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Three methods and their extended versions for enumerating stereoisomers, which have been

developed by modifying or simplifying Fujita’s USCI (unit-subduced-cycle-index) approach bas-

ed on the concept of sphericities of orbits in order not to take account of symmetry itemization,

are applied to the enumeration problem of ethane and propane derivatives. The proligand method

and its extended version based on the concept of sphericities of cycles are also applied to the

same enumeration problems. These results are compared with the results based on Pólya’s theo-

rem (and Pólya’s corona). Thereby, it is shown that Pólya’s theorem enumerates chemical com-

pounds as graphs, not as stereoisomers (3D chemical structures) if all of the permutations cor-

responding to proper and improper rotations are adopted. Moreover, if the permutations cor-

responding to proper rotations are adopted, Pólya’s theorem enumerates chemical compounds

as chiral ones, where enantiomeric relationship and achiral nature (i.e., self-enantiomeric rela-

tionship) are not characterized properly. The two types of applications of Pólya’s theorem do

not take account of improper rotations properly. Thereby, what Pólya’s theorem is deficient in

is concluded to be the concept of sphericity.
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INTRODUCTION

Since the concepts of sphericity, sphericity indices, and

unit subduced cycle indices with chirality fittingness

(USCI-CFs) were proposed on the basis of orbits go-

verned by coset representations and their subductions,1

they have been used to discuss stereochemistry in mo-

lecules as well as to enumerate stereoisomers. The USCI

approach based on the concepts is capable of enumerat-

ing isomers as 3D chemical structures (stereoisomers),

where they are itemized with respect to point-group sym-

metries as well as to molecular formulas. However, the

USCI approach requires mark tables, USCI tables, and re-

lated group theoretical tools, which are not so easily ob-

tained, as pointed out in a recent review.2 It should be

noted that there is a trade-off between the tedeous deri-

vation of these requisites and the capability of itemizing

point-group symmetries.

On the other hand, Pólya’s theorem, which has been

widely used since 1930s,3,4 is simple and convenient to

calculate gross isomer numbers without taking account

of symmetry-itemization. In fact, many studies on the ba-

sis of Pólya’s theorem have been reported in chemical

fields, as described in reviews5,6 and books.7,8 Various types

of approaches have been reported in many articles.9,10,11

Before we will start our discussions on stereoisome-

rism and stereoisomer enumeration, the scope and limi-

tations of Pólya’s theorem should be examined from the

viewpoint which the USCI approach has brought about.

Strictly speaking, the term 'proligand' should be used in

some cases, the term 'ligand' is used so long as such usa-

ge causes no confusion.

(i) Stereoisomers as 3D chemical structures should be

described in terms of point groups, which may involve

proper and improper rotations. This means that Pólya’s



theorem does not directly deal with stereoisomers, because

it is based on permutation groups. In particular, the per-

mutation-group theory has disregarded the inner structures

of objects to be permuted (e.g., the chiralities/achiralities

of ligands) so that Pólya’s theorem enumerates graphs,

not stereoisomers (3D chemical structures) especially in

the enumeration of straight- or branched-chain organic

compounds.

(ii) Even when Pólya’s theorem claimed to be suc-

cessful in the enumeration of stereoisomers, it failed in

the characterization of enantiomeric relationship. For

example, trans-octahedral complexes, X–ABCD–Y and

Y–ABCD–X, where the plane containing four achiral li-

gands ABCD separates achiral ligands X and Y in a trans

fashion, are chiral and enantiomeric to each other. Be-

cause the enumeration procedure based on Pólya’s theorem

employed the 24 operations corresponding to O-point

group (i.e., only the proper rotations of Oh-point group)

as described in Berge’s textbook,12 the two enantiomers

are not superposed so that they are counted separately.

Thus the two enantiomers are not characterized as "enan-

tiomeric" but they are recognized to have no relationship

so long as the enumeration process due to Pólya’s theo-

rem is based on the O-point group. Although they can be

characterized as being enantiomeric by employing the

Oh-point group, another type of drawback appears so

long as the permutations corresponding Oh-point group

are used within the methodology of Pólya’s theorem.

(iii) Moreover, Pólya’s theorem failed in distinction

between enantiomeric relationship and self-enantiomeric

one (i.e., achiral nature), because it took account of atoms

(or at most achiral ligands) as substituents. By following

the same procedure as described above,12 trans-octahe-

dral complexes, p—ABCD—p and p—ABCD—p, where

the symbols p and p represent chiral ligands of opposite

chirality, are also counted separately, although they are

achiral. This means that the asymmetric case X–ABCD–

Y/Y–ABCD–X (i.e., an enantiomeric relationship) is not

differentiated from the so-called pseudoasymmetric case

p—ABCD—p/p—ABCD—p (i.e., self-enantiomeric re-

lationships).

There may be an ad hoc approach in which we mix up

the enantiomeric relationship and the self-enantiomeric

one (i.e., achiral nature) so as to adopt the resulting

mixed-up relationship (i.e., the stereoisomeric relation-

ship). Thereby, we would be permitted to say that this

enumeration is concerned with stereoisomers, even though

enantiomers (chiral compounds) and achiral compounds

were not conceptually distinguished. Stereochemically

speaking, however, this approach results in the

degeneration into the stage before the foundation of the

stereochemistry by van’t Hoff13 and Le Bel.14

(iv) To clarify enantiomeric relationship or self-enan-

tiomeric one (i.e., achiral nature) in the above-described

cases, the remaining 24 operations corresponding to the

improper rotations of the Oh-point group should be taken

into consideration. This modification, however, causes ste-

reochemically insufficient enumeration in the pseudoasym-

metric cases. If the 48 permutations for the Oh are sim-

ply employed in applying Pólya’s theorem without con-

sidering the chiralities of ligands, the enantiomeric pair

of X–ABCD–Y/Y–ABCD–X and the diastereomeric pair

of p—ABCD—p/p—ABCD—p exhibit the same permu-

tation behavior. In other words, Pólya’s theorem counts

X–ABCD–Y/Y–ABCD–X once and, at the same time,

counts p—ABCD—p/p—ABCD—p once. Obviously, this

result shows that the former enantiomeric case is not dis-

tinguished from the latter diastereomeric one.

(v) So long as we rely on Pólya’s theorem in the form

of the conventional procedure described in Berge’s text-

book,12 the use of the O-group (i.e., the proper rotations

of the Oh-group) is required rather than the use of the full

Oh point group. On the other hand, stereochemical pro-

blems (e.g., discrimination between enantiomeric relation-

ship and diastereomeric one) should be solved in terms

of the full Oh point group. Obviously, such undesirable

switching as according to problems at issue should be

avoided in order to develop an integrated approach to the

stereoisomer enumeration and the solution of stereoche-

mical problems.

(vi) As a result of disregarding the inner structures

of objects, the permutation-group theory which Pólya’s

theorem stems from cannot properly formulate the concept

of prochirality.1 For example, the chiral ligands p and p

in each of the pseudoasymmetric octahedral complexes,

p—ABCD—p or p—ABCD—p, cannot be properly cor-

related to each other under the action of the 24 permuta-

tions corresponding to O so long as we obey the con-

ventional procedure described in Berge’s textbook.12 Even

if the remaining 24 permutations corresponding to the im-

proper rotations are added to adopt Oh, the disregard of

the inner structures causes failure in determining the enan-

tiospheric orbit of p and p (or equivalently the enantio-

spheric relationship between p and p).

(vii) On the same line, the p and p in a pseudoasym-

metric tetrahedral molecule with ABpp cannot be properly

correlated to each other if the 12 permutations correspond-

ing to T (the proper rotations contained in the point group

Td) are taken into consideration. Even if the remaining

permutations corresponding the improper rotations are ad-

ded, the disregard of the inner structures causes the same

failure as described above.

The longtime overlooking of the above-described failure

stems from the fact that most examples reported for

enumerating tetrahedral molecules have considered only

achiral ligands whose inner structures are unnecessary to

be taken into account. For example, R- and S-lactic acids

(CH3CH(OH)COOH) have been correctly enumerated with

considering T and Td,
2 because all of the substituents

(i.e., H, CH3, OH, and COOH) are achiral in isolation.
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This result, though apparently correct, cannot be extend-

ed to explain the pseudoasymmetric tetrahedral molecu-

le (ABpp) within the traditional methodology based on

Pólya’s theorem.

It should be emphasized that the items listed above

have been solved by the USCI approach.1 In order to treat

such stereochemical problems and enumeration problems

as solved by the USCI approach, what is Pólya’s theo-

rem deficient in?

The deficiency of Pólya’s theorem for dealing with

stereoisomer enumeration as well as stereochemical pro-

blems has been now concluded to be the concept of spheri-

cities of cycles, which is in turn a key in the proligand met-

hod developed for the enumeration of stereoisomers.15,16

The proligand method has shown its superiority over

Pólya’s theorem in the enumeration of stereoisomers of

tartaric acid as ethane derivatives.17

In this paper, the combinatorial enumeration of etha-

ne derivatives is solved by using three methods and their

extended versions that have been developed by the mo-

dification or the simplification of the USCI approach.

These enumeration processes based on the concept of

sphericities of orbits are discussed in comparison with

the enumeration by the proligand method based on the

concept of sphericities of cycles. In addition, the enume-

ration of propane derivatives is conducted by virtue of

the proligand method in order to characterize so-called

pseudoasymmetric cases. Thereby, the modification or the

simplification is found to be based on a set of cyclic sub-

groups, which is correlated to conjugacy classes. After

this comparison, Pólya’s theorem is re-examined from the

viewpoints of the concepts.18

FUJITA’S USCI APPROACH

Stereoisomers of Tartaric Acid as Ethane

Derivatives

Obtaining the number of stereoisomers of tartaric acid is

an old problem, which emerged at the beginning of stereo-

chemistry. In the 1870s, van’t Hoff clarified that there exist

a pair of enantiomers (4 and 4) and a meso-compound

(5), although tartaric acid is constitutionally represented

as one isomer (3, X = H, Y = OH, Z = COOH).19 Be-

cause this solution was rather descriptive, a more quanti-

tative approach is desirable to systematize stereochemi-

stry. Throughout this paper, this problem will be studied

as a probe for testing the versatility of the USCI approach

and the proligand method in combinatorial enumeration.

To enumerate stereoisomers of ethane derivatives, the

USCI approach1 first considers a skeleton (6) that has two

substitution positions (Figure 2).20,21 Each of the two po-

sitions accommodates a chiral or achiral proligand to ge-

nerate a promolecule such as 7, where the inner structure

of a substituent is taken into explicit consideration in

terms of proligand (p). Then, each proligand is replaced

by a chiral ligand (R-CXYZ) to produce a molecule (4).

For naming the R-configuration, the priority of the atoms

or achiral ligands (i.e., X, Y, and Z) is presumed to be X >

Y > Z; and the vacant valency of the ligand is regarded

as having the lowest priority. In terms of this formula-

tion, free rotations around respective bonds are so assured

as to give the correct number of stereoisomers, although

fixed conformations are illustrated in Figure 2 etc.

Modified Methods of Fujita’s USCI Approach

Fujita’s USCI approach1 has provided four methods for

stereoisomer enumeration, i.e., (i) the SCI (subduced-cy-

cle-index) method, (ii) the PCI (partial-cycle-index) method,

(iii) a method based on the elementary superposition theo-

rem, and (iv) a method based on the partial superposition

theorem. As they have been compared by using enume-

ration problems of digraphs,22 they can be equivalently

applied to combinatorial enumeration of stereoisomers.

The enumeration problem of ethane derivatives has al-

ready been studied by the SCI method20 and by the PCI

method.21 The aim of the present subsection is to formu-

late modified methods by starting from the two methods

of the USCI approach so that the results obtained by the

modified methods are correlated to those obtained by

Pólya’s theorem.
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Figure 1. Graphs and chemical structures for representing methyl
ligands and ethane derivatives.

Figure 2. Conversion of a skeleton into a molecule through a pro-
molecule in the enumeration of ethane derivatives. The symbol p
represents a chiral proligand, which is replaced by a chiral ligand
CXYZ.



– PCI Method and CI Method (Method A)

Both the SCI method and the PCI method are capable

of generating cycle indices with chirality fittingness

(CI-CFs), which are more informative than the CIs of

Pólya’s theorem. Because the PCI method provides us

with a more succinct basis for correlating the USCI

approach to Pólya’s theorem, we start from the PCI

method to formulate the CI method (Method A) based

on CI-CFs and apply it to the problem of enumerating

ethane derivatives.

Although the skeleton 6 (Figure 2) belongs to the

point group D∞h, it is not easy to treat the point group

because of the infinite nature. Hence, the factor group K

(= D∞h / C∞) is taken into consideration in place of D∞h.

The factor group K is isomorphic to the point group C2v,

where their inner symmetries can be treated similarly.

K = D∞h / C∞ = {C∞, C∞C2, C∞sv, C∞sh} (1)

� C2v = {I, C2, sv, sh} (2)

The group K has the following subgroups:

K1 = {C∞} � C1 (3)

K2 = {C∞ , C∞C2} � C2 (4)

K3 = {C∞ , C∞sv} � Cs (5)

K4 = {C∞ , C∞sh} � C's (6)

K5 = K = {C∞ , C∞C2 , C∞sv , C∞sh} � C2v (7)

where the corresponding subgroups of the C2v are shown

in the ends of respective right-hand sides.

Because the position 1 (or 2) of 6 is fixed (stabiliz-

ed) by the subgroup K3, the two positions of 6 are go-

verned by the coset representation (CR) as follows:

K(/K3):

C∞ � (1) (2)

C∞ C2 � (1 2) (8)

C∞sv � (1) (2)

C∞sh � (1 2)

The concrete form of each permutation (a product of cy-

cles) is obtained by the cosets appearing in the following

coset decomposition:

K = K3 + K3C2 = {C∞ , C∞sv} + {C∞C2, C∞sh} (9)

       

1 2

The mark table of the C2v-group reported in Ref. 1

(Table A.5 of Appendix A) can be used as the mark table

of K:

MK

K K

K K

K K

K K

K K

=

(/ )

(/ )

(/ )

(/ )

(/ )

1

2

3

4

5

4 0 0 0 0

2 2 0 0 0

2 0 2 0 0

2 0 0 2 0

1 1 1 1 1

1 2 3 4 5





















K K K K K

(10)

The corresponding inverse mark table (MK
–1) reported in

Ref. 1 (Table B.5 of Appendix B) is shown below:

(/K1) (/K2) (/K3) (/K4) (/K5) sum

MK

K

K

K

K

K

–1

1

2

3

4

5

1

4
1

4

1

2
1

4

1

2
1

4

1

2
1

2

1

2

0 0 0 0

0 0 0

0 0 0

0 0 0

=
−

−

−

− − −























1

2

1

2
1

SK

K

K

K

K

K

=

























1

2

3

4

5

1

4
1

4
1

4
1

4

0

(11)

Each row of MK
–1 is summed up to give a one-column

matrix SK, where the values of non-cyclic groups vanish

to give zero. The USCI-CF (Unit Subduced Cycle Index

with Chirality Fittingness) table of the C2v-group reported

in Ref. 1 (Table E.5 of Appendix E) can be used as the

USCI-CF table of K, as shown in Table I.20

Following Def. 19.6 of Fujita’s book,1 the PCI-CFs

(Partial Cycle Indices with Chirality Fittingness) for this

case is obtained by multiplying the K(/K3)-row of Table I

with MK
–1 (Eq. 11), i.e., (b1

2 , b2, a1
2 , c2, a2) MK

–1. There-

by, the PCI-CFs for respective symmetries are obtained

as follows:

PCI-CF(K1; $d) =
1

4
b1

2 –
1

4
b2 –

1

4
a1

2 –
1

4
c2 –

1

2
a2 (12)

PCI-CF(K2; $d) =
1

2
b2 –

1

2
a2 (13)

PCI-CF(K3; $d) =
1

2
a1

2 –
1

2
a2 (14)

PCI-CF(K4; $d) =
1

2
c2 –

1

2
a2 (15)

PCI-CF(K5; $d) = a2 (16)
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TABLE I. USCI-CF table for K

K1 K2 K3 K4 K5

K(/K1) b1
4 b2

2 c2
2 c2

2 c4

K(/K2) b1
2 b1

2 c2 c2 c2

K(/K3) b1
2 b2 a1

2 c2 a2

K(/K4) b1
2 b2 c2 a1

2 a2

K(/K5) b1 b1 a1 a1 a1



where the symbol $d represents ad for a homospheric orbit,

bd for a hemispheric orbit, or cd for an enantiospheric orbit.

Following Def. 19.7 of Ref. 1, the PCI-CFs (Eqs. 12–16)

are summed up or the multiplication (b1
2 , b2, a1

2 , c2, a2)

SK is operated so as to give the CI-CF (Cycle Index with

Chirality Fittingness) for this case as follows:

CI-CF (K; $d) =
1

4

1

4

1

4

1

4
1
2

2 1
2

2b b a c+ + + , (17)

where the symbol $d represents ad , bd , or cd according to

the sphericity of a relevant orbit.

By using the data of C3v listed in Fujita’s book,1 the

multiplication (b1
3, a1c2, b3, a3)M C v3

1− gives the PCI-CFs

for enumerating substituted methyl ligands:

PCI-CF(C1; $d) =
1

6

1

2

1

6

1

2
1
3

1 2 3 3b a c b a− − + (18)

PCI-CF(Cs; $d) = a1c2 – a3 (19)

PCI-CF(C3; $d) =
1

2

1

2
3 3b a− (20)

PCI-CF(C3v; $d) = a3 (21)

For the sake of simplicity, only achiral ligands X, Y, and

Z are taken into consideration. Thereby, three ligand in-

ventories are degenerate to give the same ligand inventory

as follows:

ad = cd = bd = Xd + Yd + Zd (22)

The ligand inventory is introduced into Eqs. (18) to (21).

The expansion of the resulting equations gives the fol-

lowing generating functions for enumerating substituted

methyl ligands with respective symmetries:

fC1
= XYZ (23)

fCs
= X2Y + XY2 + X2Z + XZ2 + Y2Z + YZ2 (24)

fC3
= 0 (25)

fC3v
= X3 + Y3 + Z3 , (26)

where the term XYZ in the fC1
represents a pair of enan-

tiomeric ligands. From the data shown in Eqs. (23)–(26),

ligand inventories for Eq. (17) are calculated as follows:

ad = X3d + Y3d + Z3d +

X2dYd + XdY2d + X2dZd + XdZ2d + Y2dZd + YdZ2d (27)

cd = X3d + Y3d + Z3d +

X2dYd + XdY2d + X2dZd + XdZ2d + Y2dZd +

YdZ2d + 2XdYdZd (28)

bd = X3d + Y3d + Z3d +

X2dYd + XdY2d + X2dZd + XdZ2d + Y2dZd +

YdZ2d + 2XdYdZd (29)

Note that ad (Eq. 27) is generated from fCs
and fC3v

. The

last term 2XdYdZd in the cd (Eq. 28) comes from 2(XYZ)d/2

� (XYZ)d/2, which represents two modes of compensated

chiral packing by R- and S-CXYZ ligands. On the other

hand, the last term 2XdYdZd in the bd (Eq. 29) comes from

(XYZ)d + (XYZ)d, which represents the free packing of R-

and S-CXYZ ligands. The terms other than 2XdYdZd in

the cd and bd are concerned with fCs
and fC3v

.

Following Theorem 20.2 of the inventories (Eqs.

27–29) are introduced into Eq. (17) and expanded to

give a generating function for giving the numbers of

ethane derivatives as the coefficients of the respective

terms:

fA+C = (X6 + Y6 + Z6) +

(X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

2(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

2(X4YZ + XY4Z + XYZ4) +

3(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 5X2Y2Z2 (30)

The coefficient of each term XxYyZz (x + y + z = 6) in

Eq. (30) represents the number of stereoisomers with x

of X, y of Y, and z of Z, where a pair of enantiomers is

counted once if chiral.

When we select the chiral ligands R- and S-CXYZ

only from the ligands enumerated in Eqs. (23) – (26), we

obtain the corresponding ligand inventories:

ad = 0 (31)

cd = 2XdYdZd (32)

bd = 2XdYdZd (33)

in place of Eq. (27) – (29). The inventories (Eqs. 31–33)

are introduced into Eq. (17) and expanded to give a ge-

nerating function for giving the numbers of ethane deri-

vatives:

F = 2X2Y2Z2 (34)

– Extended PCI Method and Extended CI Method

(Method A')

The extended PCI method has been described in a pre-

vious paper.21 This method can be used to calculate an
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extended CI-CF, which provides the basis of another

enumeration method (Method A').

By replacing the sphericity indices (ak, ck, and bk) by

extended sphericity indices (y(a)k, y(c)k, and y(b)k), the

PCI-CFs (Eqs. 12–16) are converted into the corres-

ponding extended PCI-CFs. The extended PCI-CFs are

summed up to give the extended CI-CF for this case as

follows:

CI-CF(K; y($)k) =
1

4
y ( )b 1

2 +
1

4
y ( )b 2 +

1

4
y ( )a 1

2 +
1

4
y ( )c 2

(35)

which corresponds to the CI-CF shown in Eq. (17), where

the subscript ($) represents (a), (b), or (c) according to

the respective sphericity. Obviously, Eq. (35) is an ex-

tended version of Eq. (17).

An enantiospheric orbit accommodate chiral ligands

in a compensated chiral packing, the terms for C1 and C3

are represented as 2PCI-CF(C1; $kd) and 2PCI-CF(C3; $kd).

Hence, for the term y(c)k, we can calculate as follows:

PCI-CF(Cs; $kd) + PCI-CF(C3v; $kd) +

2PCI-CF(C1; $kd) + 2PCI-CF(C3; $kd) =

1

3
3bk +

2

3
3b k (36)

Then, the term bkd is replaced by the term ckd to give
1

3
3ck +

2

3
3c k in accord with the compensated chiral pack-

ing. The corresponding ligand inventories are obtained:

y(a)k = PCI-CF(Cs; $kd) + PCI-CF(C3v; $kd) =

(akc2k – a3k) + a3k = akc2k (37)

y(c)k =
1

3
c k

3 +
2

3
3c k (38)

y(b)k = PCI-CF(Cs; $kd) + PCI-CF(C3v; $kd) +

2PCI-CF(C1; $kd) + 2PCI-CF(C3; $kd) =

1

3
3bk +

2

3
3b k (39)

These inventories correspond to the ones shown in Eqs.

(32) and (33) of Ref. 21. The three equations (Eqs. 37–39)

are introduced into Eq. (35) to give the following equation:

CI-CF'(K [C3v]; $d) =

1

36
1
6b +

1

9
1
3

3b b +
1

9
3
2b +

1

12
2
3b +

1

6
6b +

1

4
1
2

2
2a c +

1

12
2
3c +

1

6
6c . (40)

This equation is called "an intermediate CI-CF". By con-

sidering atoms or achiral ligands only (X, Y, and Z), we

can use identical inventories as follows:

ad = bd = cd = Xd + Yd + Zd, (41)

which are introduced into Eq. (40). Thereby, we obtain a

generating function, which is identical with Eq. (30).

Simplified Enumeration

Mark tables and related ones can be reduced into simpli-

fied tables based on cyclic subgroups only. Such simpli-

fied tables are applicable to formulate further enumera-

tion methods.

– Methods Based on Dominant Representations

(Methods B and B')

Because the one-column matrix Sk (Eq. 11) contains non-

zero values for cyclic subgroups and zero values for non-

cyclic subgroups, the mark table (MK) can be so restricted

as to contain values cyclic subgroups only. The resulting

matrix (M
~

K) is called a dominant markaracter table:23,24

K1 K2 K3 K4

M
~

K =

K K

K K

K K

K K

(/ )

(/ )

(/ )

(/ )

1

2

3

4

4 0 0 0

2 2 0 0

2 0 2 0

2 0 0 2



















(42)

The corresponding inverse of dominant markaracter table

is also obtained as follows:

(/K1) (/K2) (/K3) (/K4) sum

M
~

K

K

K

K

K

−
−

−

−

=
















1

1

2

3

4

1

4
1

4

1

2
1

4

1

2
1

4

1

2

0 0 0

0 0

0 0

0 0






S
~

K

K

K

K

K

=





















1

2

3

4

1

4
1

4
1

4
1

4

(43)

The CRs corresponding to cyclic subgroups (i.e., K(/K1),

K(/K2), K(/K3), and K(/K4)) are called dominant represen-

tations. The subduction of dominant representations pro-

duces a dominant USCI-CF table, as shown in Table II.24

Theorem 5 of Ref. 24 indicates that the K(/K3)-row

of Table II and the one-column matrix S
~

k generate the

following equation:

CI-CF(K; $d) =
1

4
1
2b +

1

4
2b +

1

4
1
2a +

1

4
2c (44)

which is identical with Eq. (17). Thus, this gives us an

alternative method (Method B) for enumeration. Obvious-

ly, the extended version (Method B', cf. Eq. (35)) is also

available.
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TABLE II. Dominant USCI-CF table for K

K1 K2 K3 K4

K(/K1) b1
4 b2

2 c2
2 c2

2

K(/K2) b1
2 b1

2 c2 c2

K(/K3) b1
2 b2 a1

2 c2

K(/K4) b1
2 b2 c2 a1

2

– Characteristic Monomial Methods

(Methods C and C')

Marks (especially for dominant representations) can be

regarded as characters if each mark is regarded as being

specified with respect to group elements.25 In order to

discuss marks and characters in a common framework,

the term 'markaracter' has been proposed.26 Because K is

isomorphic to C2v, we can obtain the following character

table (strictly speaking, the Q-conjugacy character table):

K1 K2 K3 K4

N
~

K

A

A

B

B

=
− −

− −
− −



















1

2

1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(45)

Because the K(/K3)-row of Eq. (41), i.e., (2, 0, 2, 0), is

represented by the sum of A1-row and the B1-row, we can

write as follows:

K(/K3) = A1 + B1 (46)

Markaracter tables and Q-conjugacy character tables

have been discussed,27,26 where subduction of Q-conju-

gacy representations generates characteristic monomials

(CMs) as shown in Table III.

TABLE III. Characteristic monomial table for K

K1 K2 K3 K4

A1 b1 b1 a1 a1

A2 b1 b1 a1
1− c2 a1

1− c2

B1 b1 b1
1− b2 a1 a1

1− c2

B2 b1 b1
1− b2 a1

1− c2 a1

In agreement of Eq. (46), the A1-row and the B1-row

in Table III are multiplied to give (b1
2 , b2, a1

2 , c2). Then

the application of one-column matrix (Eq. 43) gives:

CI-CF(K; $d) =
1

4

1

4

1

4

1

4
1
2

2 1
2

2b b a c+ + + (47)

which is identical with Eqs. (17) and (44). Thus, this

procedure gives us a further method (Method C) for enu-

meration.28 Obviously, the extended version (Method C',

cf. Eq. 35) is also available.

FUJITA’S PROLIGAND METHODS
(METHODS D AND D')

By the inspection of Table II, one can find that the chiral

cyclic groups K1 and K2 are correlated to hemispheric

indices bd, while the achiral cyclic groups K3 and K4 are

correlated to homospheric indices ad or enantiospheric in-

dices cd. Note that these sphericities are concerned with

relevant orbits (equivalence classes). Because each row

specifies an orbit governed by a CR, sphericities of or-

bits are taken into consideration in Method B.15,16

Although the Q-conjugacy character table (Eq. 45)

in Method C is based on conjugate cyclic subgroups, on

the other hand, it is easily linked with the usual character

table of the isomorphic C2v. Note that character tables are

constructed in terms of conjugacy classes. This means that

the conjugate subgroups of cyclic subgroups are easily

correlated to the conjugacy classes of group elements.

Hence, the close relationship between the Methods B and

C reveals the possibility of a further method based on

conjugacy classes.

According to this guideline, the data of Table II are

reconstructed by means of such conjugacy classes as

specified by the cycle structure of each element:

K(/K3): product of

cycles

product of

sphericity indices

C∞ ~ (1) (2) b1
2

C∞C2 ~ (1 2) b2

C∞sv ~ (1) (2) a1
2

C∞sh ~ (1 2) c2

(48)

The conjugacy class {C ∞} corresponds to the conjugate

subgroup K1 (= {C∞}). On the same line, we can

compare: {C ∞C2} vs. K2 (= {C ∞ , C ∞C2}); {C ∞sv} vs.

K3 (={C ∞C ∞sv}); and {C ∞sh} vs. K4 (= {C∞, C∞sh}).

In Eq. (48), a permutation corresponding to an im-

proper rotation is called an improper permutation and de-

signated by an overbar. The cycles are divided into three

categories and characterized by sphericities and spheri-

city indices. Thus, an odd-membered cycle contained in an

improper permutation is called a homospheric cycle and
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TABLE IV. Cycles and products of sphericity indices for enumerat-
ing methyl ligands

Cycles Products of

sphericity indices

H'




H














proper

permutation:

(1) (2) (3)

(1 2 3)

(1 2 3)

b1
3

b3

b3

improper

permutation:

(1 2) (3)

(1 3) (2)

(1) (2 3)

a1c2

a1c2

a1c2



characterized by a sphericity index ad (d: the length of

the cycle), while an even-membered cycle contained in

an improper permutation is called an enantiospheric

cycle and characterized by a sphericity index cd. On the

other hand, a cycle contained in a proper permutation is

called a hemispheric cycle and characterized by a

sphericity index bd whether d is odd or even. Thereby, the

permutations listed above are characterized by products

of such sphericity indices, which are summed up to give

a CI-CF (cycle index with chirality fittingness):

CI-CF(K; $d) =
1

4
(b1

2 + b2 + a1
2 + c2) (49)

which is identical with Eqs. (17), (44), and (47). Thus,

this gives us a further method (the proligand method,

Method D) for enumeration.28

The extended version (Method D') is also available.

Thus, the extended CI-CF for this case is obtained as

follows:15,16

CI-CF (K; y($)k) =

1

4

1

4

1

4

1

4
1

2
2 1

2
2y y y y( ) ( ) ( ) ( )b b a c+ + + , (50)

which corresponds to the CI-CF shown in Eq. (49), where

the subscript ($) represents (a), (b), or (c) according to

the respective sphericity. Equation (50) is equivalent to Eq.

(35), although the procedures of derivation are different

from each other.

To incorporate substituted methyl ligands, let us consider

two permutation groups, H(= C3v(/Cs)) and H'(= C3(/C1)), as

shown in Table IV. Sphericity indices (bd , ad, and cd) for

ligand enumeration can be obtained in a similar way to

the sphericity indices described above. Thereby, the pro-

ducts of sphericity indices are obtained, as shown in

Table IV. By following Eqs. (8) and (9) of Ref. 16, the

data collected in Table IV give the corresponding CI-CFs

as follows:

CI-CF(H; $d) =
1

6
(b1

3 + 2b3 + 3a1c2), (51)

CI-CF(H'; bd) =
1

3
(b1

3 + 2b3), (52)

where the symbol $ in the left-hand side represents a, b,

or c according to the respective sphericity. By starting from

Eqs. (18) – (21), Eqs. (51) and (52) can be alternatively

calculated as follows:

CI-CF(C1; $d) + CI-CF(Cs; $d) +

CI-CF(C3; $d) + CI-CF(C3v; $d) = CI-CF(H; $d) (53)

2CI-CF(C1; $d) + 2CI-CF(C3; $d) +

CI-CF(Cs; $d) + CI-CF(C3v; $d) = CI-CF(H'; bd) (54)

Note that Eq. (52) counts enantiomeric ligands distinct-

ly. This is the reason for the coefficients equal to 2 that

appear in the left-hand side of Eq. (54).

Following Eqs. (31) – (33) of Ref. 16, we obtain the

following equations:

y(a)k = 2CI-CF(H; $kd) – CI-CF(H'; bkd) = akc2k , (55)

y(c)k = CI-CF(H'; ckd) =
1

3

2

3
3

3c ck k+ , (56)

y(b)k = CI-CF(H'; bkd) =
1

3

2

3
3

3b bk k+ . (57)

Obviously, Eqs. (55) – (57) are identical with Eqs. (37) –

(39). This can be confirmed by the relationship shown in

Eqs. (53) and (54).

Because Eq. (50) is identical with Eq. (35), the in-

troduction of Eqs. (55) – (57) into Eq. (50) generates the

same equation as Eq. (40). Hence, the same generating

function as Eq. (30) takes place by the proligand method

(Method D') described here.

The first proposition (Eq. 50) of Theorem 4 describ-

ed in the previous paper29 showed a procedure of enu-

merating achiral ligands or proligands. By the inspection

of the proof for the theorem, we can find that this proce-

dure is also applicable to any kinds of achiral objects other

than ligands or proligands. Hence, the same enumeration

procedure is applied to enumerate achiral stereoisomers.

Note that Eq. (50) (Theorem 4) of the previous paper29

is equivalent to a procedure in which we take the terms

corresponding to all of the improper rotations contained

in a CI-CF. Thus, the CI-CF'A for enumerating achiral ste-

reoisomers is obtained by taking the terms correspond-

ing to the improper rotations contained in Eq. (40) and

by duplicating them as follows:

CI-CF'A (K [C3v]; $d) =
1

2

1

6

1

3
1
2

2
2

2
3

6a c c c+ + , (58)

where the symbol $d represents ad for a homospheric

cycle, bd for a hemispheric cycle, or cd for an enantio-

spheric cycle.

The inventories shown in Eq. (41), i.e., ad = bd = cd

= Xd + Yd + Zd, are introduced into Eq. (58). The result-

ing equation is expanded to give a generating function

for giving the numbers of achiral ethane derivatives as

the coefficients of the respective terms:

fA = (X6 + Y6 + Z6) + (X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

2(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

(X4YZ + XY4Z + XYZ4) +

2(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 4X2Y2Z2. (59)
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The coefficient of each term XxYyZz (x + y + z = 6) in Eq.

(59) represents the number of achiral stereoisomers with

x of X, y of Y and z of Z.

The second proposition (Eq. 51) of Theorem 4 de-

scribed in the previous paper29 showed a procedure for

enumerating pairs of chiral ligands or proligands of op-

posite chiralities (i.e., pairs of enantiomers). The same enu-

meration procedure can be adopted in the enumeration

of chiral stereoisomers (strictly speaking, the enumera-

tion of enanatiomeric pairs), if we take account of chiral

compounds in place of chiral ligands or proligands. Note

that Eq. (51) (Theorem 4) of the previous paper29 is equi-

valent to a procedure in which we change plus signs into

minus signs for the terms corresponding to all of the im-

proper rotations contained in a CI-CF. Thus, the CI-CF'C
for enumerating chiral stereoisomers (enantiomeric pairs)

is obtained from Eq. (40) by changing the plus signs of

terms corresponding to the improper rotations into minus

signs:

CI-CF'C (K [C3v]; $d) =

1

36

1

9

1

9

1

12

1

6
1
6

1
3

3 3
2

2
3

6b b b b b b+ + + + –

1

4
1
2

2
2a c –

1

12

1

6
2
3

6c c− . (60)

The inventories shown in Eq. (41), i.e., ad = bd = cd =

Xd + Yd + Zd, are introduced into Eq. (60). The resulting

equation is expanded to give a generating function for giv-

ing the numbers of enantiomeric pairs of chiral ethane

derivatives as the coefficients of the respective terms:

fC = (X4Y Z + XY4 Z + XY Z4) +

(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

X2Y2Z2 . (61)

The coefficient of each term XxYyZz (x + y + z = 6) in Eq.

(61) represents the number of enantiomeric pairs of chiral

stereoisomers with x of X, y of Y and z of Z.

Obviously, Eqs. (30), (59) and (61) are summarized

into the following relationship:

fA+C = fA + fC . (62)

To testify the validity of the results of Eqs. (30), (59)

and (61), Figure 3 illustrates all of the stereoisomers cor-

responding to the coefficients of the term X2Y2Z2. Note

that the term X2Y2Z2 is factorized into either one of the four

modes: (XYZ)2, (X2Y)(YZ2), (X2Y)(YZ2), and (X2Y)(YZ2).

Among them, the factorized term (XYZ)2 represents com-

binations of chiral ligands (R-XYZ or S-XYZ) and the re-

maining three represent combinations of two achiral li-

gands. The ligands shown in Figure 3 are encircled to

show the corresponding proligands, which are designated

by the symbols p or p for chiral proligands and by the

symbols U and V for achiral proligands.

The coefficient of the term X2Y2Z2 is equal to 4 in

Eq. (59) (fA) so that there exist four achiral stereoisomers,

i.e., 5, 8, 9, and 10. Among them, the achiral stereoiso-

mer 5 shows a so-called meso-compound, in which the

two ligands with opposite chiralities compensate their chi-

ralities to give such an achiral compound.

On the other hand, the coefficient of the term X2Y2Z2

is equal to 1 in Eq. (61) (fC) so that there exists one enan-

tiomeric pair of chiral stereoisomers, i.e., the pair of 4
and 4. It should be noted again that each pair of enantio-

mers is counted once in this enumeration.

As a result, the coefficient 4 for Eq. (59) (fA) and the

coefficient 1 for Eq. (61) (fC) are summed up to be equal

to 5, which appears as the coefficient of the term X2Y2Z2

appearing in Eq. (30) (fA+C). This result is in agreement

with Eq. (62).

PSEUDOASYMMETRIC CASES TREATED BY
METHODS D AND D’

In a previous paper,29 we have reported general theorems

for treating pseudoasymmetric cases. We here show the

versatility of the proligand methods (Methods D and D')

by using a more simplified example for characterizing

such pseudoasymmetric cases.

The present example is concerned with propane deri-

vatives (e.g., 13), which are generated from a tetrahedral

skeleton (11) of Cs-symmetry, as shown in Figure 4. The
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Figure 3. Enumeration of ethane derivatives. Five stereoisomers
corresponding to the term X2Y2Z2 of the generating function shown
in Eq. (30). In this enumeration, a pair of enantiomers is counted
once. The symbols U and V indicates achiral proligands in isola-
tion, where the symbols p and p indicates an enantiomeric pair of
chiral proligands in isolation.



two positions of the tetrahedral skeleton (11) are occupied

by achiral proligands A and B as fixed substituents, and

the remaining two positions serve as substitution posi-

tions for generating propane derivatives. First, we con-

sider a promolecule (12) by placing two chiral proligands

(p) of the same kind. Then, each proligand (p) is replaced

by a chiral ligand (R-CXYZ) to produce a molecule (13).

To put a stress on an unusual character of pseudo-

asymmetric cases, we first examine the enumeration of

such promolecules as 12. Because the skeleton 11 belongs

to the group:

Cs = {I, s} ~ {(1)(2), (1 2)} (63)

the permutations are characterized by the products of sphe-

ricity indices, b1
2 and c2, which are summed up to give a

CI-CF:

CI-CF(Cs; $d) =
1

2
(b c1

2
2+ ) (64)

Suppose that substituents for the positions 1 and 2 of the

skeleton 11 are selected from achiral proligands U and V;

and enantiomeric pairs of chiral proligands (p/p and q/q).

Then, we should use such ligand inventories as follows:

ad = Ud + Vd (65)

bd = Ud + Vd + pd + pd + qd + qd (66)

cd = Ud + Vd + 2pd/2 pd/2 + 2qd/2 qd/2 (67)

After introducing Eq. (66) (d = 1) and Eq. (67) (d = 2) into

Eq. (64), the resulting equation is expanded to give the

following generating function:

f*A+C = [U2 + V2] + UV +

2

2

2

2

2

2

2

2
( ) ( ) ( ) ( )U U U U V V V Vp p q q p p q q+


+ + + + + + 


+

1

2

1

2
2 2 2 2


+ + + 


( ) ( )p p q q +

2

2

2

2




+ + + 


( ) ( )pq pq pq pq +

[2pp + 2qq] . (68)

In this equation, such terms as
1

2
( )U Up p+ represent enan-

tiomeric pairs respectively. Thereby, the term
2

2
( )U Up p+ ,

for example, should be interpreted as 2 × 1

2
( )U Up p+ so

as to represent two pairs of enantiomers. On the other

hand, the term 2pp indicates the presence of two achiral

promolecules, which corresponds to pseudoasymmetric

cases.

To enumerate achiral stereoisomers, we can use

Theorem 4 (Eq. 50) of the previous paper for the enume-

ration of achiral ligands,29 because the enumeration pro-

cedure is the same whether achiral stereoisomers or achi-

ral ligands are enumerated. Thus, the CI-CFA for enume-

rating achiral stereoisomers is obtained by taking the terms

corresponding to the improper rotations contained in Eq.

(64) as follows:

CI-CFA(Cs; $d) = c2. (69)

After introducing Eq. (67) (d = 2) into Eq. (69), the re-

sulting equation gives the following generating function:

f*A = [U2 + V2] + [2pp + 2qq]. (70)

By following Theorem 4 (Eq. 51) of the previous

paper for the enumeration of chiral ligands,29 we are able

to enumerate chiral stereoisomers (enantiomeric pairs),

because the enumeration procedure is the same whether

chiral stereoisomers or chiral ligands are enumerated.

Thus, the CI-CFC for enumerating chiral stereoisomers is

obtained from Eq. (64) by changing the plus signs of

terms corresponding to the improper rotations into mi-

nus signs:

CI-CFC (Cs; $d) =
1

2
1
2

2( )b c− . (71)

After introducing Eq. (66) (d = 1) and Eq. (67) (d = 2) into

Eq. (71), the resulting equation is expanded to give the

following generating function:

f*C = UV +

2

2

2

2




+ + +( ) ( )U U U Up p q q +
2

2

2

2
( ) ( )V V V Vp p q q+ + + 


+

1

2

1

2
2 2 2 2


+ + + 


( ) ( )p p q q +

2

2

2

2




+ + + 


( ) ( )pq pq pq pq . (72)

Obviously, Eqs. (68), (70) and (72) are summarized into

the following relationship:

f*A+C = f*A + f*C (73)
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Figure 4. Conversion of a skeleton into a molecule through a pro-
molecule in the enumeration of propane derivatives. The symbol p
represents a chiral proligand, which is replaced by a chiral ligand
CXYZ.



To apply Method D to this case, the ligand inven-

tories shown by Eqs. (27) – (29) are used in place of Eqs.

(65) – (67). Thus, Eq. (29) (d = 1) and Eq. (28) (d = 2)

are introduced into the CI-CF (Eq. 64) so as to give the

following generating function:

f**A+C = (X6 + Y6 + Z6) +

(X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

2(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

3(X4YZ + XY4Z + XYZ4) +

4(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 6X2Y2Z2 . (74)

The extended version (Method D') is also available

according to a general discussion described previously.29

Thus, the extended CI-CF for this case is obtained as

follows:

CI-CF(Cs; y($)k) =
1

2
y ( )b 1

2 +
1

2
y(c)2 , (75)

which corresponds to the CI-CF shown in Eq. (64), where

the subscript ($) represents (a), (b), or (c) according to

the respective sphericity.

To incorporate substituted methyl ligands, the ligand

inventories shown in Eqs. (55) – (57) are introduced into

the extended CI-CF shown in Eq. (75). Thus, Eq. (57) (d

= 1) and Eq. (56) (d = 2) are introduced into Eq. (75) so

as to give an intermediate CI-CF:

CI-CF'(Cs [C3v]; $d) =

1

18

2

9

2

9

1

6

1

3
1
6

1
3

3 3
2

2
3

6b b b b c c+ + + + . (76)

By considering atoms or achiral ligands only (X, Y, and

Z), we can use identical inventories shown in Eq. (41) (i.e.,

ad = bd = cd = Xd + Yd + Zd). After these inventories are

introduced into Eq. (76), the resulting equation is ex-

panded so as to give a generating function, which is

identical with Eq. (74), i.e.,

f †
A+C = (X6 + Y6 + Z6) +

(X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

2(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

3(X4YZ + XY4Z + XYZ4) +

4(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 6X2Y2Z2 . (77)

To enumerate achiral stereoisomers, we can use Theo-

rem 4 (Eq. 50) of the previous paper29 for the enumera-

tion of achiral ligands as shown above. Thus, the CI-CF'A
for enumerating achiral stereoisomers is obtained by tak-

ing the terms corresponding to the improper rotations from

Eq. (76) as follows:

CI-CF'A (Cs [C3v]; $d) =
1

3

2

3
2
3

6c c+ . (78)

By considering atoms or achiral ligands only (X, Y,

and Z), we can use identical inventories shown in Eq. (41)

(i.e., ad = bd = cd = Xd + Yd + Zd). After these invento-

ries are introduced into Eq. (78), the resulting equation

is expanded so as to give a generating function for enu-

merating achiral stereoisomers:

f†
A = (X6 + Y6 + Z6) +

(X4Y4 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

2X2Y2Z2 (79)

Theorem 4 (Eq. 51) of the previous paper29 for the

enumeration of chiral ligands is used to enumerate chiral

stereoisomers (enantiomeric pairs). Thus, the CI-CF'C for

enumerating chiral stereoisomers is obtained from Eq. (76)

by changing the plus signs of terms corresponding to the

improper rotations into minus signs:

CI-CF'C (Cs [C3v]; $d) =

1

18

2

9

2

9

1

6

1

3
1
6

1
3

3 3
2

2
3

6b b b b c c+ + − − . (80)

After the inventories shown in Eq. (41) (i.e., ad = bd =

cd = Xd + Yd + Zd) are introduced into Eq. (80), the re-

sulting equation is expanded so as to give a generating

function for enumerating chiral stereoisomers:

f†
C = (X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

3(X4YZ + XY4Z + XYZ4) +

4(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2

+ XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 4X2Y2Z2 (81)

Obviously, Eqs. (77), (79) and (81) are summarized into

the following relationship:

f†
A+C = f†

A + f†
C . (82)

To testify the validity of the results of Eqs. (77), (79)

and (81), Figure 4 illustrates all of the stereoisomers cor-

responding to the coefficients of the term X2Y2Z2. The li-

gands shown in Figure 4 are encircled to show the corres-

ponding proligands, which are designated by the symbols
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p or p for chiral proligands and by the symbols U and V

for achiral proligands.

The coefficient of the term X2Y2Z2 is equal to 2 in

Eq. (79) (f†
A) so that there exist two achiral stereoiso-

mers, i.e., 15 and 16. These are diastereomeric to show a

so-called pseudoasymmetric case.

On the other hand, the coefficient of the term X2Y2Z2

is equal to 4 in Eq. (81) (f†
C) so that there exist four enan-

tiomeric pairs of chiral stereoisomers, i.e., the four pairs

represented by 14/14, 17/17, 18/18 and 19/19. It should

be noted again that each pair of enantiomers is counted

once in this enumeration.

As a result, the coefficient 2 for Eq. (79) (f †
A) and

the coefficient 4 for Eq. (81) (f †
C) are added to give 6,

which appears as the coefficient of the term X2Y2Z2 ap-

pearing in Eq. 77 (f †
A+C). This result is in agreement with

Eq. (82).

The comparison between Figure 3 and Figure 5 shows

that the factorization of the term X2Y2Z2 gives different

results according to the skeletons at issue. In particular,

the factorized term (XYZ)2 corresponds to a meso-com-

pound (5) in Figure 3, while it corresponds to a pseudo-

asymmetric case (15 and 16) in Figure 5. These cases are

correctly treated by the present methods.

Because the f†
C , (Eq. 81) enumerates enantiomeric

pairs (e.g., 14 and 14), the achiral stereoisomers (15 and

16) counted by f†
A (Eq. 79) can be determined as being

diastereomeric. Note that diastereomers are defined as

stereoisomers that are not enantiomers in the conventio-

nal stereochemistry.

Moreover, the factorized terms (X2Y)(YZ2), (X2Y)(YZ2),

and (X2Y)(YZ2) correspond to achiral compounds (i.e., 8,

9, and 10) in Figure 3, while they correspond to enantio-

meric pairs of chiral derivatives, i.e., 17/17, 18/18 and

19/19, in Figure 5. These features are in agreement with

the results that the former is characterized by f †
A (Eq. 59)

for enumerating achiral derivatives, while the latter is cha-

racterized by f †
C (Eq. 81) for enumerating enantiomeric

pairs.

STEREOISOMERS vs. GRAPHS

On Ethane Derivatives

– Enumeration of Ethane Derivatives by

Pólya’s Theorem

Strictly speaking, the method used here is Pólya’s coro-

na, which has been developed as an extension of Pólya’s

theorem in his famous article.3,4 For the sake of convenien-

ce, "Pólya’s theorem" is used here as a generic name.

To enumerate ethane derivatives, Pólya’s theorem con-

siders a permutation group of order 2 and of degree 2:

G = {(1) (2), (1 2)}, (83)

which does not take inner structures into consideration.

As a result, the skeleton (6) is characterized by the fol-

lowing cycle index:

CI(G; yk) =
1

2
(y1

2 + y2) (84)

For substituted methyl ligands, the term yk is repre-

sented as follows:

yk =
1

6
2 33

3 2( )s s s sk k k k+ + , (85)

because the methyl has �H-symmetry:

�H = {(1)(2)(3),(1 3 2),(1 2 3),(1)(2 3),(1 3)(2),(1 2)(3)}.

The introduction of Eq. (85) into the cycle index (Eq. 84)

gives the following equation:

CI(G [ �H]; sd) =
1

72

1

18

1

12

1

18
1
6

1
3

3 1
4

2 3
2s s s s s s+ + + +

1

6

1

8

1

12

1

6

1

4
1 2 3 1

2
2
2

2
3

6 2 4s s s s s s s s s+ + + + (86)

The dummy variable sd in Eq. (86) is replaced by the fol-

lowing inventory:

sd = Xd + Yd + Zd . (87)

By expanding the resulting equation, we obtain the fol-

lowing generating function:
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Figure 5. Enumeration of propane derivatives. Six stereoisomers
corresponding to the term X2Y2Z2 of the generating function shown
in Eq. (74). In this enumeration, a pair of enantiomers is counted
once.



g = (X6 + Y6 + Z6) +

(X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

2(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

2(X4YZ + XY4Z + XYZ4) +

3(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 4X2Y2Z2 (88)

The coefficient of each term XxYyZz (x + y + z = 6) in

Eq. (88) represents the number of isomers (as graphs)

with x of X, y of Y, and z of Z.

If we consider proper rotations only, the term yk is

represented as follows:

yk =
1

3
23

3( )s sk k+ (89)

because the proper rotations for the methyl ligand con-

struct a subgroup shown by:

�H = {(1) (2) (3), (1 3 2), (1 2 3)}.

The introduction of Eq. (89) into the cycle index (Eq. 84)

gives the following equation:

CI(G[ �H]; sd) =
1

18

2

9

2

9

1

6

1

3
1
6

1
3 3

3
2

2
3

6s s s s s s+ + + + (90)

The dummy variable sd in Eq. (90) is replaced by the

inventory shown in Eq. (87). The resulting equation is

expanded to give the following generating function:

g' = (X6 + Y6 + Z6) +

(X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

2(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

3(X4YZ + XY4Z + XYZ4) +

4(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 6X2Y2Z2 (91)

The coefficient of each term XxYyZz (x + y + z = 6) in Eq.

(91) represents the number of isomers with x of X, y of

Y, and z of Z.

– What is Polya’s Theorem Deficient In?

Methods A–D and their extended versions (A'–D') give

the same generating functions as shown in Eqs. (30), (59),

and (61), while Pólya’s theorem (Pólya’s corona) gives

the generating functions shown in Eqs. (88) and (91). The

comparison between these generating functions shows that

they are different in the coefficients of the term X2Y2Z2,

i.e., 5X2Y2Z2 in Eq. (30) (by Methods A/A'–D/D') vs.

4X2Y2Z2 in Eq. (88) and 6X2Y2Z2 in Eq. (91) (by Pólya’s

theorem). The factorization of each term X2Y2Z2 into

two terms representing methyl substituents demonstrates

the difference more clearly:

Fujita’s Methods A/A'–D/D':

fA+C : 5X2Y2Z2 = 2(XYZ)2 + (X2Y)(YZ2) +

(X2Z)(Y2Z) + (XY2)(XZ2) (92)

fA : 4X2Y2Z2 = (XYZ)2 + (X2Y)(YZ2) +

(X2Z)(Y2Z) + (XY2)(XZ2) (93)

fC : X2Y2Z2 = (XYZ)2 (94)

Pólya's Theorem:

g: 4X2Y2Z2 = (XYZ)2 + (X2Y)(YZ2) +

(X2Z)(Y2Z) + (XY2)(XZ2) (95)

g': 6X2Y2Z2 = 3(XYZ)2 + (X2Y)(YZ2) +

(X2Z)(Y2Z) + (XY2)(XZ2) (96)

By comparing the factorized equations, let us first dis-

cuss the difference in the term 2(XYZ)2 in Eq. (92) and

the term (XYZ)2 in Eq. (95). The coefficient 2 of the term

(XYZ)2 in Eq. (92) corresponds to one pair of enantio-

mers (4 and 4) and one achiral molecule (5), because

Methods A/A'–D/D' count each pair of enantiomers once.

The term 2(XYZ) directly appears in Eq. (34). The vali-

dity or consistency of Eq. (92) – (94) has been already

discussed above in terms of Eqs. (30), (59), and (61). On

the other hand, the coefficient 1 of the term (XYZ)2 in

Eq. (95) corresponds to one graph (3).

To show what Pólya’s theorem is deficient in, it is

informative to compare between Method D' (the proli-

gand method) and Polya’s theorem (Polya’s corona) in

terms of Eq. (86).

(i) Let us place y(a)k = y(c)k = y(b)k = yk in Eq. (50).

Thereby, Eq. (50) for Method D' (the proligand method)

is converted into Eq. (84) for Pólya’s theorem (Pólya’s

corona). It follows that Pólya’s theorem (Pólya’s corona)

lacks the concept of sphericity. This means that Pólya’s

theorem (Pólya’s corona) does not take account of the in-

ner structures of ligands (especially, the chirality/achirality

of ligands).

(ii) By placing ad = cd = bd = sd, moreover, Eq. (51)

for Method D' (the proligand method) is converted into

Eq. (84) for Pólya’s theorem (Pólya’s corona). Note that

Eq. (51) counts one achiral ligand once as well as one

pair of enantiomeric ligands (cf. 2 and 2) once. Hence,

Eq. (84), the results of which are apparently equal to those
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based on Eq. (51) (ad = cd = bd = sd), turns out to take ac-

count of achiral ligands only. On the other hand, Method

D' takes account both achiral and chiral ligands in the form

of the ligand inventories of three kinds (Eqs. 55–57).

The above equations y(a)k = y(c)k = y(b)k = yk and ad =

cd = bd = sd mean the deletion of sphericity. Hence, what

Pólya’s theorem is deficient in is concluded to be the

concept of sphericity. The proligand method (Method D’)

is regarded as a substantial extension of Pólya’s theorem

by adding the concept of sphericity.

When we use Pólya’s theorem (Pólya’s corona) in

terms of Eq. (90), we encounter another type of deficiency.

(i) Thus, the coefficient 6 of the term X2Y2Z2 for g'

(Eq. 91) is factorized in accord with Eq. (96) so as to

correspond to the six derivatives listed in Figure 3. Ste-

reochemically speaking, however, this enumeration regards

the six derivatives (Figure 3) as being chiral ones, be-

cause this enumeration procedure lacks rotoreflection ope-

rations. In other words, each of them is counted once even

if it is chiral or achiral.

(ii) As a result, it is not determined whether 4 and 4
are enantiomeric or not. The meso-compound (5) is not

recognized as being achiral because of the lack of roto-

reflections. On the same line, 8–10 are not recognized as

being achiral. It should be noted that the determination

of such achiralities necessitates reexamination of the enu-

meration results in terms of supergroups containing roto-

reflections.

(iii) This type of enumeration based on Pólya’s theo-

rem fails in the determination of the achirality of so-called

meso-compounds (e.g., 5). Hence, the enantiotopic rela-

tionship between relevant ligands (or proligands) or the

enantiospheric nature of the corresponding orbit of the

relevant ligands (or proligands) cannot be characterized

by this type of enumeration. For example, the relation-

ship between the ligands R-XYZ (p) and S-XYZ (p) in 5
cannot be recognized as being enantiotopic, because the

lack of rotoreflections in this type of enumeration results

in the inconsistency that 5 is regarded as being chiral.

On Propane Derivatives

– Promolecule Enumeration by Pólya’s Theorem

Let us now examine the enumeration of promolecules

(e.g., 12) by applying Pólya’s Theorem to the skeleton

11 in Figure 4. Because this type of enumeration disre-

gards the inner structures of proligands, the same permu-

tation group as shown in Eq. (83) is used on the basis of

Pólya’s theorem. As a result, the skeleton (11) is charac-

terized by the following cycle index:

CI(G; sk) =
1

2
(s1

2 + s2) . (97)

This equation is obtained by changing the sphericity in-

dices b1 and c2 in Eq. (64) into the dummy variables

without sphericity, i.e., s1 and s2. Because the inner struc-

tures of proligands are disregarded, we use here the fol-

lowing inventory:

sd = Ud + Vd + pd + pd + qd + qd, (98)

which is obtained by changing bd in Eq. (66) into sd. After

introducing Eq. (98) into Eq. (97), the resulting equation

is expanded to give a generating function as follows:

g* = [U2 + V2] + UV +

[Up + Up + Uq + Uq + Vp + Vp + Vq + Vq] +

[p2 + p2 + q2 + q2] +

[pq + pq + pq + pq] +

[pp + qq]. (99)

If we consider proper rotations only, we should apply

G' = {(1)(2)} to characterize the skeleton (11). Thereby,

we use the following cycle index:

CI(G'; sk) = s1
2 . (100)

After introducing Eq. (98) into Eq. (100), the resulting

equation is expanded to give a generating function as

follows:

g** = [U2 + V2] + UV +

[2Up + 2Up + 2Uq + 2Uq + 2Vp + 2Vp +

2Vq + 2Vq] +

[p2 + p 2 + q2 + q 2] +

[2pq + 2p q + 2pq + 2pq] +

[2pp + 2qq]. (101)

– Isomer Enumeration by Pólya’s Theorem

When Pólya’s Theorem is applied to the enumeration of

propane derivatives, we can use Eq. (83) – (87), although

we consider the skeleton 11 (Figure 4) in place of the one

6 (Figure 2). Thereby, the same generating function as g

(Eq. 88) is obtained as follows:

g† = (X6 + Y6 + Z6) +

(X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

2(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

2(X4YZ + XY4Z + XYZ4) +

3(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

2(X3Y3 + X3Z3 + Y3Z3) + 4X2Y2Z2 (102)
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The coefficient of each term XxYyZz (x + y + z = 6) in

Eq. (102) represents the number of propane derivatives

(as graphs) with x of X, y of Y, and z of Z.

If we consider proper rotations only, the skeleton (11)

is characterized by the following cycle index:

CI(G'; yk) = y1
2 . (103)

As the term y1 for substituted methyl ligands, we can use

Eq. (85). The introduction of Eq. (85) into Eq. (103) give

the following equation:

CI(G' [ �H']; sd) =
1

9
1
6s +

4

9
1
3

3s s +
4

9
3
2s (104)

The dummy variable sd in Eq. (104) is replaced by the

inventory shown in Eq. (87). The resulting equation is

expanded to give the following generating function:

g† = (X6 + Y6 + Z6) +

2(X5Y + X5Z + XY5 + XZ5 + Y5Z + YZ5) +

3(X4Y2 + X4Z2 + Y4Z2 + X2Y4 + X2Z4 + Y2Z4) +

6(X4YZ + XY4Z + XYZ4) +

8(X3Y2Z + X3YZ2 + X2Y3Z + X2YZ3 + XY3Z2 + XY2Z3) +

4(X3Y3 + X3Z3 + Y3Z3) + 10X2Y2Z2 (105)

The coefficient of each term XxYyZz (x + y + z = 6) in

Eq. (91) represents the number of isomers with x of X, y

of Y, and z of Z.

– What is Polya’s Theorem Again Deficient In?

Methods A–D give the same generating functions for enu-

merating promolecules described above, i.e., Eqs. (68),

(70), and (72). On the other hand, Pólya’s theorem (Pólya’s

corona) gives the generating functions shown in Eqs. (99)

and (101). Among the terms appearing in these equations,

those composed of p and/or p are extracted as follows:

Fujita’s Method D:

f*A+C :
1

2
(p2 + p 2) 2pp (106)

f*A : none 2pp (107)

f*C :
1

2
(p2 +p 2) none (108)

Polya’s Theorem:

g* : p2, p 2 pp (109)

g** : p2, p 2 2pp (110)

The results shown in Eqs. (106) – (108) can be con-

firmed by the inspection of Figure 5. Thus, a pair of enan-

tiomers (14 and 14) is enumerated by the term
1

2
(p2 + p2),

while two achiral stereoisomers (15 and 16) are enume-

rated by the term 2pp.

The treatment for deriving g* on the basis of Pólya’s

theorem can be criticized from a viewpoint of stereoiso-

mer enumeration.

(i) By the inspection of the terms p2 and p2 appear-

ing in g* (Eq. 109), 14 and 14 are enumerated distinctly

even by considering the permutation (1 2), so that they

are not recognized as a pair of enantiomers. This result

stems from the fact that the treatment for g* does not take

account of inner structures. Under this condition, the term

p2 cannot be transformed into the term p2 and vice versa.

In other words, Pólya’s theorem lacks the concept of sphe-

ricity when it is applied to this type of enumerations. Thus,

the enantiospheric nature of the permutation (1 2) is dis-

regarded.

(ii) The coefficient 1 of term pp in g* indicates that

the two stereoisomers (15 and 16) coalesce by the action

of the permutation (1 2), so that they are counted as a

single stereoisomer. This result also stems from the dis-

regard of the enantiospheric nature of (1 2) in this ap-

plication of Pólya’s theorem.

The treatment for deriving the generation function g**

on the basis of Pólya’s theorem can be criticized from a

viewpoint of stereoisomer enumeration.

(i) This enumeration disregards rotoreflections, as

found by the lack of the permutation (1 2). Thereby, 14
and 14 are enumerated distinctly to give the terms p2 and

p2, as appearing in g** (Eq. 110). Although this result is

apparently correct, it is inconsistent to the stereochemi-

cal viewpoint. Because of the lack of rotoreflections, the

two isomers are not recognized as a pair of enantiomers.

(ii) The coefficient 2 of term pp in g** indicates that

the two isomers 15 and 16 are counted correctly. However,

the achiral nature of 15 or 16 is not specified because of

the lack of rotoreflections. Obviously, the chirality of

chiral compounds (e.g., 14 and 14) and the achirality of

achiral ones (e.g., 15 and 16) are not differentiated con-

ceptually in this enumeration.

Methods A–D and their extended versions (A'–D')

give the same generating functions as shown in Eqs. (77),

(79), and (81), whereas Pólya’s theorem (Pólya’s coro-

na) gives the generating functions shown in Eqs. (102)

and (105).

These generating functions are different in the coef-

ficients of the term X2Y2Z2, i.e., 6X2Y2Z2 in Eq. (77) (by

Methods A/A'–D/D') vs. 4X2Y2Z2 in Eq. (102) and 10X2Y2Z2

in Eq. (105) (by Pólya’s theorem). Let us consider the

factorization of each term X2Y2Z2 into two terms repre-

senting methyl substituents in order to demonstrate the

difference more clearly:
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Fujita’s Methods A/A'–D/D':

f †
A+C : 6X2Y2Z2 = 3(XYZ)2 + (X2Y)(YZ2) +

(X2Z)(Y2Z) + (XY2)(XZ2) (111)

f †
A : 2X2Y2Z2 = 2(XYZ)2 (112)

f †
C : 4X2Y2Z2 = (XYZ)2 + (X2Y)(YZ2) +

(X2Z)(Y2Z) + (XY2)(XZ2) (113)

Polya’s Theorem:

g†: 4X2Y2Z2 = (XYZ)2 + (X2Y)(YZ2) +

(X2Z)(Y2Z) + (XY2)(XZ2) (114)

g‡: 10X2Y2Z2= 4(XYZ)2 + 2(X2Y)(YZ2) +

2(X2Z)(Y2Z) + 2(XY2)(XZ2) (115)

Let us first discuss the difference in the term 3(XYZ)2

for f†A+C in Eq. (111) and the term (XYZ)2 for g† in Eq.

(114). The coefficient 3 of the term (XYZ)2 in Eq. (111)

corresponds to one pair of enantiomers (14 and 14) and

two achiral molecules (15 and 16), because Methods

A/A'–D/D' count each pair of enantiomers once as well

as each achiral stereoisomer once. This feature assures

the validity or consistency of Eqs. (111) – (113). On the

other hand, the coefficient 1 of the term (XYZ)2 in Eq.

(114) corresponds to one graph, where one pair of enan-

tiomers (14 and 14) and two achiral molecules (15 and

16) are regarded as being graph-theoretically the same

thing.

To show what Pólya’s theorem is deficient in, let us

compare between Method D' (the proligand method) and

Pólya’s theorem (Pólya’s corona) in terms of Eq. (86).

By placing y(a)k = y(c)k = y(b)k = yk in Eq. (75) and by

placing ad = cd = bd = sd Eq. (51) for Method D' (the

proligand method), we can derive the generating func-

tion g† and related equations. Such substitutions as y(a)k

= y(c)k = y(b)k = yk and ad = cd = bd = sd mean the dele-

tion of sphericity. Hence, what Pólya’s theorem is defi-

cient in is again concluded to be the concept of spherici-

ty. The proligand method (Method D') is again regarded

as a substantial extension of Polya’s theorem by adding

the concept of sphericity.

When we use Pólya’s theorem (Pólya’s corona) in

terms of Eq. (104), we encounter further types of defi-

ciency.

(i) The coefficient 10 of the term X2Y2Z2 for g‡ (Eq.

105) is factorized in accord with Eq. (115) so as to cor-

respond to the ten derivatives listed in Figure 5. Stereo-

chemically speaking, this enumeration procedure lacks

rotoreflection operations. As a result, the ten derivatives

(Figure 5) is regarded as being conceptually chiral so that

each of them is counted once even if it is stereochemi-

cally determined to be chiral or achiral.

(ii) The enantiomeric pairs (i.e., 14/14, 17/17, 18/18
and 19/19) are not characterized to be enantiomeric be-

cause of the lack of rotoreflections.

(iii) On the same line, 15 and 16 are not recognized

as being achiral. Although they should be characterized

as showing a pseudoasymmetric case, this type of enu-

meration based on Pólya’s theorem fails in the determi-

nation of the achirality of such a case. Note that 15 and

16 of the pseudoasymmetric case are concluded to be dia-

stereomeric by means of Method A/A'–D/D' because these

methods are able to count enantiomeric pairs (Eq. 113).

(iv) The enantiotopic relationship between relevant

ligands (or proligands) or the enantiospheric nature of the

corresponding orbit of the relevant ligands (or proligands)

cannot be characterized by this type of enumeration. For

example, the relationship between the ligands R-XYZ (p)

and S-XYZ (p) in 15 or 16 cannot be recognized as being

enantiotopic, because of the lack of rotoreflections in this

type of enumeration.

CONCLUSIONS

The USCI approach (Methods A–C and their extended

versions) based on the concept of "sphericities of orbits"

and the proligand method (Method D and Method D') bas-

ed on the concept of "sphericities of cycles" are studied

by using combinatorial enumeration of ethane and pro-

pane derivatives as examples. The results are compared

with the ones based on Pólya’s theorem (and Pólya’s co-

rona) so as to show that Pólya’s theorem enumerates che-

mical compounds as graphs, not as stereoisomers (3D che-

mical structures) if all of the permutations of positions

are adopted and that it enumerates chemical compounds

as chiral compounds if the permutations corresponding

to proper rotations are adopted. What Pólya’s theorem is

deficient in is concluded to be the concept of sphericity.
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Sferi~nost krugova: Koncept koji ~ini Pólyin teorem manjkavim za prebrojavanje stereoizomera

Shinsaku Fujita

Preinakom Fujitinog USCI (engl. Unit-Subduced-Cycle-Index) pristupa, zasnovanog na konceptu sferi~nosti

orbita, do{lo se do tri nova postupka za prebrojavanje stereoizomera, koji su u ovom radu primijenjeni na pro-

bleme prebrojavanja derivata etana i propana. Isti je problem razmatran pomo}u postupka proliganada i po-

op}enja zasnovanog na konceptu sferi~nosti krugova. Dobijeni rezultati su uspore|eni s onima postignutim pri-

mjenom Pólyinog teorema. Pokazano je da Pólyin teorem prebrojava kemijske spojeve kao grafove a ne kao

stereoizomere ukoliko se uzmu u obzir sve permutacije koje odgovaraju pravim i nepravim rotacijama. Ukoliko

se razmatraju samo permutacije koje odgovaraju pravim rotacijama, tada Pólyin teorem prebrojava spojeve kao

kiralne i ne karakterizira prikladno enantiomeriju i akiralnost. Obje primjene Pólyinog teorema ne razmatraju

na pravi na~in neprave rotacije, pa se u radu zaklju~uje da je koncept sferi~nosti ono {to ~ini Pólyin teorem

manjkavim.
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