
8 , π

4 < |ψ| ≤ π
2 ), then xLASV2 is

applied.

Hence we can construct the following hybrid algorithm. We use a logical variable
“test” to switch from KOGUL to xLASV2 and vice versa. Here is the code of the
algorithm.
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%%% Algorithm (HYBRID)

test = true %% initialization for KOGUL

if |g| > f then d = g + ((f + h)/g) ∗ (f − h); e = 2 ∗ h

else d = (f − h)/g + g/(f + h); e = 2 ∗ h/(f + h)

end if

if |d| ≤ e then %%% ξ is now cot 2ϕ

ξ = d/e; µ = 1 + ξ2; ρ =
√

µ; α = 1 + |ξ|
ρ

c1 =
√

1
2
∗ α; s1 = sgn(ξ)/

√
2 ∗ α ∗ µ; t1 = sgn(ξ)/(|ξ|+ ρ)

if |s1| > 0.46

then test = false %% switch to xLASV2

end if

else %%% ξ is now tan 2ϕ

if |d| ∗ u > e then c1 = 1; t1 = (e/2)/d; s1 = t1; ξ = 0; α = 2

else

ξ = e/d; µ = 1 + ξ2; ρ =
√

µ; α = 1 + 1
ρ

c1 =
√

1
2
∗ α; s1 = ξ/

√
2 ∗ α ∗ µ; t1 = ξ/(1 + ρ)

endif

endif

if |h ∗ t1 + g| ≤ f then %%% t2 is tan ψ

t2 = (h ∗ t1 + g)/f ; µ2 = 1 + t2 ∗ t2; ρ2 =
√

µ2; c2 = 1/ρ2; s2 = t2/ρ2

if |s2| > 0.46

then test = false %% switch to xLASV2

end if

else %%% τ2 is cot ψ

test = false %% switch to xLASV2

τ2 = f/(h ∗ t1 + g); µ2 = 1 + τ2 ∗ τ2; ρ2 =
√

µ2

s2 = sgn(τ2)/ρ2; c2 = |τ2|/ρ2

end if

if (test) then q =
√

1
2
∗ α ∗ µ2 %% KOGUL

else %% xLASV2

d = f − h; λ = d/f ; m = g/f ; τ = 2− λ

s =
√

τ2 + m2; r =
√

λ2 + m2; q = (s + r)/2

end if

% update the diagonal elements

f ′ = f ∗ q; h′ = h/q

The algorithm might look complicated but it is not because only one half of the code
is active depending on the decisions in the “if” commands. The relative error bounds
for this hybrid algorithm are obviously given in Table 1. The bounds for εs1, εc1,
εs2 and εc2 are the same as for the KOGUL algorithm. The bound for εq is given by
relations (7) and (9) for the angles which are defined by (8) and (10), respectively.
For all other angles the bound is 6.01u, as in the general case for xLASV2 from
Table 1. Thus, |εq| is never greater than 6.01u.

For example, let max{|t1|, |t2|} = η. Since max{(s1)2, (s2)2} = η2/(1 + η2), by
using (8) we have η2/(1 + η2) ≤ 0.21351 which implies η ≤ 0.521 . Thus, using the
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bound (7), which covers the bound (9), we obtain

|εq| ≤




(
12.037 η2

1 + η2
+ 3.44

)
u < 6.01u, if 0 < η ≤ 0.521 ,

6.01u, if η > 0.521.

If, as in Table 1, η = 1/10, then the above relation yields |εq| ≤ 3.5592u, which can
be found in Table 1. Note again that, for any particular value of rotation angles,
[9, Lemma 3.4. and Lemma 3.7.] yield the sharpest possible estimates for the errors
εc1, εs1, εc2, εs2 and εq, sharper than those summarized in Table 1.

Finally, we compare the operation count for each of the three considered algo-
rithms. The sequence of numbers for some operations results from the possible ways
how “if” commands can be executed.

operations KOGUL xLASV2 HYBRID
+, − 8, 9 11 8, 9, 13, 14
∗, / 16, 17, 18 18 16, 17, 19, 20√ 5 3 5, 6

We can see that all three algorithms have similar operation count.
Modern computers have computational units with long registers containing (by

the IEEE standard) at least 78, but usually 80 or more bits. Hence the commands
(and maybe all output data) of these algorithms will be computed in extended
precision. Therefore, in practical computations the accuracy of the output data to
all these algorithms might be alike.

However, using the obtained sharp estimates obtained for the hybrid algorithm,
one can prove sharp relative accuracy bounds for the Kogbetliantz method for n×n
triangular matrices. In [16] we have proved it for the case of scaled almost diagonal
triangular matrices. The accuracy of that method for general triangular matrices,
which numerical experiments clearly confirm, is the topic of our further research.
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[8] V.Hari, J.Matejaš, Quadratic convergence of scaled iterates by Kogbetliantz method,
Computing [Suppl.] 16(2003), 83–105.
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