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Recently introduced algebraic Kekulé structures (AKS) describe the �-electron distribution
within rings of a conjugated network. The ratio of the AKS count to the classical Kekulé
structures count was studied in benzenoid rotagraphs. By considering three representative clas-
ses of such rotagraphs, it was shown that this ratio tends towards either 1 or 0, or its value lies
between 0 and 1.
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INTRODUCTION

The notion of Kekulé structures is of use in organic che-
mistry as a means for quick estimation of molecular
thermodynamic stability, and is especially useful when
benzenoid molecules are considered.1 Recently, Randi}
introduced another concept of algebraic Kekulé structu-
res (AKS).2–10 These structures are obtained from the clas-
sical Kekulé structures by inscribing into each hexagon
the number of p-electrons that belong to this hexagon.
Let us call this the Randi} number (or ring partition value)
and denote it by r. Double bonds shared by two hexa-
gons are assumed to contribute one p-electron to each
hexagon while other double bonds are viewed as contri-
buting both of their p-electrons to the hexagon in which

they lie. The Randi} numbers can take values from 0 up
to 6. Of course, the sum of all Randi} numbers over all
cycles gives the number of p-electrons in a benzenoid.

The traditional Kekulé structures are called here
geometric Kekulé structures (GKS). Each GKS uniquely
determines its AKS, but the opposite is not true.5–7 Na-
mely, there are different Kekulé structures that have the
same AKS.

We denote the number of AKS by a and the number
of GKS by g. a is smaller than or equal to g, and herein

we study the ratio
a

g
of these two numbers on a few se-

lected examples of benzenoids. They belong to benzenoid
strips closed on themselves and, using graph-theoretical
terminology, they are called benzenoid rotagraphs.



Fasciagraphs were introduced as mathematical mo-
dels: in the same way as a polymer is built from mono-
mers, a fasciagraph is obtained from monographs.11 In this
paper, we assume that all monographs are the same and
that linking between them remains the same throughout
the fasciagraph. When a fasciagraph is closed on itself,
we call it a rotagraph.

A few examples of benzenoid rotagraphs are shown
in Figure 1.

The monographs (A, B, C) serve as building blocks
to form rotagraphs RN (A), RN (B), RN (C). The number
of linking edges in all examples shown in Figure 1 equals
2. The left linking vertices of monographs are denoted
by u1 and u2, and the right ones by v1 and v2. The total
number of monographs is denoted by N. The closure of a
rotagraph on itself is indicated by arrows; namely, they
show that the last monograph is linked with the first one.

RATIO OF ALGEBRAIC TO GEOMETRIC KEKULÉ
STRUCTURE COUNTS FOR THREE
REPRESENTATIVE CLASSES OF GRAPHS

Acene Rotagraphs

It is easy to see that polyacene closed on itself, RN(A),
has only four GKS, which are shown in Figure 2.

However, all of them have the same AKS and all r

are the same and equal to 4. The ratio
a

g
is then equal to

1

4
for RN(A) regardless of how large N is.

Zig-zag Rotagraphs

Benzenoids and benzenoid rotagraphs have a number of
striking properties. One of them, discovered by Klein et

al.,12 is that the number of double bonds d sitting on
linking edges is conserved throughout the rotagraph.
Therefore, as shown in Figure 3, all Kekulé structures of
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Figure 1. Monographs and their rotagraphs.

Figure 2. Four Kekulé structures of RN(A) have the same AKS with
all c equal to 4.

Figure 3. Breaking of Kekulé structures of rotagraph RN(B) accord-
ing to their value of d into three classes (a) – (c). For d = 1, there
are 12 possible combinations (d) of consecutive Randi} numbers.
Note that one of them (3,3) breaks into two further cases.



RN(B) break into three classes. The class with d = 0 has
only one member, shown in Figure 3a, where all r are
the same and equal to 4. The second class, with d = 2,
also contains only one member, shown in Figure 3b,
where all r are the same and equal to 4.

The third class, with d = 1, has an exponentially (in
N) growing number of members with one example shown
in Figure 3c. Note that the double bond on a given pair
of linking edges could be located either on the lower
linking edge (which we will denote by l) or on upper
linking edge (which we will denoted by u). We write in-
formation on the position of double bonds on the left and
right sides of monographs, for pairs which written lexi-
cographically read ll, lu, ul, uu. Note that doublet ll splits
into two different cases and therefore the five situations
shown in Figure 4 exist.

Each of the remaining cases (c)–(e), with doublets
lu, ul and uu, leads to a unique r of the monograph.

Let us now consider two consecutive monographs for
d = 1. Among all possible combinations of their rs, it is
easy to check that only the following twelve are allowed:
(6,6), (6,4), (6,3), (4,6), (4,4), (4,3), (3,6), (3,4), (3,3),
(3,2), (2,3), (2,2) and they are presented in Figure 3d.

For example, combination (6,2) is not allowed,
because it forces the upper linking edge to be covered
and at the same time not to be covered by a double bond.

Let us consider (6,6) as one of the combinations. It
is allowed because both 6s force the upper linking edge
not to be covered. Note that there is only one way to
complete the Kekulé structure by covering a lower edge
by a double bond. This unique Kekulé structure uniquely
determines the Randi} structure 626 (Figure 3d, 1st draw-
ing) where the subscript denotes r in the linking ring.

All other combinations are treated along the same line,
with the exception of (3,3). Namely, this combination gives

two possible Kekulé structures corresponding to two dif-
ferent Randi} structures: 343 and 363, as seen in Figure
3d.

Summarizing the case d = 1, we conclude that there
is a 1 : 1 correspondence between Kekulé and Randi}
structures. Note that when all r in RN(B) are equal to 4,
the Randi} structure is ...444444... . The same structure
was found for d = 0 and d = 2, but with different Kekulé
structures than for d = 1. Hence, a = g – 2; g is deter-
mined by e.g. the application of the transfer matrix13–17

method as:

g = tr
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and therefore the ratio
a

g
we have looked at tends towards

1 for large N.

Benzo[e]pyrenic Rotagraphs

The ratio
a

g
can tend towards 0 for large N, as well. An

example is given in Figure 5.

Computation of g as well as the estimation of a are
possible by noting that there are 6 Kekulé structures
(1) – (6) possible for hexagons shaded in Figure 5a. These
Kekulé structures are shown in Figure 5b. The first »trans-
fer« from some Kekulé structure (1) to the next Kekulé
structure (1) gives rise to the four situations depicted in
Figure 5c. Note that there are only three Randi} structures
versus 4 Kekulé structures.

Before further discussion, we denote the three Ran-
di} structures of Figure 5d by 5305, 5215, 5135, where
the rs of the central horizontal row obviously suffice to
determine all rs. Note that 5215 corresponds to two Ke-
kulé structures.

Similarly, one could treat in an analogous way the
remaining »transfers« among all 36 possibilities.

For example, the »transfer« from (1) to (6) gives rise
to only one Kekulé structure and therefore only one Randi}
structure, and transfer from (1) to (4) is not consistent,
because for such a transfer there is no Kekulé structure
for the unshaded fragment.
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Figure 4. Five possible geometric and algebraic Kekulé structures
for the monograph of RN(B) with d = 1.



It is convenient to write all possible »transfers« in
the matrix form. The transfer matrix for Kekulé structure
count is given by (with the entries in matrix taken from
Figure 5e):

A =
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The information on the upper bound of the Randi}
structure count can be obtained by the following matrix:

R =

∅ 
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Note that matrix R is not a transfer matrix for
enumeration of Randi} structures, because some Randi}
structures are counted in more than one matrix entry,
e.g., 4334 is counted in both entries (R)5,5 and (R)6,6.

Recall that the trace tr(AN) of the Nth power AN of
the transfer matrix A is equal to the Kekulé structure
count of the rotagraph.14,15 For the example shown in
Figure 5, one obtains:

tr(AN) = tr
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and

tr(RN) = tr
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Figure 5. Benzenoid rotagraph whose linking hexagons are shaded
in (a). Six Kekulé structures of the linking hexagon are shown in (b).
All four possible »transfers« from (1) to (1) are depicted in (c). Two
fragments with the same AKS and different GKS are shown in (d).
Linking vertices used in the computation of GKS are shown in (e).



However, tr(RN) is only an upper bound for the
Randi} structure count and therefore:

a

g
< tr

tr

( )

( )

R

A

N

N
(5)

which implies that the ratio
a

g
tends towards zero as N →

∞. It can be shown that the number of Randi} structures
a is given by:

a = tr(RN) – (1+2N) = (–2 3+4)N + (2 3+4)N – 2N + 1.

CONCLUSIONS

Kekulé structures describe pairings of p-electrons along
bonds in molecular networks while the novel Randi} struc-
tures describe p-electron counts within structural details
of networks, herein within hexagons of benzenoid rota-
graphs, i.e., rotagraphs built up from hexagons. These
structures have generally different counts, denoted here

by a and g. The ratio
a

g
is studied in the present paper in

three representative classes. The first class is an example

for 0 <
a

g
< 1, the second for

a

g
= 1 and the third for

a

g
,

which tends towards zero when the number of mono-
graphs in a rotagraph extends to infinity.

Acknowledgments. – Partial support of the Ministry of
Science, Education and Sports of the Republic of Croatia and
Ministry of Science, Education and Sports of Slovenia is grate-
fully acknowledged. A. G. and J. @. acknowledge also the sup-
port of the joint Croatian-Slovenian Project Novel Carbon Ma-

terials.

REFERENCES

1. I. Gutman and S. J. Cyvin, Introduction to the Theory of

Benzenoid Hydrocarbons, Springer Verlag, Berlin, 1989.
2. M. Randi} and A. T. Balaban, Polycyclic Aromat. Compd.

24 (2004) 173–193.
3. A. T. Balaban and M. Randi}, J. Chem. Inf. Comput. Sci. 44

(2004) 50–59.
4. A. T. Balaban and M. Randi}, New J. Chem. 28 (2004)

800–806.
5. D. Vuki~evi}, A. T. Balaban, and M. Randi}, J. Math.

Chem. 36 (2004) 271–279.
6. A. T. Balaban and M. Randi}, J. Chem. Inf. Comput. Sci. 44

(2004) 1701–1707.
7. I. Gutman, D. Vuki~evi}, A. Graovac, and M. Randi}, J.

Chem. Inf. Comput. Sci. 44 (2004) 296–299.
8. I. Gutman, M. Randi}, A. T. Balaban, and C. Kiss-Toth,

Z. Naturforsch. A 60 (2005) 171–176.
9. A. T. Balaban and M. Randi}, J. Math. Chem. 37 (2005)

443–453.
10. M. Randi} and A. T. Balaban, Polycyclic Aromat. Compd.

24 (2005) 173–193.
11. O. E. Polansky and N. N. Tyutyulkov, MATCH Commun.

Math. Comput. Chem. 3 (1977) 149–223.

12. D. J. Klein, G. E. Hite, W. A. Seitz, and T. G. Schmalz,
Theor. Chim. Acta 69 (1986) 409–423.

13. D. M. Cvetkovi}, M. Doob, and H. Sachs, Spectra of

Graphs: Theory and Application, VEB Deutscher Verlag
der Wissenschaften, Berlin, 1980.

14. A. Graovac, O. E. Polansky, and N. N. Tyutyulkov, Croat.

Chem. Acta 56 (1983) 325–356.
15. D. Babi}, A. Graovac, B. Mohar, and T. Pisanski, Discrete

Appl. Math. 15 (1986) 11–24.
16. A. Graovac, D. Vuki~evi}, D. Je`ek, and J. @erovnik,

Croat. Chem. Acta 78 (2005) 283–287.
17. D. J. Klein, G. E. Hite, T. G. Schmalz, J. Comput. Chem. 7

(1986) 443–456.

SA@ETAK

O algebarskim i geometrijskim Kekuléovim strukturama u benzenoidnim rotagrafovima

Ante Graovac, Damir Vuki~evi} i Janez @erovnik

Nedavno uvedene algebarske Kekuléove strukture opisuju raspodjelu π-elektrona unutar prstenova konju-
girane mre`e. Omjer njihovog broja i broja klasi~nih Kekuléovih struktura za benzenoidne rotagrafove prou-
~avan je u ovom radu. Razmatranjem triju reprezentativnih klasa ovih rotagrafova pokazano je da promatrani
omjer te`i prema 1 ili 0, ili pak da njegova vrijednost le`i izme|u 0 i 1.
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