ZARAVNI NA VAPNENCIMA*

JOSIP ROGILIĆ

Uvod — Klasična gledanja o razvoju krša ne vode računa o nekim bitnim procesima i ne mogu objasniti vrlo značajne oblike. Nije objašnjenje, kako je bilo moguće da se na čistim vapanencima prije krškog procesa vrši riječna erozija, kojoj se pripisuju mnogi oblici ili izmjena čitavog reljefa na otopolim stijenama. Ova se shvaćanja olakšo prihvaćaju i generaliziraju, iako su u suprotnosti sa biti krša, odnosno s morfološko-hidrografskim procesima na vapanencima, kako ih je logično precizirao J. Cvijić pred kraj svog dugogodišnjeg rada na krškim problemima: »Dok na nepropusnim stijenama tokovi otječu prema moru, vode u kršu roniru više ili manje okomito, kroz pukotine i pećine, po zakonima teže i bez obzira na morsku razinu. Ako je nepropusni sloj ispod morske razine, krški način otjecanja nastavit će se do tog sloja«.1

Prema vrlo raširenom shvaćanju, voda obogaćena atmosferskim ugljičnim dioksidom otapa vapanac (kalcijev karbonat) u nestabilni kalcijev bikarbonat i sa sobom odnosi otopinu. Malo je vjerojatno, da je atmosferski ugljični dioksid u atmosferi jačo zastupljen: poznato je da ovaj plin znatnim dijelom potječe iz unutrašnjosti Zemlje. U pećinama se često konstatira velika količina ugljičnog dioksida i prema tome bi u vapanenačkoj unutrašnjosti bile veće mogućnosti spomenutog spoja vode s ugljičnim dioksidom, a prema tome i mogućnosti otapanja vapanca. Možda bi se time mogli objasniti veliki podzemni pećinski prostori, za čije formiranje nisu dovoljna ni urušavanja pokrova ni mehanička erozija podzemnih tokova. Dalje ćemo vidjeti, da je za koroziju vapanca naročito važan izvor ugljičnog dioksid.

Ponirajući kroz pukotine, vodeni se mlazovi spajaju i ispunjavaju šupljine nejednakih dimenzija. Pri tome dolaze do izražaja složeni zakoni adhezije i hidrostatičkog pritiska. Prilike se dalje na najrazličitije načine kompliciraju promjenom sastava vapanca ili smjene s drugim stijenama i razlikama u tektonskoj gradi. Tome treba dodati efekte mehaničke erozije, koja je u sistemima kanala nejednolika dimenzija naročito snažna,

* O temi je održano predavanje u Geografskom društvu 5. IV. 1954. pod naslovom »Zaravni u dinsarskom kršu«. Ovaj je rad bio priređen i predan na tisk 12. V. 1956. JAZU, ali zbog posebnih razloga nije objavljen; to se vremensko zakašnjenje ogleda u redakciji teksta.

1 J. Cvijić, Hydrographie souterraine et évolution morphologique du karst. Recueil de travaux de l'Institut de géographie alpine, sv. VI, br. 4, Grenoble 1918. str. 394.
zbog vrtložastog kretanja vode i pokretanja urušenog materijala. Mehaničku eroziju olakšava pokretanje urušenog i donesenog materijala.

Kretanje vode pod hidrostatickim pritiskom, povoljni uvjeti za koroziju i snažna mehanička erozija omogućuju širenje podzemnih šupljina u različitim smjerovima i razvoj u nejedнакom opsegu. Ovakvim razvojem lako dolazi do urušavanja velikih razmjera, koja se mogu odrzati i u površinskom reljefu.

Rezultat spomenutih procesa u dubini i otapanja na površini jesu izolirane udubine povezane sa splatom šupljina u vapnenoj masi. Ukoliko su vapenci čistiji i deblji, a kompleksni krški proces dalje odmakao, trebalo bi da udubine budu veće, a sistem podzemnih šupljina razgranatiji i složeniji. Razvoj krškog procesa ide do nepropusne podloge, t. j. u okomitom smjeru, a uravnavanje bi moglo nastupiti tek na ovoj osnovi, kao što je to logično zaključio Cvijić.2

Stvaran reljef vapnenacačkih terena ne odgovara gornjoj logičnoj shemi i pokazuje, da je razvoj oblika u kršu mnogo složeniji. Na vapnencima nalazimo naročito izrazite zaravni, čije se formiranje ne može objasniti izloženim razvojem krša.

Zadaća je ovoga rada da doprinese objašnjenju postanka zaravni, vodeći računa o njihovim osobinama i specifičnosti evolucije reljefa na vapnencima. Težište je na zaravnima u čistim vapnencima, gdje su one najizrazitije. Zaravni su u suprotnosti s pukotinskim otjecanjem vode i razvojem krških oblika, što ukazuje, da se morfološki procesi mogu bitno mijenjati. U tome je ključna važnost objašnjenja postanka zaravni.

Obrazovanje zaravni na vapnencima nije samo neriješen problem, već u tom pogledu vladaju i očite zabune. Vodeći istraživači mijenjali su svoju raniju i osnovnu gledanju, a da to često nisu kasnije konzkevento primjenjivali. U nekim novijim radovima ne vodi se dovoljno računa o ovom toku stvari, te se za pojedine istraživače navode često sporedne i napuštene shvaćanja. U izlaganjima ćemo se osvrati na najvažnije dosadašnje radove, a naročita je pažnja posvećena novijim rezultatima, koji olakšavaju rješenje problema. Pored uže problematike ovaj rad zasijeca i u cijelu morfološkog krša, što može potaknuti dalju diskusiju, a to je po našem shvaćanju ne samo korisno, već i potrebno.

Zaravni su tipično razvijene na vapnencima — Ni na jednoj drugoj stijeni nisu zaravni tako dobro izražene kao na vapnencima. Obično se kaže, da se zaravni na vapnencima dobro konzerviraju, jer nema spiranja ni linearnih erozija. To je očito, ali je bitnije objasniti, zašto su zaravni na vapnencima tako dobro razvijene. Zaravan je u suprotnosti sa biti krškog procesa, kako je on do sada općenito shvaćen i manifestiran u našim umjerenim klimatskim prilikama — krški se oblici razvijaju u okomitom smjeru, a zaravan je razvijena u horizontali. Prije nego što uđemo u raspravu problema, iznijet ćemo osobine nekoliko zaravni u dinarskom kršu, podvlačeći specifične karakteristike.

Najpoznatija zaravan na vapnencima jest ona, koju je J. Cvijić u početku nazivao »skradinskom«, a kasnije »kistanjskom«. Izbjegavat ćemo jedan i drugi naziv, koji su dani prema lokalitetima, u prvom slučaju i prema nesretno izabranom lokalitetu, jer je Skradin u kanjonu, a ne na zaravni (sl. 1.). Možda bi bolje odgovarao naziv »Prominska zaravan«, jer je kraj, zvan Promina, najizrazitiji dio zaravni, a planina Promina (1148 m)

dominira na zaravni. Za naše ciljeve i stanovište najbolje odgovara naziv »Sjeverodalmatinska zaravn«, čime se ističe i njeno veliko prostranstvo.

Oko srednjeg toka Krke, Čikole i Zrmanje širi se prostrana zaravan. Smjerom sjever—jug proteže se od srednjeg toka Zrmanje do podnožja Trtara (544 m), južno od sastava Krke i Čikole, i to u dužini od 38 km, a visine kolebaju između 220 i 320 m. Na ovako velikim udaljenostima višine dakle neznatno variraju i u pejzažu se ističe uravnoteženost kao kod naplavne ravnice. Zaravan je najizrazitija na otpornim i čistim gornjokrednim vaznencima, na primjer u trokutu između Krke i Čikole (fot. 1).

Jugozapadno od linije Rupe—Bribirske Mostine—Benkovac—Smilčić smjenjuju se sinklinale paleogenog flisa i antiklinale paleogenih i krednih vapnenaca. Mladom, differenciranom erozijom usječene su u flisu doline, a zaravan je bolje izražena i očuvana na vapnenačkim antiklnalama. Zaravan postaje prema sjeverozapadu sve niža. Svi morfološki elementi upućuju, da pred sobom imamo jedinstven nivo, koji je najbolje formiran i očuvan u čistim vapnencima. Zrmanja, Krka i Čikola su mladim procesom usijecanja u vapnencima udubljene kanjone, a u nepropusnim flisnim naslagama proširenja. Ovom differenciranom erozijom formirane su zavale Kninskih i Petrovog polja kao i potopljena proširenja, u kojima su Prokljansko jezero i šibenska luka. Tragove zaravni nalazimo, iako nešto u višem nivou, i sjeveroistočno od Kosova polja (360 m), ovamo spadaju i Podi (400 m), sjeverozapadno od Petrova polja.5

Za sjeverodalmatinsku je zaravan dalje karakteristično, da je od Primorja odijeljena višim grebenom Trtara (544 m), koji se izoliranim bregovima nastavlja prema sjeverozapadu preko doline Krke (Standarac, nad Vranskim jezerom, 305 m i drugi). Zaravan, dakle, nije nizvodno otvorena, kao što je slučaj kod riječnih nivoa. Mogli bismo jedino pretpostaviti, da je prvobitni smjer otjelac bio prema sjeverozapadu, ali time postavljamo još teži problem, t.j. trebalo bi objasniti, kako je došlo do današnjeg smjera tokova, a i širenje zaravni ne dozvoljava gornju pretpostavku.

Sjeverodalmatinska se zaravan ne nastavlja u obliku terasa uz gornje tokove Butišnice i Zrmanje, pa ni u tom pogledu ne odgovara zakonima riječne erozije. Ova zaravan, dakle, svojom pružanjem i odnosom prema višem zemljisti ne odgovara riječnim nivoima.

Zaravan se nepravilno grana prema jugoistoku u brdoviti predjel dalmatinske Zagore, ali ne u obliku dolinskih zaliva, već kao mrežasto rasporedene manje zaravni, koje su međusobno jače ili slabije povezane ili čak sasvim izdvojene i sa malim visinskim razlikama, na pr. Suhi dolac. Ovaj mrežasti reljef koristi vijugava željeznička pruga Drniš—Perković—Labin.

5 Nazive »pod, podi, podine, podić« i sl. redovito čemo susretati. Vrlo su značajni s morfološkog i jezičnog stanovišta. Izraz nam pokazuju, kako su oblici u reljefu izraženi, tako da se istovijetuju jezično s obrađenim podima i katovima u kući.

Za prostranije zaravni čujemo nazive »dubrava« ili »dubrave« i »ljut«, što označuje njihov biljni pokrov i detaljniji reljef. Na dubravama ima više tla, bile su obrasle hрастovim odnosno dubovim šumama, koje su rano iskorišćivane. Ljut su sastavljene iz čistih vapnenaca nagrivenih škrapama sa malo tla, slabo obrasle rijetkim i kržljavim šumama pretežno graba i jasena, ili je prvobitni biljni pokrov uništen, te su teško probodne.
Sličan je odnos zaravni i prema priobalskom gorju, gdje su između uzvišenja izolirane i mrežasto raspoređene zaravni, na primjer Dubrava, istočno od Pirovca.

Analoge prilike, iako u manjim razmjerima, ali u složenijem rasporedu nalazimo duž toka Cetine, koji prati niz slabopovezanih ili izdvojenih zaravni (sl. 2.). Iznad vrela Cetine, sjeverozapadno od Cetinskog polja, oko sela Kijeva širi se zaravan Podi (440—480 m), koja zasijeca poremećene kredne vapnence, a dijelom je prekrivena naplavljenim šljunkovima. Tragovi zaravni očuvani su rubom Cetinskog i Vrličkog polja i spajaju se, nizvodno od Koljana, s prostranom zaravni Dubrava (420—480 m), koja je u elipsastom obliku dinarski izdužena do 9 km, a široka oko 5 km. Duža os zaravni Dubrave zaklapa oštri kut sa smjerom toka Cetine; nagnuta je prema jugoistoku u smjeru otjecanja rijeke, ali je rubni, jugozapadni dio relativno niži.

Nakon suženja kod Maljko-va zaravan se ponovno širi, oso-bito s lijeve strane: Velika Ljut (430—480 m) između Dabra i Bitelića, a tragove istog nivoa vidimo i na suprotnoj, desnoj strani Cetine kod Potavlja.

Sl. 2. Zaravni duž Cetine (označene absolutne visine u metrima). Prema orohidrografskom otisku topografske karte; ekvidistance među izohipsama 100 m.

Fig. 2. Surfaces long de la Cetina. Entre parenthèses: altitudes absolues en mètres. D’après extrait orohydrographique de la carte topographique; équidistance entre isohypses 100 m.
Naročito su lijepo razvijene zaravni Podi oko Sinjskog polja. Nakon suženja iznad vrela Rumina, nastavlja se ponovno zaravan Velika Ljut, pod nazivom Podi duž sjeveroistočne strane Sinjskog polja sve do doline Rude, a iznad Obrovca doseže širinu od 4,5 km; visina zaravni koleba između 440 i 500 m. I na suprotnoj, jugozapadnoj strani polja imamo iznad Turjaka vrlo izrazitu, ali oko 50 m nižu zaravan (390—400 m), koju također nazivaju Podi. Posljednja se zaravan grana u sjeverni dio Dicmanskog polja — Dubrava. Zaravan Podi grana se dakle mrežasto u brdovitu okolicu, što smo konstatirali i kod sjeverodalmatinskog nivoa. Za dalja izlaganja treba istaći, da su "Podi" obrazovani u čistim vapnencima i da nema povezanog nivoa duž cijelog ruba Sinjskog polja. Sjeverozapadno od Dugopolja prelazi cesta Split — Sinj preko vrlo izrazite i u reljefu izolirane zaravni Podi (320 m).

Još je bolje izražena Zadvarska zaravan ili Ljut (245—250 m) oko donjeg toka Cetine (fot. 2). To je prostrani nivo, koji se u smjeru zapadolisti proteže 13,5 km, a širok je do 6 km. Prema sjeveroistoku zaravan graniči s katunskim strmcem, iznad koga je zaravan Ciste (oko 470 m). Katunska strma predstavlja mladu tektonsku liniju, duž koje je dislocirana vjerojatno jedinstvena i prostranija zaravan. I Zadvarska je zaravan od primorja odijeljena obalskim gorjem — Dovanj (787 m) i Omiška Dinara (864 m). Između obalskog gorja i Zadvarske zaravni usjećena je u flišnom zemljištu mlada dolina donje Cetine, ali su na padinama vapnenačkog gorja očuvani podovi, koji odgovaraju Zadvarskoj zaravni i pokazuju njeno prvobitno prostiranje.

Zadvarska se zaravan visinski znatno razlikuje od spomenutih nivoa oko gornje Cetine i s njima nema reljefne veze. Zaravni oko Cetine nemaju, dakle, osobine erozivnih riječnih nivoa; nisu međusobno povezane, niti se prema ušću šire a prema izvoru sužavaju; na njima nema traga toku, koji bi ih uravnio. Naprotiv, iznad izvorišnog dijela Cetine nalazimo zaravan, koja nema veze s njenim tokom, a pred samim se ušćem rijeka probija sutjeskom kroz obalsko gorje. I oko Cetine zaravni su najbolje razvijene u čistim i otpornim vapnencima.

I u kraju oko donje Neretve nalazimo dobro izraženu zaravan Brotnjo–Dubrave (sl. 3.); najbolje očuvani dijelovi imaju visine oko 270 m. I zaravan Brotnjo—Dubrave je najbolje razvijena u čistim krednim vapnencima. Prema planinama oko srednje Neretve zaravan naglo prestaje ili stepeničasto prelazi u više, slabije izražene i nesigurne nivoje, na pr. Raška Gora i Podvelež. U probojnici srednje Neretve nema nivoa, koji bi odgovarali nizvodnoj zaravni, a prema ušću rijeka se probija između obalnih grebeni Rilića (1155 m) i Zabe (953 m).

Poseban položaj ima prostrana zaravan jugozapadne Istre (0—400 m), koja je nagnuta prema jugozapadu i zapadu do morske obale. Ova zaravan dakle nije odijeljena priobalnim grebenima, kao što je slučaj s onima oko rijeka srednje i sjeverne Dalmacije i u Hercegovini.

Prostrane i izrazite zaravni nalazimo i u zatvorenim predjelima. Lug i Šuma u Popovu polju (sl. 4.) najbolji su primjer takvih reljefno izoliranih zaravni u dinarskom kršu. U smjeru sjeverozapad—jugoistok duga je zaravan oko 23,5 km, a u sektoru Orah—Kočela široka je do 8 km. Visine neznatno kopcuj (250—260 m), te se zaravan ističe rijetkom izrazitošću.
Blago je nagnuta prema sjeverozapadu i postepeno ponire pod naplavno tlo Popova polja, u užem smislu. Zaravan oštro graniči s okolnim zemljem i nema nikakva traga, po kome bi se moglo zaključiti, da je sadašnja reljefna izoliranost posljedica mladih poremećaja.

Sl. 3. Zaravan Dubrave-Brotnjo (oko 270 m) pored donje Neretve. Prema orohidrografskom otisku topografske karte 1:100.000; ekvidistanca izohipsa 100 m.

Fig. 3. Plateau Dubrava-Brotnja (environ 270 m.) le long du cours inferieure de la Neretva. D'après extrait orohydrographique de la carte topographique 1:100.000; équidistance entre isohypses 100 m.
Lijepe primjere zaravni konstatiramo i rubom krških polja. Zapadnim, južnim i jugoistočnim rubom Fatničkog polja širi se izrazita zaravan (540—560 m), koja je nagnuta od sjeverozapada prema jugoistoku. Na jugozapadnoj strani, oko Pađena zaravan je prostranija i od samog polja.

![Diagram](image)

Sl. 4. Zaravan Šuma i Lug (250—260 m) u Popovu polju.
Prema orohidrografskom otisku topografske karte 1 : 100 000; ekvidistanca izohipsa 100 m.

Fig. Surface Šuma et Lug (250—260 m.) dans le Popovo polje.
D'après extrait orohydrographique de la carte topographique 1 : 100 000; équidistance entre isohypses 100 m.

I na zapadnoj strani Gatačkog polja u visokoj Hercegovini imamo izrazitu zaravan Jaljutki i Krč (940—950 m). Sjeveroistočni rub Duvanjkovog polja prati lijepa zaravan Pod (920 m), zasječena u vapnenačkim padinama Ljubuše; a na rubnu zaravan nalazimo i na sjeveroistočnoj strani Livanjskog polja.

Naveli smo primjere izrazitih zaravni u vapnencima primorske strane Dinarskog gorja: jedне su duž riječnih tokova, druge u otvorenom pri-
morju, treće na dnu zavala, a četvrte rubom krških polja. Isto tako izražite zaravni i u analognim položajima nalazimo i na kopnenoj strani Dinarskog gorja.

Na drugom je mjestu posebno obrađivana prostorna zaravan na vapnencima oko srednjeg toka Une i Korane, s visinama između 350 i 370 m. Unsko-koranska zaravan ima morfološke osobine analogne onima oko Krke, Cetine i Neretve. I kod ove je zaravni ustanovljeno, da je utoliko izrazitija, ukoliko su vapnenci čistiji.

Sl. 5. Zaravan Ličkog polja (550—570 m)
Prema orohidrografskom otisku topografske karte 1:100.000; ekvidianca izohipsa 100 m.

Fig. 5. Plateau de Ličko polje (500—570 m)
D'après extrait orohydrographique de la carte topographique 1:100.000; équidistance entre isohypses 100 m.

Vrlo prostorna zaravan širi se oko kanjonskih dolina donje Korane, Mrežnice, Dobre i srednje Kupe; ima visine između 200 i 250 m. Ova zaravan je otvorena prema karlovačkoj zavali, koja je ogranak panonskog bazena.

Prostrana zaravan Ličkog polja (550—570 m) sa svih je strana okružena višim zemljištem i prvenstveno razvijena u čistim vapnencima (Sl. 5.). I ova se zaravan mrežasto širi prema vapnenačkom rubu: Perušičko i Gračačko polje i sl. Slične osobine ima izrazita zaravan na dnu nižeg

Fot. 3. Zaravan Luga sa Humom u Popovom polju.
Jasno se vidi grada zemljišta i egzogeni priroda postanka ove reljefno izolirane zaravni.

Phot. 7. Surface de Lug avec la colline de Hum dans le Popovo polje.
On apperçoit nettement la structure du terrain ainsi que l'origine exogene de ce plateau.

Fot. 4. Veliko Rujno (oko 800 m) na primorskoj strani Velebita
Ističe se izrazitost zaravni.

Phot. 4. Veliko Rujno (l'hauteur environ 800 m) sur la cote' maritime de la montagne de Velebit.
On y remarque le caractere expressif du plateau.

Geografski glasnik br. 19.
Fot. 5. Kamenica na bloku vapnenca u ponoru kod Pazina.

Strane kamenice su podlokane. Koroživni proces se vrši i u uvjetima današnje klime i u ovom slučaju je relativno brži od erozije, koja je ovdje dosta jaka.

Phot. 5. Kamenitea dans un bloc de calcaire, dans le gouffre de Pazia.

Le processus de corrosion se fait dans les conditions du climat de nos jours et, dans le cas concret, il est relativement plus rapide que l’érosion fluviatile qui y est très intense.

Fot. 6. Koroživno širenje naplavne ravnice u zalivu Faitsilong, istočni dio Bajed’Halong (Tonkin).

Phot. 6. Extension corrosive de la plaine alluvial du golfe de Faitsilong partie orientale de la Baie d’Halong, dans le Tonkin.

Fot. 7. Zaravan oko rijeke Jikjanga u južnom Kvangsiu.

Phot. 7. Surface autour du fleuve Jikjang, dans le Kvangsi meridional.
A comparer avec la phot. 8. Ce plateau est sensiblement plus jeune et bien recouvert d'alluvions. Le canyon est moins profondément creusé et les pentes des collines sont plus raides, ce qui correspond à la récente et intense corrosion du pied de la montagne (Phot. prof. H. von Wissmann).

Fot. 8. Zaravan Ličkog polja sa humovima kod Bilaja.
Pogled sa mosta između Gospića i Osika prema jugoistoku.
Phot. 8. Surface de Ličko polje avec hums près de Bilaj.
Vue prise du pont entre Gospić et Osik vers le sud-est.

Geografski glasnik br. 19.
izraziti i vezani za složeniju podlogu. Zadržat ćemo se samo na najizrastitijim zaravnima i usječenim u čistim vapncima i nastojati, da objasnimo, kako je moglo doći do obrazovanja ovih »apsurdnih« oblika u kršu. Naše bi se objašnjenje moglo proširiti i na spomenute planinske ravnjake, koji su nastajali u ranije geološko doba i znatno izgubili svoje prvobitne osobine.

Objašnjenje postanka — Kako su zaravni u suprotnosti s okomitim razvojem krških oblika, to je uravnavanje vapnenaca uglavnom objašnjavano na isti način kao i na nepropusnim terenima.

A. P enck, majstor njemačke geomorfološke škole, mnogo je utjecao na svoje učenike i sljedbenike. On je najprije smatralo, da su zaravni u dinarskom kršu obrazovane bočnom erozijom rijeka, a to gotovo u razini mora, a od razvodnica su zaostale izdvojene planine ili »mosori«.

P enck je na ekskurziji Geografskog instituta u Beču kroz Bosnu i Hercegovinu 1899. pratio i čuveni američki morfolog W. M. Davi s. Iz Penckova rada vidimo, da je Davi s u izrazitim zaravnima vidio dokaze starog stadija ili »pineplena« riječne erozije, u smislu svoje cikličke teorije i da su oni o tome na terenu diskutirali. Davi s je naknadno i objавio svoje gledanje, po kome su zaravni u dinarskom kršu erozivno-denudacijalnom podrijetlu, a uzvišenja na njima »monadnici«, sastavljeni od otpornijih stijena.

Već je P enck ukazao, da ovo shvaćanje Davi sa ne odgovara stvarnosti, jer uzvišenja nisu sastavljena od otpornijih stijena. U biti je između njihovih stanovišta razlika samo u stadiju evolucije riječnog reljefa i u prirodi zaostalih uzvišenja — Penckovi su »mosori« zaostali zbog položaja, a Davisovi »monadnici« zbog otpornosti stijena. Prema Davisovu shvaćanju je, dakle, ciklički razvoj fluvijalnog reljefa dalje odmašao. U kasnjem radu P enck, pod utjecajem Cvićićevih ideja, dozvoljava, da može i razvojem krških oblika nastati pokrov crvenice, koji onemogućuje udubljanje zatvorenih krških oblika i uvjetuje površinske tokove i širenje zaravni, navodeći kao primjer južnu Istru.

Na početnoj Penckovoj koncepciji razradio je A. Grund teoriju, koja objašnjava se ne samo postanak zaravni, već i na odgovarajući način tumači i morfološku i hidrografsku evoluciju krša. Prema Grundu postoji u kršu, kao i u drugim stijenama, jedinstvena temeljnica nagnuta prema razini mora. Ova temeljnica ili »krška voda« (Karstwasser, Karstgrundwasser) zaustavlja udubljanje oblika krša i usijecanje tokova. U vezi s temeljnicom obrazuju se prostrane denudacije zaravni »pinepleni« kao i na nepropusnim terenima.

Značajno je, da je A. Grund u svom završnom radu preuzeo i razradio početne ideje J. Cvićića (iz 1900.)

o cikličkom razvoju krških oblika i pretpostavljao, da krški proces konačno sam sebe onemogućuje i tako dolazi do stvaranja »korozivnih pinedena« i do uspostavljanja površinske hidrografičke — u ovome se završnom stadiju, po A. Grundu, nalazi krš ekvatorijalnih krajeva.

Za naš je naročito značajan razvoj gledanja J. Cvijića, koji se najduže bavio dinarskim kršem i najbolje ga poznavao, a imao je presudni utjecaj na razvoj krških istraživanja u našoj zemlji. Poznavajući krški reljef u umjerenim klimatskim prilikama i njegovu suprotnost zakonima riječne erozije, Cvijić u početku traži specifična objašnjenja. Najprije pretpostavlja, da se krški oblici ciklički razvijaju, spajaju i konačno dolazi do otvorenih korozivnih zaravnja u razini temeljnice, usto dozvoljava i formiranje denudacionih zaravnja.

Vidjeli smo, da je ovo specifično i konsekventno objašnjavanje razvoja krških oblika imalo utjecaja na ideje Peneka i Grunda.

Razrađujući dalje specifično objašnjenje obrazovanja zaravnja u kršu, Cvijić pretpostavlja, da se prestankom pukotina u dubini ili njihovim ispunjavanjem crvenicom u krškom podzemlju formira temeljnice, u čijoj razini cirkuliraju vode i vršće podzemnu eroziju i koroziju. Nastaje podzemna zaravan, iznad koje procjene vode vršće koroziju vapnenih masa; dolazi do urušavanja i postepenog ogolićavanja zaravni — u kršu bi se, dakle, smjenjivale faze krške vertikalne cirkulacije i površinskog otjecanja. Na osnovu ovog složenog objašnjenja i teško ostvarivog procesa (kako odstraniti velike mase vapnenaca iznad podzemnog nivoa?) počeo se upotrebljavati i dosta neodređen naziv »fluviokrška zaravan«.

U kasnijim radovima Cvijić je napustio početna specifična objašnjenja. Pri preciziranju svojih gledanja o biti i evoluciji krša u god 1918, Cvijić podvlači, da »krška erozija ne može formirati zaravni« i dalje »ove zaravnine su najčešće fluvijalne, a formirale su ih prekrške ili alogene rijeke«. Cvijić, dakle, prihvaća ideju smjene fluvijalne erozije i krškog procesa (otuda pojam »karstifikacija«) u duhu polaznih ideja A. Peneka i A. Grunda. Ovo gledanje zastupano je i u posljednjim radovima, a preuzeli su ga i njegovi učenici; epitet »fluviokrški« najbolje odražava, kako je objašnjenje neprecizirano.
Pristaše Penck-Grundovih početnih ideja o površinskom otjecanju in povezavoj in stabilnoj temeljnicij v kršu mogu teoretski objasniti formiranje odgovarajučih oblika, iako je teško shvatiti jači efekat bočne erozije u razini stagnirajuće vode i u čvrstim stijenama; u tom smislu nisu nikada dani dovoljni dokazi. Mnogo je teže shvatiti, kako bi se na osnovu promjenljivih »hidrografskih zona« mogao formirati izrazit erozivni nivo. Moglo bi se pretpostaviti, da su zaravni formirane za vrijeme prve faze, kada je voda ispunjavala pukotine bližje površini, ali i sam Cvijić nagašava, da se tri zone brzo formiraju, jer se voda kroz pukotine spušta u vapnenačko podzemlje. Periodično kolebanje hidrografskih zona i obrazovanje izrazitih zaravni međusobno se isključuju.

N. Krebs, uporni pristaša Penck-Grundovih ideja o fluvijalnoj eroziji na vapnencima i jedinstvenoj temeljnicij v kršu, dao je nešto modificirano objašnjenje obrazovanja izoliranih zaraavn. Uviđajući, da su narodno značajne izolirane zaravne, što je u suprotnosti sa zakonima riječne erozije, Krebs smatra, da su zaravni nastale u razini temeljnice, i to »erozivno-denudacionim procesima«. Ovo je objašnjenje neuvjerljivo, jer se u razini temeljnice ne može vršiti erozija, a denudacijskim padima prevladala bi u zatvorenom zavalama akumulacija, kao što je to bio slučaj tokom pleistocenih hladnih razdoblja. Izolirane zaravne srednje Hrvatske nisu u istoj visini, koja bi odgovarala jedinstvenoj razini podzemne vode, kao što je smatra Krebs.

Pretpostavka o jedinstvenoj temeljnicij, a time i o mogućnosti riječne erozije v kršu, dovodi do zaključaka, koji su u suprotnosti s krškim procesom i ne mogu objasniti evoluciju reljefa vapnenačkih terena. Na osnovu tih shvaćanja logično se upotrebljavaju i pojmovi »karstičavanje« ili »karstifikacija«, iz čega slijedi, da je prije krša vapnenačku površinu oblikovao rad tekućih voda, odnosno riječna erozija. Ovo shvaćanje oduzima vapnencima njihove specifične osobine.

Nije poznat vapnenački kraj, na kome se ne vrši odgovarajući krški proces. A. Penck je ukazao, da voda, koja ponire, obrazuje krške oblike i na vapnencima, sa kojih nije ogoličen stratigrafski pokrov, a mnogo ranije je upozorio na korozivne oblike u pokrivenim vapnencima.

Izgleda nam, da je olako prihvaćanje i primjenjivanje shvaćanja, po kome je na vapnencima moguća riječna erozija, usporilo napredak izučavanja krša. Bit procesa i sva saznanja ukazuju i potvrđuju, da se vapnenci kemijski otapaju, pukotine šire, a voda ponire i otječe složenim sistemima pukotina — razvija se krš, karakteriziran oblicima, koji su u skladu s cirkulacijom vode. Dimenzije i dubina poznatih podzemnih šupljina upućuju, da nije moguce odrediti, kad je krški proces počeo. Sve ukazuje, da je na vapnencima počelo obrazovanje krša, dok je do njih doprla voda sposobna

17 Ovo je shvaćanje prvi iznio Cvijić god. 1900 (Polja zapadne Bosne i Hercegovine), a preuzeli su ga Penck (1904.) i Grund (1910.), jer to znači logičnu razradu ideje o jedinstvenoj temeljnicij t. j. njeno periodično kolebanje.
20 A. Penck, Über das Karstphänomen... str. 20,

Tokovi u kršu su kao i što je i Cvijić na kraju konstatirao, hidrografski i morfološki stranci. Redovito primaju vodu iz nepropusnih stijena (alogeni) i pri protjecanju kroz vapnence nemaju pritoka i gube vodu kroz pukotine u stjenovitom skoritu, a neki su i sasvim presušili. Doline su kanjonske, jer nema spiranja strana, čime bi mogle evoluirati u otvorene profile i konačno u zaravan. Istra je lijep primjer ovako diferenciranog reljefa; u srednjoj plašnjoj zoni nastaju tokovi, koji su ovaj kraj jako disicirali, a kroz vapnence se probijaju kanjonskim dolinama, na pr. Raša i Mirna, a nekada i Pazinski potok 22.

Kao dokaz fluvijalne erozije na vapnencima navode se i suhe doline — slijepe ili otvorene. Ali dolinska priroda ovih udubljenja nije sigurno dokazana. Aktivna dolina u vapnencima ima strme strane, odnosno kanjonski oblik. Strane ostaju strme i kod dolina, čije je dno prekriveno naplavinama, te nema udubljenja, na pr. kanjon Neretve, dio kanjona Zrmanje i dr. Erozija tokova je, dakle, stranac u kršu i stvara oblike, koji to svojim izgledom odražavaju. Naprotiv, pretpostavljeni naslijeđeni oblici riječne erozije imaju blage padine kao i u nepropusnim terenima. Očito je veoma važno objasniti problem, kako evoluiraju i nastaju blage padine u vapnencima, a to će otvoriti i nove vidike u evoluciji vapnenačkog reljefa.

Dolinski izgled većine pretpostavljenih oblika samo je prividan — to vrijedi i za klasičnu Valu između Popova polja i Slanog. U srednjem dijelu Vale je Dubrava, zatvoreno udubljenje ravnog dna formirano u čistim vapnencima; prema Popovu polju Dubrava je spojena otvorenijim prijevojem, na kome je selo Zavala, a usječen je pretežno u dolomitima. Prema Slanom Dubravu se nastavlja višom, uzamom i vrijegavom dolinom. Ništa ne dozvoljava, da se ovaj složeni oblik označi kao suha dolina, a još manje kao otoka Popova polja, u što je na kraju posumnjao i sam Cvijić 23. Složen izgled pokazuje, da je ovaj oblik nastao diferenciranim procesima, uvjetovanim razlikama u sastavu i građi terena.

Pri istraživanju reljefa uopće treba točno uočiti i predstaviti oblike i njihove odnose sa sastavom i građom. U objašnjavanju postanka treba računati s procesima, koji su u skladu s uvjetima sastava, građe i klime. Izgleda nam, da bi takvim postupkom otpale mnoge teorije i naučni rad bi brže napredovao. Zastupnici riječne erozije u evoluciji krša trebali bi objasniti, odakle se tokovi hrane, kako se mogu održavati na vapnencima i kako je moguća denudacija strana — osnovni proces u evoluciji riječnog reljefa. Zaravni se najčešće spominju kao dokaz riječne erozije, a mi ćemo vidjeti, da one baš suprotno dokazuju.

21 Fr. Katzer, Karst und Karsthydrographie, Zur Kunde der Balkanhalbinsel, sv. 8, Sarajevo 1909, str. 2.
Osobine zaravnih su u suprotnosti sa zakonima riječne erozije. Zaravni oko Une, Krke, CETine i Neretve ne šire se prema ušću i ne nastavljaju se prema izvorištu u obliku terasa, kao što je pravilo kod ovakvih oblika riječne erozije. J. Cvijić i A. Grund objašnjavali su prvu nenormalnost mladim izvijanjem i izdizanjem obalskog gorja. Vidjeli smo, da zaravni nisu izvijene i da se mrežasto granaju u okolno više zemljište, pa i u samo obalsko gorje, ali su neporemećeno očuvane na padinama obal- skih planina, kao Zadvarška zaravan na padini Dovnja — to znači, da su ova uzvišenja postojala u doba uravnavanja. Iste odnose nalazimo i kod zaravnih na panonskoj strani 26.

Nije moguće na zaravnama utvrditi položaj tokova, koji bi ih formirali, ni razvodnica među njima, što se može lako učiniti kod riječnih pinespla. Veoma su česti slučajevi, da su zaravni u rubnom dijelu niže, što također ne odgovara zakonima fluvijalne erozije. Zaravni se ne granaju duž pretpostavljenih pritoka, već naglo prestaju ili se nepravilno i mrežasto šire. Duž rubova nema lučnih proširenja, koja bi odgovarala meandrima rijeke, što bi trebalo očekivati prema objašnjenju A. Pencka i A. Grunda.

Na zaravnima nema ili ima samo izuzetno i u neznatnim količinama kvarcnog šljunka, koji je karakterističan za ovakve oblike fluvijalnog postanka. Naglasili smo, da su zaravni najbolje razvijene u čistim i otpornim vapncencima, što također ne odgovara zakonima diferencirane riječne erozije Vidimo dakle, da nijedan element zaravni ne govori u prilog njihova fluvijalnog podrijetla.

24 J. Cvijić, Bildung und Dislozierung... str. 157—158.
25 A. Grund, Beiträge zur Morphologie des Dinarsischen Gebirges... str. 217.
26 J. Röglič, Unsko-koranska zaravan... 27
28 J. Cvijić, Geomorfologija, sv. str. 572.
Tumačenje C. de Stefanija i drugih talijanskih stručnjaka, koji se za njime povode, nije geološki osnovano ni morfoološki opravdano. Na našoj obali nisu utvrđeni marinski neogeni sedimenti, iz kojih bi se moglo zaključiti više stanje morske razine. Ovo pretpostavljenje i ničim dokazano podudaranje geološke prošlosti naspramnih jadranskih primorja u suprotnosti je s rezultatima, do kojih su došli istraživači istočne, dinarske strane 29.

Zaravni, osim one u jugozapadnoj Istri, odijeljene su od mora obal-skim gorjem ili su sasvim izolirane, što je u suprotnosti sa zakonima abražije i položajem abrazionih nivoa. Zaravni nisu ni stepeničasto poredane, kao što bismo očekivali prema idejama C. de Stefani ja i talijanskih stručnjaka. koji ga slijede.

Isti prigovori vrijede i za Cvijićevo mišljenje o abrazionom postanku zaravn iznad Karlovca. Kad bi se sve ostale poteškoće pustile iz vida, nemoguće je objasniti, kako je abraziona snaga u zalivu karlovačke zavale bila tako moćna, da u čvrstim vapnencima obrazuje zaravan, kojoj ne nalazimo odgovarajućeg nivoa u mešnim stijenama izloženih obala. J. Cvijić 30, a u početku i A. Grund 31, smatrali su abrazionima i zaravni na rubovima krških polja, B. Z. Milojević na isti način objašnjava obrazovanje »poda« oko gornje Cetine 32. Geološka snimanja i istraživanja pokazala su, da su jezerski sedimenti u današnjim poljima jako poremećeni i da dopiru do visina većih od rubnih podova. Naprotiv, rubni su podovi nezнатno izvijeni ili uopće neporemećeni, te njihova ravan zasi jeca poremećene jezerske naslage. 33 Očito je, dakle, da su rubne zaravni mlađe od jezerskih naslaga i njihova poremećaja, te ne mogu biti abrazione 34.

Abraziona priroda zaravni ne dolazi u obzir ni sa čisto morfoološkog stanovišta. Dimenzije zaravni su u mnogim slučajevima u nerazmjeru sa zavalama polja odnosno jezera, čiji bi ih valovi uravnavi, na pr. unsko koranska zaravan je prostranija od zavale Bihaćkog polja. Zaravni nisu razvijene duž cijelog ruba zavale ili pretpostavljenih jezerskih bazena na pr. oko Livanskog, Duvanskog, Gataćkog i Sinjskog polja, a to bi trebalo očekivati u slučaju da su abrazionog postanka. Nisu ni najbolje razvi-

30 J. Cvijić, Karšna polja zapadne Bosne i Hercegovine, str. 177 i Geomorfo-
logija II, str. 521—522.
31 A. Grund, Karsthydrographe... str. 118—161 i dr.
33 Pod utjecajem oštrih kritika Fr. Katzer (na pr. u Karst und Karsthy-
drographie, str. 35) i sigurnih geoloških dokaza i A. Grund je u svom drugom i glavnom radu (Beiträge zur Morphologie des Dinarischen Gebirges, str. 203) uvidio neosnovanost svog prvog stanovišta.
34 Autor je to raspravljao na primjerima Kupreškog polja (Morphologie der Poljen von Kupres und Vukovsko, Zeitschrift der Ges. fü Erdkunde zu Berlin, 1938, br. 7—8 str. 299—316), Duvanskog polja (Geomorphologische Studie über das Du-
vanjsko polje in Bosnien. Mitt. der Georg. Gesell., sv. 83, br. 5—8,str. 1—26, Wien 1940) i Unsko-korsanske zaravni (op. cit.).
jene na rubovima, koji su izloženi dominantnim vjetrovima, kao što je to pretpostavljao A. Grund³⁵. Rubne zaravni ili podovi na jednom su kraju dobro i široko razvijene, i to u otpornim i čistim vapencima, a na drugom ih uopće nema, na pr. oko Sinjskog, Livanjskog i Duvanjskog polja, a mrežasto se šire u okolno više zemljište, što smo vidjeli između Sinjskog i Dicmanskog polja. Zaravni rubom polja bolje su izražene u čistim i otpornim vapencima, dok je razdoblje diferenciran i dolazi do izražaja prema otpornosti stijena.

I hidrografska je nemoguće nekadašnja jezera dovoditi u vezu sa danasnjim zavalama polja, jer bi to značilo, da su vapnenačke strane zadrzavale vodu i ponašale se kao nepropusne stijene.

Iz izloženog slijedi, da radom abrazije nisu mogle nastati ni zaravni na primorskom ni panonskom rubu dinarskog krškog kraja kao ni one oko polja. Sve ove zaravni imaju iste morfološke osobine, kao i vapnenački nivoi, kroz koje protječu izolirani tokovi, te za sve treba tražiti analogno i specifično objašnjenje.

Za razumijevanje krškog procesa, a posebno za objašnjenje postanka zaravni u vapnencima imaju veliko značenje rezultati rada mađarskog geologa K. Terzaghi a³⁶. Nažalost ovaj rad u većini kasnijih rasprava nije dovoljno primijećen niti su njegove ideje korištene.

Terzaghi je uočio i istakao veliko značenje organogenih procesa u sloju humusa i njihov utjecaj na otapanje vapnenačke podloge, osobito u šumovitim krajevima. »Ova zajednica života i raspadaštva predstavlja kemijski horizont, u kome se konstantno obnavljaju vrlo aktivi elementi. Procesima raspadaštva postepeno se povećava ugljična kiselina, stvaraju se lako ispirani ugljeni hidrati i nastaju humusne tvari i humusne kiseline. Pri srednjoj vlazi i umjerenoj temperaturi raspadaju se humusni sastojici, pod utjecajem gljiva truljenja, u ugljičnu kiselinu, vodu i amonijak<³⁷. Iz ovoga se vidi, kakav se složen i snažan kemijski proces vrši pod utjecajem humusnog sloja.

Terzaghi dalje računa, da se vapnenačko zemljište u pošumljenom kraju zapadne Hrvatske otapa ispod humusnog sloja za 0,25 mm godišnje

³⁵ A. Grund, Karsthydrographie... str. 161.
³⁶ K. Terzaghi, Beiträge zur Hydrografie und Morphologie des kroatischen Karstes, Mitt. aus dem Jahr der Geol. Reichsanstalt, sv. XX, br. 6, str. 225—336, Budapest, 1913.
ili za 1 000 godina 25 cm. 38 Ovim intenzivnim korozivnim procesom objašnjava Terzaghi postajanje brojnih ponikava i uvala u šumovitim krajevima. Bez obzira na numeričke vrijednosti Terzaghijevih podataka, velika je šteta, što se njegovim idejama dugo vremena nije posvetila dovoljna pažnja.

Terzaghijeva shvaćanja o značenju biokemijskih procesa u humusnom sloju potvrđuju rezultati novijih istraživača. H. Oertli konstatira, da se voda bogati ugljičnim dioksidom »osobito poniranjem kroz sloj humusa (ugljični dioksid nastaje disanjem korijenja i bakterijskim raspadaanjem) ili miješanjem vode s organskim tvarima (ove se raspadaju, pri čemu se disanjem mikroorganizama stvara ugljični dioksid«. 39 Slične biokemijske procese konstatira i P. Bir o t, osobito u humusu vlažnih i toplih klima: »Raspadajući se, bujna vegetacija daje ugljični dioksid u stanju nastajanja (l’acide carbonique naissant), koji otapa sto puta jače od ugljičnog dioksida u padalinama. On može da brzo otopi mnogo vapnenaca na površini i na strmim padinama. Ako tome dodamo fiziološko-kemski rad živog korijenja (ispuštanje pozitivnih iona), možemo shvatiti intenzitet površinskog otapanja, koje je najznačajnije, kad su humus i korijenje u neposrednom dodiru s vapnencem, t. j. na nagnutim plohama...« 40 I u dinarskom kršu možemo konstatirati intenzivnu koroziju vapnenca pod humusnim pokrovom. Oblici korozije naročito su lijepo izraženi na nedavno ogolićenom kršu.

Da je biokemijski proces snažan i relativno brz, dokazuju kamenice — korozivna udubljenja u kompaktnim i čistim vapnencima. Najtipičnije su »plitvine«, kamenice plitke i ravna dna i nadsvodenih strana. Na dnu kamenica trune lišće, a na vlažnim se stranama uhvate lišaji i mahovine. Procesi života i raspadanja otapaju vapnenac i kamenica se bočno širi. Kamenice nalazimo i na padinama vapnenačkih blokova, što dokazuje, da se koncentrirani biokemijski korozivi proces vrši mnogo brže od površinskog otapanja pod utjecajem padalina.

Koncentrirani korozivni proces može se vršiti brže i od erozije tokova. Na urušenom bloku u pororu kod Pazina udubena je kamenica sa jako nadsvodenim stranama i ravnim dnom (sl. 5.). Iako Pazinski potok pri visokom vodostaju politira vapnenački blok, korozivni je proces, za vrijeme niskog vodostaja, udubio kamenicu promjera 70/40 cm i 15 cm duboku. Srpnja 1954. bila je voda u kamenici zelena od mikrovegetacije, koja pogoduje koroziji 41. I bogatstvo vapnenom otominom voda Plitvičkih jezera objašnjavaši smo utjecajem humusnog pokrova 42.

38 K. T e r z a g h i, Op. cit. str. 344.
39 H. O e r t l i, Karbonathäre von Karstgewässern. »Stalaktite« Zeitschrift der Schweizerischen Gesellschaft für Höhlenforschung, br. 4, str. 1—10, (otisak), 1954.
42 J. R o g l i t, Unsko-koranska zaravan... str. 65.
ZARAVNI NA VAPNENCIMA

Za nas su naročito važne Terzaghijeve ideje o obrazovanju zaravni na vapnencima. »Dok dno uvale dopre do inundacionog horizonta, bit će godišnje za određeno vrijeme inundirano, time prestaju uvjeti za život šume, koja vrši tako bitnu ulogu pri obrazovanju krških udubina«.43 Na dnu periodično plavljele uvale taloži se mulj, koji zaštićuje i konzervira podlogu i uvjetuje otjecanje duž rubova na dodiru s vapnenačkom okoličnom. Korodiranjem rubova nastaje i širi se zaravan, koja nema veze s riiječnom erozijom.

»Tokovi mogu uravnavanje van šumskog kraja najviše nešto ubrzati, i to ako su dosta česti, ali to sami ne mogu učiniti. Uravnavanje vrši samo korozija. Nivo uravnavaanja određuje samo inundaciona voda, a nemorska razina« (spac. R.)44. Terzagh dakte smatra, da je proces uravnavanja površinski i lokalno uvjetovan naplavnim ravnica.

Do istog je zaključka došao nakon dužeg vremena K. Kaysere, pri objašnjavanju zaravni na sjevernim stranama zavale Skadarskog jezera.45 Proučavajući zaravni na vapnenačkim stranama Kupreškog i Duvanjskog polja, došli smo do zaključka, da su one mogle nastati samo rubnom korozijom na otjecanjo strani naplavnih ravnica, a ne oko vrela, kako konstatiše Kaysere.46 Kasnija istraživanja pokazala su, da je i prostorna zaravan uvjetirana u srednje Une i Korane formiranja korozijom.47 Dalja su nas proučavanja uvjerila, da zaravni na vapnenačkom kopnu mogu postati samo specifičnim korozivnim procesima. Ovač način obrazovanja objašnjava karakteristične osobine, koje smo spriječila istakli. Glavna je osobina, da su zaravni utoliko bolje izražene, ukoliko su vapnenci čistiji, odnosno podložniji koroziji.

Terzaghijev »inundациони horizont« u mnogim odgovara Grundovoj temeljinci, ali nije jasno, čime je njegov položaj uvjetovan. Izgleda da se Terzagh u ovom objašnjenju poveo za suvremenim diskusijama o cirkulaciji vode u kršu (jedinstvena temeljina Grunda povezana s morskim razinom i izdvojeni podzemni tokovi u smislu Waagen a i Kätzera), te ih je kompromisnim, ali nedovoljno određenim stanovništvom želio pomiriti. Ali to ne umanjuje značenje njegovih geomorfoloških opažanja.

Iz Terzaghijevoj objašnjenja nije jasno, otkuda dolazi naplavni materijal, koji sprečava udjeljivanje ponikava. Vode, koje bi iz podzemlja nanožmence pritjecale i tamo ponovno otjecale, prema kolebanjima inundacionog horizonta ne bi mogle ostavljati taj nanos; u današnjim periodično plavljenim poljima vidimo, da ponori odnose naplavine. Korozivne zaravni nisu u istoj razini, što bismo morali očekivati, ako su uvjetovane inundacionim nivoom. Treba tražiti drugo i logičnije objašnjenje, koje je u skladu s odnosima u prirodi.

S brežuljkastog flišnog kraja Brkina pritječu tokovi i poniru u vapnencima Cićarije u sjevernoj Istri. (sl. 7). Oko ponora su nastale naplavne ravn, duž čijih se rubova vapnenci otapaju i ponori mijenjaju položaj. Vode, dakte, površinski pritječu, formiraju lokalnu naplavnu ravan i uvje-

Vidljivi su početni oblici korozivnih zaravnih — 1. vapnenci, 2. filij, 3. mlađe naplavlne ravnice.

Fig. 7. Elargissements dus à la corrosion autour des gouffres des cours d'eau qui affluent du flysch de Brkini vers les calcaires de la Čičarija (Istrie septentrionale).

On voit les formes initiales des surfaces corrosives.
1. calcaires, 2. flysch, 3. jeunes plaines alluviales.

tuju rubnu koroziju. Iste oblike i procese nalazimo na sjevernoj strani vapnenačkog ravnjaka Bujštine u sjeverozapadnoj Istri. Suprotno Terrazhiju, vidimo da »inundazioni« odnosno korozivni nivo nije uvjetovan pritjecanjem podzemnih, već površinskih voda s nepropusnog zemljišta (sl. 8). Prema našim iskustvima takvi su kontaktni odnosi općenito uvjetovali stvaranje zaravnih, odnosno polja u kršu. To je očito kod zaravnih Ličkog polja, gdje su tokovi pritičali iz paleozojskog — verfenskog podvelbitorskog pojasa, taložili naplavnu ravan i uvjetovali rubnu koroziju, kojom je nastala prostrana zaravan (sl. 9). Istu prirodu postanka dokazali smo za unsko-koransku zaravan.

Opravdanost gornjeg objašnjenja postanka korozivnih zaravnih i analogne petrografsko-hidrografske odnose nalazimo, prema rezultatima istraživanja H. Lehmanna, na sjeverozapadnoj Kubi. Tokovi pritiču s nepropusnih naslaga (skriljevci i pješčenjaci i Pizarras-serije) i na kontaktu
Sl. 8. Proces formiranja korozivnih zaravni.
1. Nepropustno zemljište, sa koga pritiču vode i potječe naplavlji materijal,
2. vapnenci, 3. naplavlja ravnica i 4. smjer otjecanja.

Fig. 8. Processus de la formation des surfaces corrosives.
1. terrain imperméable d'ou affluent les eaux et appartiennent les alluvions,
2. calcaires, 3. plaine alluviale, 4. direction de l'écoulement.

Sl. 9. Šematski profil kroz zaravan Ličkog polja.
1. Nepropustne paleozojske i donjotrijaske naslage, 2. trijaski dolomiti i vapnenci,
3. kredni vapnenci, 4. naplavni materijal i 5. smjer oticanja.

Fig. 9. Coupe schematique de plateau de Ličko polje.
1. Couches impermeables paleozoiques et du trias inferieur, 2. dolomies triasiques et
cailloutres, 3. calcaires crétacés, 4. matériaux alluviaux et 5. direction de l’écoulement.
s vapnencima gorja Viñales formirana je naplavna ravan »u čijoj je osnovi vapnenac ispod tankog sloja naplavina« (sl. 10). Zaravan se i danas širi na račun višeg vapnenackog zemljišta, Pećine, u koje se gube rijeke, »pod
siljecaju strme, često okomitestrate mogota, odvojenih od vapnenackih
grebena Sierra Viñales kao ipodnožje samog gorja. Strmine visoke 30, 40
i više metara svjedoče o mladom urušavanju«. »Približno u istoj nadmor-
skoj visini kao i spomenuta rubna krška zaravan nalazi se u samoj Sierra
Viñales prostrano krško polje okruženo strnim stranama...« »Rubovi
padaju strmo do ravnih polja i u toj su razini mnoge pećine, u kojima se
gube tokovi i kroz koje voda tropskih kiša otječe na sve strane. Dno nije

Sl. 10. Formiranje korozivnih zaravnih uvažnencima gorja S. Viñales (zapadna Kuba).
1. Nepropustne naslage (Pizarras formacije), sa kojih pritiču vode, 2. jurski i donjo-
kredni vapnenci i 3. serpentinit (crtež prof. H. Lehmann).

Fig. 10. Formation des plateaux corrosifs dans les calcaires des montagnes S. Viñales
(dans la partie occidentale de l’île de Cuba).
1. Couches imperméables (les formations Pizarra) d’où affluent les eaux, 2. calcaires

sasvim ravno, što se vidi po eroziji tla, koju voda vrši pred ponorima u
nižem rubnom dijelu.48 Pod analognim petrografsko-hidrografskim uvjetima
konstatirao je iste procese i oblike H. v o n W i s s m a n n u stalno-
ila periodično vlažnoj i toploj klimi jugoistočne Azije49.
Podzemnim se putem evakuiraju ne samo vode, već i vapnenacka oto-
pina, a i dio trošnog materijala naplavina.
Rubna korozija u povoljnim uvjetima može dovesti velike razmjere i
stvoriti zaravn, koje određuju izgled krskog pejzaža. Nad korozivnim zaravnima zaostaju osamljena i karakteristična uzvišenja suprotno izoliranim
udubinama u kršu umjerenih klima,50 imamo krš, koji je »dotjeran do
apsurda« kako kaže P. F e n e l o n.51

48 H. L e h m a n n, Der tropische Kegelkarst auf den Grossen Antillen. Das
Karstphänomen in den verschiedenen Klimazonen. Erdkunde sv. VIII, br. 2, Bonn
1954, str. 131.
49 H. v o n W i s s m a n n, Der Karst der humiden heissen und sommerheissen
Gebiete Ostasiens. Karstphänomen in den verschieden Klimazonen. Erdkunde
sv. VIII, br. 2, Bonn 1954, str. 127 (osobito je značajan profil kroz Kveiling u
Kvansiju).
50 Kad je ovaj rad bio u završnoj redakciji, primili smo od H. L e h m a n n (Frankfurt/Main) pismo i revizion otisak članka H. L o u i s a: Die Entstehung der
Poljen und ihre Stellung in der Karsteprotrugung auf Grund der Beobachtungen in
IZ NAVIDENIH JE PRIMJERA OČITO, DA JE RUBNI KOROZIVNI PROCES ODNOSNO
URAVNANJAVE VAPNENCA U TOPLOJ I STALNO ILI PERIODIČNO VLAAJNOJ KLINI MNGO
INTENZIVNIJKO NEGO U NAŠIM UMJERNIM PRILIKAMA. KILMA JE DAKLE ODLUČAN
FAKTOR U KOROZIVNOM PROCESU. VLAAJNA I TOPLA KILMA OMOGUĆUJE SNAŽNE BIO-
KEMIJSKE PROCESE I BRZO OTANJAVE VAPNENCA. »TU SU VAPNENCI, UZ ŠKRILJ
JEVCE I SLABO CEMENTIRANE PIJEŠČENJAKE NAJMANJE OTPORNE STIJENE.«52 U
OVOJ SE KLINI VRŠI INTENZIVNO RAZARANJE I OTANJAVE STIJENA, TOKVI NOSE DOSTA
NANOSA I LAKO FORMIRAJU NAPLAVNE RAVNICE. Ovim procesima nastaje vapne-
NAČKI PEJZAŽ POSEBNOG TIPA, KOJI JE U NAŠOJ LITERATURI POPULARIZIRAO J. DANE-
NE.53 PREVLADAVAJU OTVORENE ZARAVNI, S KOJIM SE IZDIŽU IZOLIRANA UVZIŠENJA.
DANEŠ JE PROUČAVAO VAPNENČKE PEJZAŽE »GUNUNG SEVU« (TISUĆU BREŽULJAKA)
NA JAVI I »COPIT COUNTRY« NA JAMAICI54. NAKON RADOVA H. LEHMANNJA O
KRŠU NA JAVI,55 POPULARIZIRAN JE ZA OVAJ TIP KRŠA NAZIV »KUPASTI KRŠ« (»KE
GELKARŠ«; U FRANCUSKOJ LITERATURI »KARST A PITONS«); NAZIV JE PRVI PUT
UPOTREBLJEN U IZVJEŠTAJU EKSPEDICIJE MAZZETIJA 1914—1918, PO KINI.

NAVEDENIM ISTRAŽIVANJIMA KAO I FRANCUSKIM GEOLOŠKIM SMANJIMA I
MORFOLOŠKIM STUDIJAMA U INDOKINI I DRUGIM RADOVIMA DANSU SU NAM DOBRO
POZNATE OSOBINE »KUPASTOG KRŠA« I PROCES NJEGOVA FORMIRANJA. »KOROZIJOM
STMRH VAPNENČKIH RUBOVA ŠIRE SE ZARAVNI NA ŠTETU SUSJEDNOG VAPNENCA.
ISTO TAKO, AKO DUBOKA PONIKVA DOSPIJE DO RAZINE KOROZIVNOG URAVNANJAVE,
POČINJE NJENO ŠIRENJE I ONA SE PRETVARA U UVALU (ILI POLJE) S RAVNIM DNO
I STMRHM STRANAMA. VAPNENČKI SE GREBENI POSEPENO DIJELE I DNO UVALE
SPAJA SE S RUBNOM ZARAVNI ILI DRUGOM UVALOM. TAKO SE IZVANA I IZ ISOLIRANIH
KRŠIH ZAVALA ŠIRE RAVNE PLOHE U NEMIRNI KRŠKI KRAJ I SRAŠČUJU U JEDIN-
STVENU ZARAVAN.«56 (FOT. 6), H. VON WISSMANN ISTIČE, DA ZARAVNI U PONI
KVMAMA MOGU BITI I U RAZLIČITOJ VIŠINI.

I PREMA REZULTATIMA SPOMENUTIH AUTORA KOROZIVNI PROCES U TOPLIM I
VLAAJNIM ILI PERIODIČNO VLAAJNIM KLIMA, UTOLIKO JE INTENZIVNIJI, UKOLIKO SU
VAPNENČTI ĆISTJI, A TI SU U JUŽNOJ KINI I INDOKINI PERMSKE STAROSTI. VIDIMO
DALJE ZA OTANJAVE VAPNENACA IDE BRIŽE OD EROZIJE ŠKRILJEVACA I PIJEŠČENJAKA
(SJEVEROZAPADNA KUBA I KINA) S KOJII PRITIJECU VODE I NANOSO NAPLAVINE,
ŠTO SE SLAŽE SA SPRIJEDA INZIJETIM KONSTATACIJAMA.

KOĐ KOROZIVNIH ZARAVNIH PREVLADAVA IZRAZITA URAVNJENOST. UKOLIKO IMA
NAGIBA, ON JE OBICNO PREMA RUBOVIMA, KAMO I VODA OTJEČE,57 A NA ZARAVNI
SE ISTIČU OSAMLJENA UVZIŠENJA; HUMOVI, KUKOVI ILI MOGOTI. ZARAVAN SE ŠIRI

Vas. da sam tokom istraživanja u Sierra de los Organos prošle jeseni utvrdio pot-
punu točnost vašeg shvaćanja, da polja nastaju u petrografskim kontaktima.< U
PRILOŽENOM ČLANKU PROF. H. LOUISA NA OSNOVU VIŠE PRIMJERA IZ PLANINE TAURUSA KON-
STATIRA, »DA JE TALOŽENJE NAPLAVNOG MATERIJALA PRAVI UZROK FORMIRANJA ZARAVNI NA
VAPNENCIMA, ODNOŠNO POLJA«.

51 P. FENELON. LE RELIEF KARSTIQUE, NORROIS, BR. 1, PIOTTIES, 1954, STR. 75.

52 P. BIROT, PROBLEMES DE MORPHOLOGIE KARSTIQUE ..., STR. 183.

53 J. DANEŠ, KARST TIPA »GOENOEG SEWEO« ILI »COPIT COUNTRY«, GLASNIK SRPSKOG GEOGRAFSKOG DRUŠTVA, SV. 2, STR. 310—314, BEograd 1913.

54 »COPIT« JE NAZIV ZA PONIKU, DOK JE U NAŠEM ČLANKU »UNSKO-KORANSKA ZA-
RAVAN I PLITVIČKA JEZERA POGREŠNO NAVEDENO, DA JE TO NAZIV ZA BRIJEG.

55 H. LEHMANN, MORPHOLOGISCHE STUDIEN AUF JAVA. GEOGRAFISCHEN ABHAND-
LUNGEN, STUTTGART 1936.

56 H. VON WISSMANN, OP. CIT. STR. 125.

57 I KREBS JE UPORIZO, DA SU ZARAVNI OBICNO U RUBNOM DIJELU NIJE (OP. CIT.
STR. 93).
prema rubovima. Smjer otjecanja i relativno mladi postanak objašnjavaju, zašto su rubni dijelovi zaravni često niži. Koncentraciju korozivnog procesa na određene linije i strminu padina naglašavao je već i Cvijić č68.

Upozorili smo, da su humovi na unsko-koranskoj zaravni neposredno uz rub bihačke zavale, a ne bliže podnožju Plješivice, od koje bi trebali biti odvojeni. Analogan položaj nalazimo i u Ličkom polju. Glavni niz humova i u ovom slučaju nalazimo na prijelazu između podvelebitske nepropusne zone i vapnenčaste zaravni. Humovi su redovito istog sastava kao i okolina; zaostali su, jer su bili manje izloženi korozivnom podsjecanju i razaranju. Izolirana uzvišenja zaostala su u višim i starijim dijelovima zaravni, gdje je bilo manje vlage, a biokemijski procesi otopanja nisu bili intenzivni.

Položaj humova i nižih rubnih dijelova zaravni olakšavaju rekonstrukciju hidrografskih i reljefnih odnosa u doba korozivnog uravnavanja. Mladim diferenciranim procesima došlo je do inversnih odnosa: erodirane su i evakuirane nepropusne stijene, dok su korozivne zaravni zaostale u većoj visini.

Procese rubne korozije nalazimo i danas u dinarskom kršu, ali u manjim razmjerima (oko ponora na granici flisa i vapnenaca u sjevernoj i sjeverozapadnoj Istri, u kamenicama i sl.). Naprotiv, korozivne zaravni, naslijedene iz geološke prošlosti, veoma su važan oblik u reljefu dinarskog krša. Ovim naslijednim oblicima neki krajevi dinarskog krša podsjećaju na »kupasti krš« toplih i vlažnih klima. Ova će nam podudarnost olakšati da određimo doba postanka zaravni.

Doba korozivnog uravnavanja u dinarskom kršu — Prva određivanja starosti uravnavanja kretala su se u okviru općih podataka iz geološke historije gorja alpskog nabiranja kao i prvih podataka o geologiji našega kraja. Neka od tih prvih gledanja uporno se provlače kroz literaturu, bez obzira na novija naučna dostignuća. Prije izlaganja vlastitog gledanja, dat ćemo pregled dosadašnjih shvaćanja.

A. Penčk smatra, da je fluvijalni ciklus počeo nakon donjotercijarnog, alpskog nabiranja i trajao do postanka jezera, tj. do početka micoena. Ovo znači veliko ujednostavnjivanje duge geološke prošlosti. Nemoguće je i pretpostaviti, da bi zaravni ostale ovako idealno očuvane čak od početka micoena, jer su u dinarskom gorju utvrđena mlada i snažna tektonska gibanja. Ovo je uvidio i Penčkov učenik A. Grund, koji smatra, da je prva faza uravnavanja počela nakon glavnih donjotercijarnih tektonskih pokreta i trajala kroz cijeli micoen. Grund je znao, da su pontijske jezerske naslage jako poremećene, i on te pokrete uzima kao smjenu starijeg micoenog i mlađeg plicoena (Grund priznaje pontijski kat micoenu) erozivnog ciklusa.

J. Cvijić uzima isti početak faze tektonskog mirovanja i erozije, te najprije smatra, da je trajala »od donjomiocenog nabiranja do gornjeg pić

Smatramo, da geološki rezultati omogućuju preciznije određivanje starosti zaravan. Svi se autori slažu, da su zaravni ne samo dobro izražene, već i neznatno poremećene. Zaravni se šire oko polja i erozivnih udubljenja u neogenim naslagama, a ove nalazimo i iznad zaravni. Iz toga slijedi, da su zaravni mlade od taloženja i poremećaja neogenih naslaga, Katz er je jezerske naslage Bosne i Hercegovine označio kao »oligomiocen«, koji je taložen »tokom oligocena i najviši tokom donjeg miocena«. Novija istraživanja pojedinih bazena pokazuju, da su u ovoj seriji zastupane i pontijske naslage. Slažemo se, dakle, sa A. Grundom, da su postponjijski tektonski pokreti (ali postoki kat pribijamo pliocenu) imali velik intenzitet i da je tek poslije njih počela faza mirovanja i uravnavanja. Ne poznajemo zaravni, koje bi nastale tokom prvog Grundovog ciklusa, t. j. u miocenu. Da li bi se u starijem i poremećenom reljefu mogli naći tragovi odgovarajuće faze subaerske erozije, to nas ovdje ne zanima, ali bi te forme bile mladim pokretima znatno poremećene i korozivnim procesima izmijenjene. Izrazite zaravni u dinarskom kršu su, dakle, obrazovane poslije taloženja i poremećaja pontijskih slojeva.

Stratigrafski podaci za utvrđivanje gornje granice faze uravnavanja nisu dovoljni ni sigurni; to se može lakše i pouzdanije utvrditi morfološkom analizom. Korozivne su zaravni disicirane dolinama, koje su u vapncima kanjoni, a u nepropusnim stijenama proširenja. Na taj su način obrazovane složene doline Une, Zrmanje, Krke, Cetine, Neretve i drugih. Ovo nomlаждavanje reljefa uvijetovano je pokretima, koji su bili uglavnom

62 J. Cvijić, Bildung und Dislozierung... str. 126.
63 Prema usmenom i ljubaznom saopćenju prof. A. Tačića, koji vrši detaljno geološko istraživanje i snimanje kraja, u Sinjskom polju nema gornjeg pliocena, a nesigurne ni i ponijske naslage.
64 J. Cvijić, Geomorfologija, sv. I., str. 573.
65 J. Cvijić, ibid. str. 369.
66 Problem je raspravljan u članku Unsko-koranska zaravan i Plitvička jezera, a iste odnose nalazimo i u drugim dijelovima krša. Tu morfološku činjenicu podvukao je več i Fr. Kätzer: »Jezerske zavale su imale ne samo drukčije obrise, već i drukčiji raspored od današnjih polja« (Karst und Karsthydrographie..., str. 35).
epirogenetske prirode. Naš je kraj dosta ravnomjerno (tako se očuvala horizontalnost zaravni) izdignut, ili su neke zaravni duž oživljelih tektonskih linija stupnjevito raspoređene (katunski strmac iznad zadvarskih zaravni, dislokacija rubnih nivoa oko Petrova i Sinjskog polja). Pretežno epiroge-

netska priroda pokreta krajem plicena i početkom pleistocena općenito je konstatirana; to je omogućilo očuvanje velikih zaravnih, u kojima su kvar-
tarne terase. Faza mirovanja je, dakle, prekinuta pokretima krajem plio-
cena i početkom pleistocena, i time je počelo mlađe usijecanje tokova. Isto-
vremeno je na izdignutim vapnenackim zaravnima oživio okomiti kruški proces i formiranje izoliranih udubljenja, koja nisu izmijenila opći izgled

uravnjenosti. U toku mlađe faze preoblikovani su i humovi i njihove
padine prilagođene novim klimatskim uvjetama (fot. 3 i 8).

Pomlađene i složene doline alogenenih tokova bile su usjećene prije gla-
cijacije u izvornim gorjima, jer su u njima staloženi fluviglacialni na-
nosi (Neretva i Morača). Dosada su sigurno utvrđeni tragovi posljednje

virsme glacijacije. Spiranjem sa strane i donošenjem iz izvornih dije-
lova staložile su se, tokom hladnih pleistocenih perioda, u dolinama aku-
mulacione ravnj, koje su najnovijim usijecanjem zaostale u obliku terasa: istovremeno su i poljima formirani naplavlni pokrovi, iz čega se može za-
ključiti, da su oba osnovna oblika nastala prije glacijacije.

Tereni sastavljeni od stijena podložnih spiranju i potočnoj eroziji dije-
rencirano su disicirani. Pojačano spiranje sa padina tokom hladnih doba
pokrilo je dna ponikava i uvala i usporilo njihovo udubljivanje. Spiranje
padina, potočna erozija i taloženje plavina bili su tokom ledenih vremena u

kršu znatno zastupani.

Ostaje još da utvrdimo, da li su klimatske prilike tokom plicena po-
godovale korozivnom procesu. Neki računaju da je klima tokom plicena
»približno odgovarala današnjoj«. Uspjehajevanje magnolije u srednjoj
Evropi još i početkom kvarcara ukazuje, da je klima bila tople i dovoljno

vlažna. Jača ljetna zagrijavanja privlačila su zračne mase s mora i uvje-

akumulacije i erozije.

70 I ovoj fazi disekcije korozivnih zaravni nalazimo analogne oblike u kraje-
vima, gdje su rubni korozivni procesi i danas aktivni. Reljef zavale Jiljjang u južnom

Kvangsiju (fot. 7) mnogo podsjeća na slike, koje imamo u Ličkom polju (fot. 8), Po-
povu polju (fot. 9) i drugde; razlike su samo u intenzitetu mladeg usijecanja tokova.

71 Položaj fluviglacialnih nanosa unutar pomlađenih dolina ukazuje, da je

neosnovano Terzahijevce datiranje doba postanka zaravni odnosno polja: »Doba

mirovanja i formiranju planina došla su u Alpama do izražaju u interglacijacijama,
a u današnjem kršu u postanku polja« (T erzahjke, op. cit. str. 38). Isto tako

stavljamo, da nije ništa dokazano i nemoguće tvrdjenje Fr. Katzer u kritici A.

G r u n d a, da su zaravni glavnim dijelom nastale u kvarcara (Pet. geogr. Mitte-

lungen, sv. 58, br. 1, Goth. 1912, str. 149—150).

72 Vidi J. Roglic »Imotsko polje«... i »Polja zapadne Bosne i Hercego-
vine«... i A. Melik »Kraška polja Slovenije«. Slov. akademija znanosti i umjet-

73 M. S c h w a r z b a c h, Klima der Vorzeit, Stuttgart 1950., str. 142—144.

74 P. W o l d s t e d t, Das Eiszeitalter, Stuttgart 1954., str. 8.
tovala klimu s vlažnom i toplom godišnjom dobi, slično klimi jugoistočne Azije (južna Kina), u kojoj se — kao što je pokazao H. Wissmann — vrši intenzivna rubna korozija.

Navedenim općim klimatskim odnosima treba dodati regionalne karakteristike našega kraja i imati u vidu lokalne petrografsko-hidrografskе prilike. Dinarsko gorje je, zbog svog položaja i pružanja, i u to doba zadržavalo veće količine padalina. S nepropusnih su stijena pritjecale vode, donosile materijal i formirale inundacije ravnice, čijim se rubom vršilo otapanje vapnenaca i širila zaravan. Ove su zaravni imale karakter krških polja. Korozivni je proces diferencirano jače otapalo čiste vapninence.

Sigurna geološka starost i očita korozivna priroda zaravnog dokaz su, da je klima srednjeg i gornjeg ploćena u našim krajevima bila dovoljno topla i osobito na gorju, koje je zadržavalo vlagu, dosta vlažna, što je uvjetovalo razvoj odgovarajućeg tipa krša.

Morfološka analiza i korelativno objašnjavanje procesa omogućuju nam, dakle, da evoluciju reljefa dinarskog krša obnovimo do pokreta, kojima su poremećene jezerske naslage, čiji su najmlađi članovi određeni kao polnacki. U toku ovog razdoblja nastali su najizrazitiji oblici subaerske erozije: prostane zaravni, mlađe i složene doline i zatvorena krška udubljenja. Pojačano razaranje pod utjecajem zamrznjavanja i odmrznjavanja stijena i potočno spiranje padina uvjetovali su tokom lednenog doba akumulaciju u udubljenjima, što današnji procesi nastoje odstraniti. U priobaljskim su krajevima navedeni procesi modificirani i glacioeustatičkim kolebanjima morske razine.

Kompleksna i sintetička geomorfološka metoda omogućuje rekonstrukciju evolucije reljefa. Jednostavna primjena velikih jedinica geološke kronologije ne zadovoljava i ne vodi računa o složenosti reljefa, što smo vidjeli u radu A. Penc'ka i u prvim radovima J. Cvičića, koji su početak faze erozije vezali za srednjoterensku nabiranje. Površno geološko datiranje štetno se provlači i kroz noviju literaturu.

Potreba kompleksnog gledanja i boljeg poznavanja mlađe geološke prošlosti postaju još očitiji, ako morfološke procese odmjerimo prema vremenskom trajanju. Od pokreta na prijelazu između tercijara i kvartara (600.000 — 1.000.000 godina) izvršilo se usijecanje dolina i polja, bile su periodove akumulacije i erozije uvjetovane klimatskim promjenama i kole-
banjima morske razine. Evolucija i promjene reljefa u toku kvartara bile su dakle značajne i mnogostruke. Ranijem mirnom periodu do sredine pontskog kata (oko 10,000.000 godina) pripisuju se formiranje prostranih korozivnih zaravnih, a taj se proces, kao što smo vidjeli, u povoljnim klimatskim uvjetima vrši veoma brzo. Vjerojatno će dalja istraživanja naći elemente, kojima će se moći izvršiti još detaljnije raščlanjenje ovog dugog razdoblja.

U dinarskom kršu ima mnogo reljefnih elemenata, koji su stariji od poremećaja pontskih jezerskih naslaga i koji su nastali kroz nekih 13,000.000 godina, nakon glavnih srednjoterzijarnih pokreta. Kroz to je doba bile više sekundarnih orogeneza u smislu H. S t i l l e a. Ti su pokreti mijenjali uvjete i komplicirali evoluciju reljefa, tako da je njena rekonstrukcija teška i nesigurna, a zaostali oblici imaju sekundarno morfološko značenje. Stariji se elementi reljefa u toku mlade faze mijenjaju i gube; pravilna ocjena mladih omogućuje postepenu rekonstrukciju starijih oblika. Pri objašnjenju naslijeđenih elemenata krškog reljefa treba voditi računa o procesima, koji odgovaraju vapnenicama, i imati u vidu mladu izmjenu tih osnovnih oblika. Ovaj zadatak za cijeli reljef krša izlazi van okvira našeg rada, koji se ograničio na zaravni, koje su vrlo izrazite i relativno mlade.

Zaključak — Zaravni su vrlo značajan elemenat dinarskog krša i suprotn razvoju krških oblika u umjereni klimama, kao što je to definitirao J. C v i j i č: »Razvijaju se više-manje okomito do nepropusne podloge«. Zaravni se ne mogu objasniti ni drugim erozivnim procesima, koji su na vapnenicama izuzetni i stvaraju specifične forme (riječna erozija — kanjonске doline) ili u našem slučaju ne dolaze u obzir — abrazija.

Vidjeli smo, da se u dinarskom kršu i u današnjim uvjetima vrši rubni korozivni proces i formiraju oblici, razvijeni u horizontalnom smjeru. Ovakav razvoj reljefa na vapnenicama prevladava u topnim i stalno ili povremeno vlažnim klimama, koje pogoduju formiranju naplavnog pokrova bogatog organskim sastojinama, na čijem se rubu vrši intenzivan korozivni proces.

Formiranje zaravni je lokalni i površinski proces, uvjetovan stabilnostu inundacionog nivoa, a ne razinom temeljnica. Zaravni se mogu formirati na različitim visinama, ako se formira stabilna naplavna ravan, koja sprečava poniranje i uvjetuje otjecanje prema rubovima. Prilike u doba zaravni bile su onakve, kao što su u većini današnjih polja. Zaravni i jesu tragovi nekadašnjih polja, koja su u doba korozivnog uravnavanja bila u dinarskom kršu zastupana više nego danas i određivala su igred prostranih krajeva.

Korozivne se zaravni bitno razlikuju od fluvijalnih. Ističu se u vranje- nošću, nisu izdužene duž tokova, ne proširuju se prema ušću i ne nastavljaju se uzvodno terasama, mogu biti potpuno izolirane višim zemljištem — suprotno zakonima riječne erozije. Nema karakterističnog odnosa između riječnih erozivnih i naplavnih procesa; nastale su otapanjem vapnenaca i otopina je zajedno s vodom podzemno otekla.

Zaravni u dinarskom kršu jesu naslijeđeni oblici, a geološki odnosi i morfološka analiza ukazuju, da potječu iz srednjeg i gornjeg pliocena. To
je period tektonske stabilnosti i erozije, kad je u dinarskom kršu bila topla i periodično vlažna klima. Planine su zadržavale veću količinu padalina, a pogodni petrografsko-hidrogeografski odnosi osiguravali su naplavine i stalnu vlagu. Ovim regionalnim karakteristikama i lokalnim razlikama može se objasniti rasprostranjene korozivnih zaravni. Mladim pokretima počela je diferencirana erozija, a zbog pleistocenih klimatskih promjena dolazilo je do smjena akumulacije i erozije, povezanih s kolebanjem razine mora. Mlade su promjene neznatno izmijenile opći izgled zaravni.

Organogeni procesi života i raspadanja bitno utječu na otapanje vampenaca. Kako su organogeni procesi odraz klime, logično je da ona uvjetuje tip reljefa na vampencima i utječe na nj. Krš umjerenih širina karakteriziraju izolirana i u okomitom smjeru razvijena udubljenja, a u toplim i vlažnim ili periodično vlažnim klimama obrazuju se korozivne zaravni i izolirana uzvišenja.

Promjenom klime dolazi do smjene različitih tipova vampenačkog reljefa u istom kraju. Pored izoliranih udubljenja, razvijenih u skladu s današnjim uvjetima, u dinarskom su kršu zaostali oblici i drukčijeg tipa, koji odgovaraju prilikama i hidrogeografskim odnosima ranijih geoloških razdoblja. Osjetljiv na promjene klimatskih prilika, krš je pogodan za rekonstrukciju klime u geološkoj prošlosti — u tome je posebno značenje koreografskog objašnjenja reljefa.

Pri objašnjenju evolucije reljefa, treba, pored podataka iz geološke prošlosti, voditi računa o petrografsim uvjetima i klimatskim modifikatorima. Ovakvo kompleksno gledanje ukazuje, da je najmlađa geološka prošlost presudna za današnji izgled reljefa i da su se kroz to doba na istom prostoru vršili različiti, a čak i suprotni procesi.
RÉSUMÉ

Les surfaces d’aplanissement dans les calcaires
par J. Roglić

En raison de l’intérêt manifesté récemment pour l’étude des caractères et de la
genèse des surfaces du karst dinarique, l’auteur veut apporter ici une contribution
nouvelle à ce problème et en fait le thème d’une étude monographique.1

La circulation de l’eau dans les fissures karstiques conditionne la formation
des formes principalement développées dans un sens vertical. Ce processus, qualifié
de «normal» dans le karst exclut par conséquent la formation de surfaces horizon-
tales. Cependant, les surfaces sont mieux développées dans les terrains calcaires que
dans les autres, et elles présentent des caractères originaux qui demandent une
explication particulière.

Dans le karst dinarique classique, les surfaces représentent les formes les plus
marquantes; on s’étonne que les chercheurs ne leur aient pas plus tôt consacrée une
attention spéciale.

Les surfaces du karst dinarique s’étendent sur les deux versants, adriatique et
continental. L’auteur se limite à l’étude des formes les plus originales et ne prend
pas en considération les traces de niveaux locaux, qui peuvent représenter les restes
ou les témoins de surfaces plus antérieures dégradées. Le but de ce travail est d’expli-
quer l’origine de ces surfaces, et non de décrire toutes les formes semblables.

Quelques surfaces s’étendent le long des cours d’eau actuels (surface du Nord
de la Dalmatie autour de la Krka et la Zrmanja; surfaces autour de la Cetina; sur-
surface de Dubrave-Brotnjo autour de la Neretva inférieure; surface autour de

* Cet article a été préparé en vue de l’impression dans une autre revue le 12
mai 1956, mais il n’a pu être publié pour des raisons spéciales. La rédaction du
texte est restée inchangée et la bibliographie n’a pas été complétée; elle n’avait
daupuis pas raison de l’être.

1 Sur l’importance des surfaces de corrosion situées du côté émissaire des
plaines alluviales, c’est-à-dire des polles karstiques, l’auteur a déjà attiré l’atten-
tion dans les articles suivants: morphologie der Poljen von Kupres und Vukovsko»
Studie über das Duvanjsko Polje in Bosnien», tirage à part des «Mitteilungen der
Geogr. Gesellschaft», tome 83, n° 5—8, Vienne, 1940; «Surface de l’Uma et

Sa communication sur les surfaces karstiques dans les régions dinariques au
XVII° Congrès de Washington de 1952 a été publiée dans les »Proceedings Eight
General Assembly an Seventeeth International Congress», p. 366—369. Une com-
munication a été faite à la Société de Géographie de Zagreb le 5 avril 1954. Le
problème est examiné également dans la conférence intitulée «Quelques problèmes fon-
damentaux du karst», tenue à l’Institut de Géographie de la Sorbonne le 29 avril
1935 et dont le texte a été publié dans »l’Information Géographique», année 21, n°1,
p. 1—12, Paris, 1937; dans la conférence de la Société de Géographie de Crète du
16 mai 1935 et au IV° Congrès des Géographes Yougoslaves, publiée dans les »Rap-

Le problème était discuté à la Conférence de la commission pour l’étude des
phénomènes de karst de UGI à Francfort 27—30 décembre 1953, publié dans »Das
Kartphänomen in den verschiedenen Klimazonen», Erdkunde, t. VIII, f. 2, 113—115,
Bonn, 1954.
l’Una moyenne et de la Korana). Cependant, ces surfaces ne s’élargissent pas dans la partie aval de ces cours d’eau et ne se prolongent pas dans la partie amont, comme les surfaces d’origine fluviatile. D’autres se trouvent en bordure de régions karstiques, comme la surface du S.O. de l’Istrie ou les surfaces de la Korana, de la Mrežnica et de la Dobrâ inférieure autour de Karlovac. Les plus originales sont complètement entourées et fermées par des hauteurs périphériques: la surface du Lug et de la Šuma dans le Popovo Polje, le fond de polje de Lika et de Gacko polje. Les principaux caractères de chacune de ces surfaces sont, donnés dans cet article.

Ces surfaces sont situées à des altitudes différentes, alors que dans la partie S.O. de l’Istrie, elles descendent jusqu’à la côte, celle de Veliko Ruño dans le Velebit occidental est à 900 m. De même, ces surfaces sont de dimensions variées.

Ces surfaces se caractérisent par un aplatissement remarquable, elles ne présentent pas de pente en direction des talwegs ni le long des rivières comme les surfaces fluviatiles. La plupart sont faiblement inclinées en direction de leur bordure calcaire. Elles ne présentent aucun témoin d’anciens méandres sur les bords, ni de formes d’abrasion littorale. Il n’existe pas, sauf dans des cas d’exception, de graviers de quartz qui témoigneraient d’une origine fluviatile.

En revanche ces surfaces sont nettement en rapport avec les calcaires Les plus vastes et les plus typiques s’étendent dans les calcaires purs et compacts; leur formation demande donc une explication particulière qui tienne compte de ces faits. Des observations personnelles dans d’autres régions (France et États-Unis) et les renseignements fournis par les auteurs tendent à confirmer ce point de vue.

L’origine des surfaces dans le karst a été expliquée par les mêmes processus que les surfaces dans les terrains imperméables. Ces surfaces ont été considérées comme une preuve de l’existence de la grundwasser et d’une érosion fluviatile. A. Penck a le premier exposé cette idée laquelle A. Grund a appliqué et théoriquement développé; la conception de W. M. Davis ne diffère de celle de Penck que dans l’appréciation du décrépissement par les processus fluviatiles. Les hauteurs qui se dressent au-dessus de ces surfaces sont appelées par Penck des «mosors», témoins d’interfluves, et par Davis »monadnocks», composés de roches plus résistantes. Ces deux théories ne répondent pas à la réalité. J. Cvijé a recherché au début de ses travaux une explication qui tienne compte de la nature calcaire des terrains, puis il s’est rallié à la conception de Penck et de Davis. Il a interprété certains surfaces par des processus d’abrasion. Les auteurs italiens ont toujours considéré les surfaces du versant adriatique comme des formes d’abrasion. Or, les caractères morphologiques de ces surfaces et leurs conditions géologiques excluent une telle hypothèse.

L’auteur part de constatations précises qui montrent que dans le karst s’effectue une circulation verticale des eaux, alors que les cours d’eau allogènes peuvent seulement creuser des vallées en forme de canyons. Les eaux dans le karst s’engouffrent, le processus de ruissellement est inexistant en direction des rivières, il n’y a pas d’eau de fond qui pourrait alimenter les sources, les eaux ne s’écoulent pas en direction du fond de la mer. Il n’y a pas de conditions réalisées pour que s’effectue une érosion fluviatile. Tout indique qu’il faut chercher une explication particulière à la formation des surfaces.

K. Terezaghi en 1913 a souligné l’importance du niveau d’inondation qui empêche l’écoulement vertical et conditionne la corrosion périphérique et par conséquent l’aplanissement des calcaires. Les observations ultérieures de K. Kayser et d’autres auteurs ont apporté de nouvelles à la théorie de Terzaghi que ces auteurs ont modifiées. Terzaghi considère que l’inondation est provoquée par la remontée des eaux des canaux souterrains, mais Kayser montre que le processus d’inondation est en rapport avec plaines littorales. L’auteur montre que ce sont les terrains imperméables qui fournissent à la fois les eaux et les matériaux qui obtiennent les fissures, empêchent l’écoulement vertical des eaux du karst. Les surfaces se trouvent donc au contact des roches perméables et des roches imperméables. Le pouvoir corrosif des eaux est renforcé par la présence de la végétation marécageuse et les débris organiques. Par conséquent, le climat joue un rôle important dans ce
processus de corrosion latérale. Cette action reste superficielle et locale, et elle est conditionnée par l'équilibre existant entre, d'un part, l'arrivée des eaux et l'accumulation, d'autre part, l'écoulement vertical et la corrosion. Ce qui explique la formation des surfaces à des niveaux différents et leur pente en direction de la bordure calcaire.

Au moment de la formation de ces surfaces, existaient donc des cuvettes formées en rapport avec les cours d'eau qui avaient creusé dans les terrains imperméables, tandis que dans la partie inférieure, les surfaces se développèrent par la corrosion aux dépens des calcaires. Ces cuvettes ont été favorisées par la disposition tectonique, mais elles n'ont reçu leur aspect définitif que par l'action d'un processus érosif-corrosif. Ce sont là les conditions actuelles des poljes du karst dinariques, ce qui prouve que les surfaces correspondent à d'anciens poljes; au moment de leur formation, les surfaces de poljes étaient plus nombreuses qu'aujourd'hui. L'auteur présente des exemples qui montrent que le processus de corrosion latérale s'effectue encore de nos jours. Des processus et des formes semblables sont connus dans les régions de climat chaud et humide: Chine méridionale (H. von Wissmann), N. O. de Cuba (H. Lehmann), etc.

Lorsqu'est détruit l'équilibre entre alimentation et écoulement, à la suite de l'érosion des terrains imperméables ou changement du climat qui ont pour conséquence une diminution de l'alimentation, ou de l'accroissement de capacité des ponors, le matériel alluvial est évacué et une surface rocheuse se dégage.

Des processus plus récents d'érosion différentielle ont pu abaisser la zone des terrains imperméables, dont les matériaux étaient évacués superficiellement ou par les canaux souterrains, et les surfaces se sont ainsi maintenues comme des régions plus hautes.

Les conditions géologiques facilitent la datation de ces surfaces. Celles-ci sont plus récentes que les dépôts lacustres qui sont souvent disloqués et se trouvent au-dessus de leur niveau. Or, les plus récents dépôts lacustres sont pontiens. D'autre part, les surfaces sont disséquées par des vallées en forme de canyons au fond desquelles sont des formations fluvio-glaciaires. La période d'aplanissement se situe donc entre les mouvements tectoniques qui ont dérangé les dépôts pontiens et le soulèvement qui a provoqué le rajeunissement de relief au pléistocène inférieur; ces surfaces se sont donc formées au cours du pliocène moyen et supérieur. Un climat chaud et périodiquement humide a favorisé alors les processus de formation des surfaces. Il faut évidemment tenir compte de facteurs locaux. En raison de sa position et de sa direction, le kart dinarique a été, comme de nos jours, relativement humide. Les surfaces se sont formées au contact des calcaires et des régions d'alimentation formée de terrains imperméables.

(Traduit par A. Blanc)