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ABSTRACT 

In the present study we develop a new two-dimensional Copula-GARCH model. This type of two-
dimensional process is characterized by a dependency structure modeled using a copula function. 
For the marginal densities we employ a GARCH(1,1) model with innovations drawn from a t-
Student distribution. The model can be easily extended by using more sophisticated processes for 
the marginal densities. The static specification of the model assumes that the dependency structure 
of the two data series does not vary in time implying that the parameters of the copula function are 
constant. On the other hand, the dynamic specification models explicitly the dynamics of these 
parameters. We econometrically estimate the parameters of the two specifications using various 
copula functions, focusing on the mixture between the Gumbel and Clayton copulas. We employ daily 
index returns from two emerging and two developed financial markets. The main finding is that 
including a varying dependency structure improves the goodness-of-fit of the Copula-GARCH model.1   
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1. INTRODUCTION 
 

The linear correlation coefficient is central to the modern financial modeling. 
Unfortunately, when the return distribution deviates from the elliptic class which includes the 
Gaussian, the correlation coefficient is not able to correctly capture the dependency structure 
between the assets. Several studies have empirically proved that asset returns are heavy tailed 
and successfully fitted to the data leptokurtic distributions like the Generalized Hyperbolic 
Distributions. For example, Necula (2009a) estimated the parameters of the Generalized 
Hyperbolic Distribution for the returns of several Eastern European emerging markets and 
concluded that the estimated GH distribution represents a good approximation (at least up to 
the 4th order term) of the empirical distribution quantified using nonparametric kernel 
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methods. Moreover, the linear correlation coefficient cannot capture a non-linear dependency 
structure in the data (Blyth, 1996; Shaw, 1997). Copulas represent a way to surpass the 
deficiencies of the linear correlation coefficient. The theory of copulas dates back to Sklar 
(1959), but its application in financial modeling is far more recent. Nelsen (1999) provide an 
introduction to copula theory, while Cherubini et al. (2004) provide a discussion of copula 
methods for financial applications.  

Volatility clustering is a phenomenon well documented in the financial literature. 
Since the pioneering work of Engle (1982) and Bollerslev (1986) manifold variations of the 
one-dimensional GARCH volatility model have been developed. However, in order to 
quantify more exactly the market risk one has to account both for the volatility of the assets 
and for the dependency structure between them. The Copula-GARCH is a multidimensional 
GARCH process that models the dependency structure using a copula function. Jondeau and 
Rockinger (2006) developed a two-dimensional Copula-GARCH model using the Planket 
copula, the Gaussian copula and the t-copula. Since the Planket copula and the Gaussian 
copula does not account for tail dependence the authors concluded that dependency should be 
modeled with t-copulas. Unfortunately, this kind of model can not be extended easily to three 
or more dimensions since the number of parameters of the t-copula increases with a square 
law. Patton (2006a, 2006b) employed the Clayton copula, and Hu (2006) used the Gumbel 
copula. The Gumbel copula captures dependence only in the upper tail, while the Clayton 
copula models the dependence only in the lower tail. However, a series of studies pointed out 
that the asset returns are characterized by dependency both in the lower and in the upper tails. 
One can capture such a dependence structure with the t-copula or with a Gumbel-Clayton 
mixture. For example, Necula (2009b) assessed the dependency structure between stock 
indexes in several Eastern European markets by econometrically estimating the parameters of 
various parametric copula functions and concluded that the mixture between a Clayton copula 
and a Gumbel copula and the t-copula are the most appropriate copula functions to capture the 
dependency structure of two financial return series. The advantage of the Gumbel-Clayton 
mixture is that the number of parameters remains constant as the dimension increases, while 
the number of the parameters of the t-copula increases with a power law. 

In the present paper we develop a new two-dimensional Copula-GARCH model. To 
account for heavy tails we model the marginal densities using a GARCH(1,1) process with 
innovations drawn from a t-Student distribution. The static specification of the model assumes 
that the dependency structure of the two data series does not vary in time implying that the 
parameters of the copula function are constant. On the other hand, the dynamic specification 
models explicitly the dynamics of these parameters. We econometrically estimate the two 
specifications using various copula functions, focusing on the mixture between the Gumbel 
and Clayton copulas. Models based on this kind of mixtures capture dependence both in the 
lower and in the upper tails and can be easily extended to more dimensions.  

The rest of the paper is organized in three sections. In the second section we introduce 
the static and the dynamic specifications of the model. In the third section we analyze the 
results of the econometrical estimation of the two specifications. The final section concludes. 

 

2.  THE COPULA-GARCH MODEL 
 
As it is well-known, a copula represents the cumulative distribution function (cdf) of a 

multidimensional distribution with uniform marginal distributions. Sklar (1959) proved that a 
copula function represents the connection between a bi-dimensional distribution and its two 
marginal distributions, capturing the dependency structure. More precisely, if F  is the cdf of 
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the bi-dimensional distribution and 1F  and 2F  are the cdfs of the marginal distributions, there 
is a unique copula C  such that: 
 ( ) ( ) ( )( )221121 ,, xFxFCxxF = , (1) 

Also, if the cdfs for the bi-dimensional and for the marginal distributions are known, 
the associated copula function is given by (Sklar, 1959): 
 ( ) ( ) ( )( )2

1
21

1
121 ,, uFuFFuuC −−= , (2) 

An important class of copula functions consists of Archimedean copulas. An 
Archimedean copula is given by:  
 ( ) ( ) ( )( )21

1
21, uuuuC ψψψ += − , (3) 

where the generator function ψ  has the following properties: ( ) 01 =ψ , 0>′ψ , 
and 0<′′ψ  . 

The most commonly used copulas in finance are the product copula (i.e. the copula 
that models independence), the Gaussian copula, the t-copula, and three Archimedean 
copulas: Frank, Gumbel and Clayton. As we have already mentioned, financial series usually 
have dependence both in the lower tail and the upper tails. Such a dependence structure can be 
modeled using the t-copula or with a Gumbel-Clayton mixture, the latter having the advantage 
of being more parsimonious as the dimensions increases. 

 
2.1 THE STATIC SPECIFICATION 

 
Let tt xx 21 ,  the two asset returns series. The static specification of the Copula-

GARCH(1,1) is given by the following characteristics: 
 t

he dynamics of 1x  is described by a GARCH(1,1) process with leptokurtic 
innovations: 
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 t
he dynamics of 2x  is described by a GARCH(1,1) process with leptokurtic 
innovations: 
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 t
he dependency structure between the innovations tt zz 21 ,  is modeled by a copula 
function

t
Cθ , characterized by the vector of parameters tθ ; 
 t

he dependency structure does not vary in time:  θθ =t . 
To model the dependency structure we employ the following copula functions: 

 t
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he Gaussian copula ( ρθ =: ): 
 ( ) ( ) ( )( )2

1
1

1
,221 ,, uuuuCGauss −−= φφφ ρρ , (5a) 

where φ  is the cdf of the standard normal distribution, and ρφ ,2  the cdf of the bi-
dimensional normal distribution with correlation ρ . 

 t
he t-copula ( ( )ρνθ ,:= ): 

 ( ) ( ) ( )( )2
1

1
1

,,221, ,, ututtuuC t −−= ννρνρν , (5b) 
where νt  is the cdf of the t distribution with ν  degrees of freedom, and ρν ,,2t  the cdf 
of the bi-dimensional t distribution with correlation ρ . 

 F
rank copula ( αθ =: , 0≠α ): 
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 C
layton copula ( αθ =: , 0>α ): 
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 G
umbel copula ( αθ =: , 1>α ): 
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 G
umbel-Clayton mixture ( ( )21,,: ααωθ = ): 

 ( ) ( ) ( ) ( )212121,, ,1,,
2121

uuCuuCuuC GCmix
ααααω ωω −+= , (5f) 

As was already mentioned, the main advantage of the Archimedean copulas (Frank, 
Clayton, Gumbel and the G-C mixture) resides in the fact that the number of the parameters is 
constant no matter the dimension of the model.  

 
2.2 THE DYNAMIC SPECIFICATION 

 
The dynamic specification of the Copula-GARCH(1,1) is given by the following 

characteristics: 
 t

he dynamics of 1x  is described by a GARCH(1,1) process with leptokurtic innovations 
given by equation (4a); 

 t
he dynamics of 2x  is described by a GARCH(1,1) process with leptokurtic 
innovations given by equation (4b); 

 t
he dependency structure between the innovations tt zz 21 ,  is modeled by a copula 
function

t
Cθ , characterized by the vector of parameters tθ ;  
 t

he dependency structure may vary in time, the parameters of the copula function 
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having a dynamics given by: 
 ( )12111t ,, −−−= ttt zzf θθ . (6a) 

Although several alternatives were tested for the dynamics of the copula parameters, 
we arrived at the conclusion that the most appropriate specification is of the form: 
 ( )12113121t −−− ++= ttt zzaaaT θθ , (6b) 

where ( )⋅T  is a proper transform than ensures that the parameter is inside the existence 
interval of the copula function.  

The model can be extended to encompass a more general specification of the 
dynamics of the copula parameters: 
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In the dynamic specification of the model we employ only the three copula functions 
that fit best the data from Eastern European markets (Necula, 2009b): Frank copula, t-copula 
and Gumbel-Clayton copula. The specification of the dynamics of the parameters of these 
copula functions is as follows: 

 F
rank copula 

t
Cα : 

 ( )121110 −−+= ttt zzaaTα , (7) 
where ( ) xxT = ; 

 G
umbel-Clayton mixture: 

 ( ) Gumbel
Gt
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CtGC ttttt

CCC ααααω ωω −+= 1,, , (8a) 
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where ( ) 2xxT = , and Gαθ ˆ ,ˆ  are the estimated values obtained in the static 
specification of the model; therefore, in this case, only the parameter of the 
Clayton copula is allowed to vary in time. 

 t
-copula 

tt
C ρν , : 
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where ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

2
tanh xxT , ν̂  is the estimated value obtained in the static 

specification of the model, and only the dynamics of the correlation parameter is 
studied. 

In the following section we econometrically estimate the two specifications of the 
model and analyze whether the dynamic specification is statistically superior to the static one. 

 
3. ESTIMATION RESULTS 

 
The data used in the study consists of daily returns between January 1998 and March 

2009 for stock indexes from two Eastern European emerging markets, Czech Republic 
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(PX50) and Hungary (BUX) and from two developed financial markets, Germany (DAX) and 
USA (SP500). 

The methodology for estimating the Copula-GARCH model for the pair PX50 and 
BUX, and the pair DAX and SP500 consists of the following steps: 

 e
stimating the GARCH(1,1) model for each of the two data series using Maximum 
Likelihood Estimation, and obtaining the residuals; 

 e
stimating the parameters of the copula function by maximizing the likelihood 

function, ( ) ( )( )∑
=

=
T

t
ttt zFzFcL

1
2211 ;ˆ,ˆln θ , where ( ) ( )21

21

2

21 ,, uu
uu

Cuuc
∂∂

∂
=  is the so-

called copula density, tt zz 21 ˆ,ˆ  the two residual series, and 21, FF  are the cdfs of 
the residuals. 

Therefore, we estimated the parameters of the Copula-GARCH by using the Inference 
Functions for Marginals (IFM) method (Yan, 2006). This method provides consistent 
estimators for the parameters of the copula and it is less computing intensive than the Exact 
Maximum Likelihood (EML). The econometric methods and techniques employed in the 
study have been implemented in Maple. 

First we estimate the static specification. The estimated parameters of the copula 
functions of the residuals series are presented in Table 1 and in Table 22. 

 

Table 1 
 Estimated parameters for BUX - PX50 GARCH residuals 

GoF statistics Copula Parameters AIC 
KS AD 

  4.3459***   Frank 
  (0.2115)   

-412.22 0.0319 3.1472 

  0.8743***   Clayton 
  (0.0471)   

-315.06 0.0672 8.2341 

  1.5658***   Gumbel 
  (0.0343)   

-366.85 0.0521 5.7926 

0.3702*** 1.2421*** 1.6852***G-C mixture 
(0.0665) (0.1951) (0.0651) 

-403.22 0.0424 3.6671 

  0.5652***   Gaussian 
  (0.0162)   

-398.12 0.0551 7.1321 

0.5806***t 8 
(0.0197) 

-418.39 0.0411 3.8231 

standard errors in parenthesis; *** denotes statistical significance at 1%; AIC is the Akaike Information Criterion statistic; KS and 
AD are the Kolmogorov-Smirnov and Anderson-Darling goodness of fit tests statistics 

 

The parameters of the copula functions are highly statistically significant in both 
cases. To better assess the performance of each specific copula function we implemented the 
Kolmogorov-Smirnov test and Anderson-Darling test for copula goodness-of-fit (Fermanian, 
2005). 

                                                 
2 The estimation results of the GARCH models can be provided upon request. 
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Table 2 

Estimated parameters for DAX - SP500 GARCH residuals 
GoF statistics Copula Parameters AIC 
KS AD 

  3.9444***   Frank 
  (0.2283)   

-320.42 0.0447 2.7880 

  0.7727***   Clayton 
  (0.0611)   

-308.59 0.0657 7.7741 

  1.6054***   Gumbel 
  (0.0427)   

-310.94 0.0427 2.7381 

0.2149*** 1.2269*** 1.8933*** G-C 
mixture (0.0575) (0.6935) (0.0718) 

-330.22 0.0212 0.5426 

  0.5574***   Gaussian 
  (0.0202)   

-315.23 0.0557 5.1065 

0.5628*** t 5 
(0.0234) 

-348.13 0.0344 1.5933 

standard errors in parenthesis; *** denotes statistical significance at 1%; AIC is the Akaike Information Criterion statistic; KS and AD are the 
Kolmogorov-Smirnov  and Anderson-Darling goodness of fit tests statistics 

 

More specifically, this kind of copula goodness-of-fit tests are based on the 
assumption that, under the null of a correctly specified copula function, an appropriate 
transformation of the residuals is ( )22χ  distributed, fact that can be tested using the standard 
Kolmogorov-Smirnov and Anderson-Darling nonparametric tests for equality between two 
one-dimensional distributions. Using the Akaike Information Criterion (AIC) and the two 
goodness-of-fit statistics we can conclude that, in the case of the two returns pairs analyzed in 
the study, the Frank copula, the t-copula and the Gumbel-Clayton mixture copula are the most 
appropriate to model the dependency structure of the normalized residuals from the two one-
dimensional GARCH(1,1) processes. 

Figure 1 depicts the estimated bi-dimensional distribution for BUX-PX50 GARCH 
residuals using the best three estimated parametrical copulas. For comparison, the bi-
dimensional distribution computed using the so-called empirical copula is also depicted. The 
empirical copula (Deheuvels, 1979) was estimated using non-parametric econometric 
techniques (Gijbels and Mielniczuk, 1990; Fermanian and Scaillet, 2003). The kernel 

empirical copula ( Ĉ ) is given by ( ) ( ) ( )
⎟⎟
⎠

⎞
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111
,21

ˆˆ1,ˆ
21

, where 

( )⋅huG ,  is the Gaussian kernel with bandwidth h , and 21
ˆ,ˆ FF  are the empirical cdfs of the two 

marginal distributions, estimated by non-parametric one-dimensional kernel methods. The 
length of the bandwidth was chosen according to the well-known “rule of thumb” of 
Silverman (1986). 
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Figure 1 
Estimated bi-dimensional distributions for BUX-PX50 GARCH residuals 
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Next we estimate the dynamic specification of the model. In this specification we only 
analyze the three copula functions that best fitted the static specification: the Frank copula 
(eq. 7), the Gumbel-Clayton mixture (eq. 8b), and the t-copula (eq. 9). The results are 
presented in Table 3 and Table 4. 

 
 
 
 

Table 3 
 Estimated parameters of the dynamics equation for BUX - PX50 pair 

Parameters 
Copula 

0a  1a  
AIC  

dynamic specification
AIC  

static specification 

4.0652*** 0.4326*** Frank 
(0.2091) (0.1640) 

-415.23 -412.22 

1.0321*** 0.2341*** G-C mixture
(0.0872) (0.0649) 

-413.41 -403.22 

1.2623*** 0.1065*** t 
(0.0549) (0.0421) 

-422.74 -418.39 

standard errors in parenthesis; *** denotes statistical significance at 1%; AIC is the Akaike Information 
Criterion statistic 
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Table 4 
Estimated parameters of the dynamics equation for DAX-SP500 pair 

Parameters 
Copula 

0a  1a  
AIC  

dynamic specification
AIC  

static specification 

3.6736*** 0.6870*** Frank 
(0.2265) (0.1914) 

-310.29 -300.42 

0.4564*** 0.6484*** G-C mixture
(0.0069) (0.1008) 

-361.56 -330.22 

1.2244*** 0.1438*** t 
(0.0679) (0.0464) 

-352.86 -348.13 

standard errors in parenthesis; *** denotes statistical significance at 1%; AIC is the Akaike Information 
Criterion statistic 

 

The parameters of the dynamic equation of the parameters of the copula functions are 
highly statistically significant in both cases. The Akaike Information Criterion statistic 
implies that the dynamic specification fits the data better than the static one.  

 

4. CONCLUDING REMARKS 

In the present paper we developed a new two-dimensional Copula-GARCH model. To 
account for heavy tails we modeled the marginal densities using a GARCH(1,1) process with 
innovations drawn from a t-Student distribution, but the model can be easily extended to 
employ more sophisticated leptokurtic distributions such as α - stable distributions or 
Generalized Hyperbolic Distributions. The static specification of the model assumes that the 
dependency structure of the two data series does not vary in time implying that the parameters 
of the copula function are constant. On the other hand, the dynamic specification models 
explicitly the dynamics of these parameters.  

We econometrically estimated the two specifications using various copula functions, 
focusing on the mixture between the Gumbel and Clayton copulas. Models based on this kind 
of mixtures capture tail dependence and can be easily extended to more dimensions. The 
estimation of the copula function parameters was performed using the Inference Functions for 
Marginals (IFM) method. For the static specification, according to the Kolmogorov-Smirnov 
and Anderson-Darling „goodness-of-fit” tests, the mixture between the Clayton copula and 
the Gumbel copula, the Frank copula, as well as the t-Student copula are the appropriate 
copula functions to capture the dependency structure of the two normalized residuals series. 
For the dynamic Copula-GARCH model we analyzed various specifications of the dynamics 
of copula parameters opting for the parsimonious ones. According to the Akaike Information 
Criterion the dynamic Copula-GARCH model outperforms the static one.  

This result implies that including a varying dependency structure may improve the 
estimation of market risk using Monte Carlo method due to improvements in the consistency 
of the simulations of future evolution paths of the two prices. As further research we intend to 
develop a framework for market risk assessment of a portfolio under the assumption that the 
returns of the assets follow the dynamic specification of the Copula-GARCH model.  
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COPULA-GARCH MODEL 
 

SAŽETAK 
 
U ovom smo istraživanju razvili novi dvodimenzionalni Copula-GARCH model. Ovu vrstu 
dvodimenzionalnih procesa karakterizira zavisna struktura stvorena koristeći spojnu funkciju 
(kopulu). Za marginalne gustoće koristili smo GARCH(1,1) model s inovacijama preuzetim iz t-
Student distribucije. Model se može lako proširiti koristeći sofisticiranije procese za marginalne 
gustoće. Statička specifikacija modela pretpostavlja da zavisna struktura dva niza podataka ne varira 
u vremenu te tako podrazumijeva da su parametri spojne funkcije konstantni. S druge strane, 
dinamička specifikacija eksplicitno određuje dinamiku ovih parametara. Ekonometrijski 
procjenjujemo parametre dvije specifikacije koristeći razne spojne funkcije, uz naglasak na mješavinu 
između Gumbelove i Claytonove kopule. Koristili smo dnevne indekse zarade s dva razvijena i dva 
financijska tržišta u razvoju. Glavni nalaz upućuje na to da uključivanje promjenjive zavisne strukture 
poboljšava sukladnost distribucije Copula-GARCH modela. 
 

Ključne riječi: spojne funkcije, multidimenzionalni GARCH, volatilnost, zavisna struktura 
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