FINITE NONABELIAN 2-GROUPS IN WHICH ANY TWO NONCOMMUTING ELEMENTS GENERATE A SUBGROUP OF MAXIMAL CLASS

Zvonimir Janko
University of Heidelberg, Germany

Abstract. We determine here the structure of the title groups. It turns out that such a group G is either quasidihedral or $G=HZ(G)$, where H is of maximal class or extraspecial and $U_1(Z(G)) \leq Z(H)$. This solves a problem stated by Berkovich. The corresponding problem for $p > 2$ is open but very difficult since the p-groups of maximal class are not classified for $p > 2$.

1. Introduction and known results

We determine here the structure of all finite nonabelian 2-groups in which any two noncommuting elements generate a subgroup of maximal class. More precisely, we prove the following result.

Theorem 1.1. Let G be a finite nonabelian 2-group in which any two noncommuting elements generate a subgroup of maximal class. Then one of the following holds:

(a) $|G : H_2(G)| = 2$ and $H_2(G)$ is noncyclic (i.e., G is quasidihedral but not dihedral);
(b) $G = HZ(G)$, where H is of maximal class and $U_1(Z(G)) \leq Z(H)$;
(c) $G = HZ(G)$, where H is extraspecial of order $\geq 2^5$ and $U_1(Z(G)) \leq Z(H)$.

Conversely, each group in (a), (b) and (c) satisfies the assumption of the theorem.

2000 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite 2-groups, 2-groups of maximal class, minimal nonabelian 2-groups, quasidihedral 2-groups, Hughes H_p-subgroups.

271
We consider here only finite p-groups and our notation is standard. In particular, a 2-group S is quasidihedral if S has an abelian subgroup T of exponent > 2 so that $|S : T| = 2$ and there is an involution in $S - T$ which inverts each element in T. It turns out that T is a characteristic subgroup of S.

We state three known results which are used in the proof of Theorem 1.1.

Proposition 1.2 (Berkovich [1, Lemma 4.2]). Let G be a p-group with $|G'| = p$. Then $G = (A_1 \ast A_2 \ast \ldots \ast A_s)Z(G)$ (\ast denotes a central product), where A_1, A_2, \ldots, A_s are minimal nonabelian subgroups.

Proposition 1.3 (Berkovich [1, §58] and Kazarin [2]). Let G be a nonabelian 2-group all of whose cyclic subgroups of composite order are normal in G. Then we have either $|G : H_2(G)| = 2$ (and then G is quasidihedral) or $|G'| = 2$ and the Frattini subgroup $\Phi(G)$ is cyclic.

Proposition 1.4 (Janko [3, Proposition 2.3]). A 2-group is of maximal class if and only if G is dihedral, semidihedral or generalized quaternion.

From Proposition 1.4 follows at once that if $G = \langle a, b \rangle$ is a 2-group of maximal class, then at least one of a and b is of order ≤ 4 and G possesses exactly one involution z (where $(z) = Z(G)$) which is a square in G. We shall use freely this remark in the proof of Theorem 1.1.

2. **Proof of Theorem 1.1**

Let G be a nonabelian 2-group in which any two noncommuting elements generate a subgroup of maximal class. We may assume that G is not of maximal class.

(i) First we assume that $\exp(G) > 4$. Suppose for a moment that each element of order ≥ 8 lies in $Z(G)$. Let $x, y \in G$ with $[x, y] \neq 1$. Since (x, y) is of maximal class, we have in our case $(x, y) \cong D_8$ or $(x, y) \cong Q_8$. Let k be an element of order 8 so that here $k \in Z(G)$. But then kx and ky are elements of order 8 with $[kx, ky] = [x, y] \neq 1$ and therefore (kx, ky) is of maximal class, a contradiction. We have proved that G possesses a cyclic subgroup A of order ≥ 8 such that $A \not\subseteq Z(G)$.

It is easy to see that any cyclic subgroup X of order ≥ 8 is normal in G. Indeed, let $g \in G$ so that g either centralizes X or $\langle X, g \rangle$ is of maximal class in which case g normalizes X.

Let $y \in G$ be such that $[A, y] \neq 1$ and so $\langle A, y \rangle$ is of maximal class. Then $\langle A, y \rangle$ contains a subgroup of maximal class $\langle B, y \rangle$ of order 2^4, where $B = \langle b \rangle \cong C_8$, $B \leq A$, and $y^2 \in \Omega_1(B) = \langle z \rangle$. We know that B is normal in G. Set $M = C_G(B)$ so that $G/M \neq \{1\}$ is elementary abelian of order ≤ 4. If $G/M \cong E_4$, then there is $l \in G - M$ such that $l^2 \in M$, l^2 centralizes B and $b^l = bz$. But then $\langle b, l \rangle' = \langle z \rangle$ and so $\langle b, l \rangle$ is not of maximal class, a contradiction. Thus $|G : M| = 2$.

272 Z. JANKO
For each \(x \in G - M \), \(x^2 \in \langle z \rangle \). Indeed, \([b, x] \neq 1\) and so \(\langle b, x \rangle \) is of maximal class and therefore \(x^2 \in \Omega_1(B) = \langle z \rangle \). Consider \(G = G/\langle z \rangle \). Then all elements in \(G - M \) are involutions which implies that \(M/\langle z \rangle \) is abelian and for each \(m \in M \), \(m^y = m^{-1}z^\epsilon \), \(\epsilon = 0, 1 \).

Suppose that \(M \) is nonabelian. Then \(M' = \langle z \rangle \) and let \(m, n \in M \) with \([m, n] = z\). In that case (since \(\langle m, n \rangle \) is of maximal class), \(\langle m, n \rangle \cong D_8 \) or \(\cong Q_8 \). But then \(bm \) and \(bn \) are elements of order 8 with \([bm, bn] = [m, n] = z\) and so \(\langle bm, bn \rangle \) is of maximal class, a contradiction. Hence \(M \) is abelian. If \(M \) is cyclic, then \(\langle M, y \rangle = G \) is of maximal class, a contradiction. Thus, \(M \) is noncyclic abelian.

If all elements in \(G - M \) are involutions, then \(H_2(G) = M \) and we have obtained a group in part (a) of our theorem.

We may assume that not all elements in \(G - M \) are involutions and so we may suppose \(y^2 = z \). Let \(t \) be any involution in \(M - \langle z \rangle \) and assume that \(t \) is a square in \(M \), i.e., there is \(k \in M \) such that \(k^2 = t \). Since \(k^q = k^{-1}z^\epsilon \) (\(\epsilon = 0, 1 \)), \(\langle y, k \rangle \) is nonabelian. In that case \(\langle y, k \rangle \) is of maximal class containing two distinct involutions \(z \) and \(t \) which are squares in \(\langle y, k \rangle \), a contradiction. We have proved that \(M \) is abelian of type \((2^s, 2, ..., 2)\), \(s \geq 3 \).

Setting \(E = \Omega_1(M) \), we get \(M = \langle b' \rangle E \), where \(o(b') = 2^s \), \(|E| \geq 4 \), and \(\langle b' \rangle \cap E = \Omega_1(\langle b' \rangle) = \langle z \rangle \) since \(z \) is the unique involution in \(M \) which is a square in \(M \). Since \((b')^y = (b')^{-1}z^y \) (\(y = 0, 1 \)), \(H = \langle b', y \rangle \) is of maximal class and \(G = HE \). For each \(t \in E \), we have either \(t^y = t \) or \(t^y = tz \). If \(y \) centralizes \(E \), then \(E = Z(G) \). If \(y \) does not centralize \(E \), then \(E_0 = CE(y) \) is of index 2 in \(E \). Let \(v \) be an element of order 4 in \(\langle b' \rangle \) and let \(u \in E - E_0 \). In that case
\[
(vu)^y = v^{-1}(uz) = (vu)(uz) = vu \text{ and } (vu)^2 = z,
\]
and so \(Z(G) = E_0(vu) \) with \(\Omega_1(Z(G)) = \langle z \rangle \). In any case we get \(G = HZ(G) \), \(Z(G) \supseteq Z(H) = \langle z \rangle \), and \(\Omega_1(Z(G)) \subseteq \langle z \rangle \). We have obtained a group in part (b) of our theorem.

(ii) We examine now the case \(\exp(G) = 4 \). Let \(\langle x \rangle \) be a cyclic subgroup of order 4 and \(y \in G \). Then either \([x, y] = 1 \) or \(\langle x, y \rangle \cong D_8 \) or \(Q_8 \). In any case \(y \) normalizes \(\langle z \rangle \) and so each cyclic subgroup of order 4 is normal in \(G \).

We may use Proposition 1.3. It follows that either \(|G : H_2(G)| = 2 \) (and we get a group of part (a) of our theorem) or \(|G'| = 2 \) and \(\Phi(G) \) is cyclic.

Suppose that we are in the second case. Since \(G \) does not possess elements of order 8, we have \(|\Phi(G)| = 2 \) and then \(\Phi(G) = G' \). The fact \(|G'| = 2 \) implies that \(G = H_1 \ast H_2 \ast \ldots \ast H_n Z(G) \), where \(H_i \) (\(i = 1, ..., n \)) is minimal nonabelian (Proposition 1.2). In our case \(H_i \cong D_8 \) or \(Q_8 \) and so \(H = H_1 \ast H_2 \ast \ldots \ast H_n \) is extraspecial. Also, \(\Phi(G) = G' = H' = Z(H) \) implies that \(\Omega_1(Z(G)) \leq Z(H) \).

If \(n = 1 \), we have obtained a group of part (b) of our theorem and so we may assume that \(n > 1 \). In that case \(|H| \geq 2^5 \) and we have obtained a group of part (c) of our theorem.
It is necessary to prove only for groups (b) and (c) of our theorem that any two noncommuting elements generate a group of maximal class. Indeed, let \(h_1z_1 \) and \(h_2z_2 \) be any noncommuting elements in \(G \), where \(h_1, h_2 \in H \) and \(z_1, z_2 \in Z(G) \). Then \([h_1z_1, h_2z_2] = [h_1, h_2] \neq 1\) and so \(H_0 = \langle h_1, h_2 \rangle \leq H \) is a group of maximal class with \(H_0' \geq Z(H) \). On the other hand, a 2-group \(\langle h_1, h_2 \rangle \) is of maximal class if and only if \([h_1, h_2] \neq 1\), \(\langle [h_1, h_2] \rangle \) is normal in \(H_0 \) and \(h_1^2, h_2^2 \in \langle [h_1, h_2] \rangle \). Hence \(H_1 = \langle h_1z_1, h_2z_2 \rangle \) is of maximal class since \([h_1z_1, h_2z_2] = [h_1, h_2] \neq 1\), \(h_1z_1 \) and \(h_2z_2 \) normalize \(\langle [h_1z_1, h_2z_2] \rangle = \langle [h_1, h_2] \rangle \) and \((h_1z_1)^2, (h_2z_2)^2 \) are contained in \(\langle [h_1, h_2] \rangle \) (noting that \(z_1^2, z_2^2 \in Z(H) \leq H_0' = H_1' \)).

References

Z. Janko
Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de

Received: 5.4.2006.