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Note

This note was stimulated by recent papers of Lukovits1

and Do{li}2 on counting Kekulé structures in benzenoid

parallelograms. Their works are rooted in earlier reports

by Gordon and Davison3 and Yen.4 In the present note,

we give the answer to the question how the number of

Kekulé structures K changes when a single benzene ring

is added to the benzenoid parallelogram. Note that a

benzenoid in a parallelogram-like shape, called the benze-

noid parallelogram and denoted by Bm,n, consists of m ´ n

benzene rings, arranged in m rows, each row containing

n benzene rings, shifted by a half benzene ring to the right

from the row immediately below. In Figure 1, we give as

an illustrative example a benzenoid parallelogram Bm,n

where m = 3 and n = 4.

A single benzene ring can be added to a benzenoid

parallelogram in two ways – it can be attached to Bm,n

either to its one bond or to its two adjacent bonds. How-

ever, in the latter case the obtained benzenoids possess

no Kekulé structures. In the former case, three classes of

benzenoids can be generated depending on to which bond

in Bm,n the benzene ring is attached. These three classes

of benzenoids, denoted by B'm,n, B''m,n, and B'''m,n, are de-

picted in Figure 2.

One can easily see that benzenoids B'm,n, B''m,n, and

B'''m,n coincide in mn hexagons and differ only in the at-

tached benzene ring. Hence, it may be expected that when

Figure 1. Benzenoid parallelogram Bm,n where m = 3 and n = 4.



m and n are large, the numbers of Kekulé structures

K(B'm,n), K(B''m,n), and K(B'''m,n) are similar, i.e.:
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To derive expressions for computing K(B'm,n), K(B''m,n),

and K(B'''m,n), we will utilize the following result, which

has been proved by Do{li}.2 In each row of Bm,n, there is

exactly one vertical double bond. Let us denote vertical

double bonds in a benzenoid by numbers 1,…, m+1 in

each of the n rows and let denote rows by numbers

1,..., n. Then the double bonds define the function db

from {1,..., n} to {1,..., m+1}. An example of such cor-

respondence is given in the following figure:

Also, it is proved in the paper by Do{li}2 that this

function is a non-decreasing function. Moreover, there is

one-to-one correspondence between this set of non-de-

creasing functions and Kekulé structures of Bm,n. The

following result is well known:5
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Let us prove the following:
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Proof: Let F1 be the set of all non-decreasing functions f

from {1,..., n} to {1,..., m+1} such that f(1) = 1 and F2

the set of all non-decreasing functions f from {1,..., n–1}

to {1,..., m+1}. Note that F2 has
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elements;

hence it is sufficient to define bijection f: F1 → F2. This

bijection can be defined by [f(f)](i) = f(i+1) for each i =

1,..., n–1. �

From Lemmas 1 and 2, it directly follows that:
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Let us now calculate K(B'm,n). Denote by H the he-

xagon that is added to Bm,n to form B'm,n. Carbon atoms

of H can be covered by the double bonds in three differ-

ent ways (see Figure 4).

Denote by K1(B'm,n), K2(B'm,n), and K3(B'm,n), respect-

ively, the number of Kekulé structures that cover carbon

atoms of H as shown in Figures 4a, 4b, and 4c. Note that

K1(B'm,n) and K2(B'm,n) are equal to the number of non-

decreasing functions f from {1,..., n} to {1,..., m+1} such

that f(1) = 1; hence (from Lemma 2):
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m
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.

Note that K3(B’m,n) is equal to the number of non-

decreasing functions f from {1,... n} to {1,... m+1} such

that f(1) > 1; hence (from Lemma 3):
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Figure 2. Three classes of benzenoids B'm,n, B''m,n, and B'''m,n ob-
tained from a benzenoid parallelogram Bm,n to which a benzene
ring is added.

Figure 3. The Kekulé structure that corresponds to function f given
by f(1) = 2, f(2) = 2, f(3) = 4.

Figure 4. Three ways to cover the carbon atoms of H by double
bonds in B'm,n.

(a) (b)

(c)
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Since B'm,n is isomorphic to B"m,n, one has:
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Now, let us calculate K(B'''m,n). As above, denote by

H the hexagon that is added to Bm,n to form B'm,n. Again,

the carbon atoms of H can be covered by the double bonds

in three different ways (see Figure 5).

Denote by K1(B'''m,n), K2(B'''m,n), and K3(B'''m,n), res-

pectively, the number of Kekulé structures that cover car-

bon atoms of H as shown in Figures 5a, 5b and 5c. Note

that K3(B'''m,n) is equal to the number of non-decreasing

functions f from {1,..., n} to {1,..., m+1} such that f(n) = 1.

The only such function is the function f(1) = f(2) = ... =

f(n) = 1; hence:
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Figure 5. Three ways to cover the carbon atoms of H by double
bonds B'''m,n.

(a) (b)

(c)
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Damir Vuki~evi}, István Lukovits i Nenad Trinajsti}

Prebrojavanje Kekuléovih struktura u benzenoidnim paralelogramima koji sadr`e jedan dodatni
benzenski prsten

Dane su formule za broj Kekuléovih struktura u posebnoj klasi benzenoida koja se sastoji od paralelo-

grama kojemu je dodan jo{ jedan jedini benzenoidni prsten.
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