FINITE \(p \)-GROUPS WITH A UNIQUENESS CONDITION FOR NON-NORMAL SUBGROUPS

ZVONIMIR JANKO
University of Heidelberg, Germany

Abstract. We determine up to isomorphism all finite \(p \)-groups \(G \) which possess non-normal subgroups and each non-normal subgroup is contained in exactly one maximal subgroup of \(G \). For \(p = 2 \) this problem was essentially more difficult and we obtain in that case two new infinite families of finite 2-groups.

We consider here only finite \(p \)-groups and our notation is standard. It is easy to see that minimal nonabelian \(p \)-groups and 2-groups of maximal class have the property that each non-normal subgroup is contained in exactly one maximal subgroup. It turns out that there are two further infinite families of 2-groups which also have this property. More precisely, we shall prove the following result which gives a complete classification of such \(p \)-groups.

Theorem 1. Let \(G \) be a finite \(p \)-group which possesses non-normal subgroups and we assume that each non-normal subgroup of \(G \) is contained in exactly one maximal subgroup. Then one of the following holds:

(a) \(G \) is minimal nonabelian;
(b) \(G \) is a 2-group of maximal class;
(c) \(G = \langle a, b \rangle \) is a non-metacyclic 2-group, where \(a^{2^n} = 1, n \geq 3, a(b) = 2 \) or 4, \(a^b = ak, k^2 = a^{-4}, [k, a] = 1, k^b = k^{-1} \) and we have either:
 (c1) \(b^2 \in \langle a^{2^{n-1}}, a^{2k} \rangle \cong E_4 \), in which case \(|G| = 2^{n+2}, \Phi(G) = \langle a^2 \rangle \times \langle a^{2k} \rangle \cong C_{2^{n-1}} \times C_2, Z(G) = \langle a^{2^{n-1}} \rangle \times \langle a^{2k} \rangle \cong E_4, \) and \(\langle a \rangle \times \langle a^{2k} \rangle \cong C_{2^n} \times C_2 \) is the unique abelian maximal subgroup of \(G \), or:

2000 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite \(p \)-groups, minimal nonabelian \(p \)-groups, 2-groups of maximal class, Hamiltonian groups.
(c2) \(b^2 \not\in \langle a^{2^n-1}, a^2 k \rangle \cong E_4 \), in which case \(o(b) = 4 \), \(|G| = 2^{n+3}\).

\(\Phi(G) = \langle a^2 \rangle \times \langle a^2 k \rangle \cong C_{2^n-1} \times C_2 \times C_2 \).

\(Z(G) = \langle a^{2^n-1} \rangle \times \langle a^2 k \rangle \times \langle b^2 \rangle \cong E_4 \) and \(\langle a \rangle \times \langle a^2 k \rangle \times \langle b^2 \rangle \cong C_{2^n-1} \times C_2 \times C_2 \) is the unique abelian maximal subgroup of \(G \).

In any case, \(G' = \langle k \rangle \cong C_{2^n-1} \), a centralizes \(\Phi(G) \), and \(b \) inverts each element of \(\Phi(G) \), and so each subgroup of \(\Phi(G) \) is normal in \(G \);

(d) \(G = \langle a, b \rangle \) is a splitting metacyclic 2-group, where \(a^{2^n} = b^4 = 1 \), \(n \geq 3 \), \(a^b = a^{-1} \). Let \(G = \langle a^2 \rangle \times \langle b^2 \rangle \cong C_{2^n-1} \times C_2 \).

Then \(Z(G) = \langle z \rangle \times \langle b^2 \rangle \cong E_4 \), \(G' = \langle a^2 \rangle \cong C_{2^n-1} \), and \(\langle a \rangle \times \langle b^2 \rangle \cong C_{2^n} \times C_2 \) is the unique abelian maximal subgroup of \(G \). Since \(a \) centralizes \(\Phi(G) \) and \(b \) inverts each element of \(\Phi(G) \), it follows that each subgroup of \(\Phi(G) \) is normal in \(G \).

To facilitate the proof of Theorem 1, we prove the following

Lemma 2 (Y. Berkovich). Let \(G \) be a p-group, \(p > 2 \), such that all subgroups of \(\Phi(G) \) are normal in \(G \). Then \(\Phi(G) \leq Z(G) \).

Proof. By [1, Satz III, 7.12], \(\Phi(G) \) is abelian. Suppose that \(\Phi(G) \) is cyclic. Let \(U/\Phi(G) \) be a subgroup of order \(p \) in \(G/\Phi(G) \). Assume that \(U \) is nonabelian. Then \(U \cong M_{p^{\phi(p)}} \), so \(U = \Phi(G) \Omega_1(U) \), where \(\Omega_1(U) \) is a normal subgroup of type \((p, p) \) in \(G \). In that case, \(\Omega_1(U) \) centralizes \(\Phi(G) \) so \(U \) is abelian, a contradiction. Let \(M = \{U < G \mid \Phi(G) < U, [U : \Phi(G)] = p \} \).

Then \(C_G(\Phi(G)) \geq \langle U < G \mid \Phi(G) < U, [U : \Phi(G)] = p \rangle \).

Now let \(\Phi(G) \) be noncyclic. Then \(\Phi(G) = Z_1 \times \cdots \times Z_n \), where \(Z_1, \ldots, Z_n \) are cyclic and \(n > 1 \). By induction on \(n \), \(\Phi(G/Z_i) \leq Z(G/Z_i) \) for all \(i \). Let \(f \in \Phi(G) \) and \(x \in G \). Then \([f, x] \in Z_1 \cap \cdots \cap Z_n = \{1\} \) so \(f \in Z(G) \). It follows that \(\Phi(G) \leq Z(G) \).

Proof of Theorem 1. Let \(G \) be a p-group which possesses non-normal subgroups and we assume that each non-normal subgroup of \(G \) is contained in exactly one maximal subgroup. In particular, \(G \) is nonabelian with \(d(G) \geq 2 \) and so each subgroup of \(\Phi(G) \) must be normal in \(G \). Suppose that \(\Phi(G) \) is nonabelian. Then \(p = 2 \) and \(\Phi(G) \) is Hamiltonian, i.e., \(\Phi(G) = Q \times E \), where \(Q \cong Q_8 \) and \(exp(E) \leq 2 \).

But then \(E \) is normal in \(G \) and \(\Phi(G/E) = \Phi(G)/E \cong Q_8 \), contrary to a classical result of Burnside. Thus \(\Phi(G) \) is abelian and each subgroup of \(\Phi(G) \) is \(G \)-invariant.

If every cyclic subgroup of \(G \) is normal in \(G \), then every subgroup of \(G \) is normal in \(G \), a contradiction. Hence there is a non-normal cyclic subgroup \(\langle a \rangle \) of \(G \). In that case \(a \notin \Phi(G) \) but \(a^p \in \Phi(G) \) so that \(\langle a \rangle \Phi(G) \) must be the unique maximal subgroup of \(G \) containing \(\langle a \rangle \). It follows that \(d(G) = 2 \).

If \(\Phi(G) \leq Z(G) \), then each maximal subgroup of \(G \) is abelian and so \(G \) is minimal nonabelian which gives the possibility \((a) \) of our theorem.

From now on we assume that \(\Phi(G) \not\leq Z(G) \). Set \(G = \langle a, b \rangle \). Then \([a, b] \neq 1 \) and \([a, b] \in \Phi(G) \). Therefore \(\langle [a, b] \rangle \) is normal in \(G \) and \(G/\langle [a, b] \rangle \)
is abelian which implies that $G' = \langle [a, b] \rangle \neq \{1\}$. If $|G'| = p$, then the fact $d(G) = 2$ forces that G would be minimal nonabelian. But then $\Phi(G) \leq Z(G)$, a contradiction. Hence G' is cyclic of order $\geq p^2$.

(i) First assume $p > 2$. By Lemma 2, $\Phi(G) \leq Z(G)$, a contradiction.

(ii) Now assume $p = 2$. If $\Phi(G)$ is cyclic, then (since $\Phi(G) = Z_2(G)$) G has a cyclic subgroup of index 2. But $|G'| \geq 4$ and so G is not isomorphic to M_{2^r}, $r \geq 4$, and so G is of maximal class, which gives the possibility (b) of our theorem. From now on we shall assume that $\Phi(G)$ is not cyclic.

Set $G = \langle a, b \rangle$, $k = [a, b]$, and $\langle z \rangle = \Omega_2(\langle k \rangle)$ so that $G' = \langle k \rangle$, $o(k) \geq 4$, and $\langle z \rangle \leq Z(G)$. Since $\langle a^2 \rangle$ and $\langle b^2 \rangle$ (being contained in $\Phi(G)$) are normal in G, we have $\Phi(G) = \langle a^2 \rangle \langle b^2 \rangle \langle k \rangle$ and so the abelian subgroup $\Phi(G)$ is a product of three cyclic subgroups which implies $d(\Phi(G)) = 2$ or 3.

From $[a, b] = k$ follows $a^{-1}(b^{-1}ab) = k$ and $b^{-1}(a^{-1}ba) = k^{-1}$ and so

\begin{align*}
(1) & \quad a^b = ak, \\
(2) & \quad b^a = bk^{-1}.
\end{align*}

From (1) follows $(a^2)^b = (a^b)^2 = (ak)^2 = a kak = a^2k^a k$ and so

\begin{align*}
(3) & \quad (a^2)^b = a^2(k^a k).
\end{align*}

From (2) follows $(b^2)^a = (b^a)^2 = (bk^{-1})^2 = bk^{-1}bk^{-1} = b^2(k^{-1})^b k^{-1}$ and so

\begin{align*}
(4) & \quad (b^2)^a = b^2(k^b k)^{-1}.
\end{align*}

We also have

\[a^2 = (a^2)^b = (a^2k^a k)^b = a^2k^a kk^ab k^b \]

and so

\begin{align*}
(5) & \quad kk^a k^b k^ab = 1.
\end{align*}

Finally, we compute (using (4))

\[(ab)^2 = abab = a^2a^{-1}b^{-1}b^2ab = a^2(a^{-1}b^{-1}ab)(b^2)^a = a^2k^a k^b (k^b k)^{-1} = a^2k^2(k^{-1})^b, \]

and so

\begin{align*}
(6) & \quad (ab)^2 = a^2b^2(k^{-1})^b.
\end{align*}

Suppose that $G/\Phi(G)$ acts faithfully on $\langle k \rangle$. In that case $o(k) \geq 2^3$ and we may choose the generators $a, b \in G - \Phi(G)$ so that $k^a = k^{-1}$, $k^b = k z$ (where $\langle z \rangle = \Omega_2(\langle k \rangle)$). Using (3) and (4) we get $(a^2)^b = a^2$ (and so $a^2 \in Z(G)$) and $(b^2)^a = b^2k^{-2}z$. Since $k^a = k^{-1}$, we have $\langle k \rangle \cap \langle a \rangle \leq \langle z \rangle$. The subgroup $\langle b^2 \rangle$ (being contained in $\Phi(G)$) is normal in G and so $k^{-2}z \in \langle b^2 \rangle$ and $k^2 \in \langle b^2 \rangle$ (since $z \in \langle k^2 \rangle$). We have $\langle b \rangle \cap \langle k \rangle = \langle k^2 \rangle$ since $k^b = k z \neq k$ and so $k \not\in \langle b \rangle$. If $b^2 \in \langle k^2 \rangle$, then $(b^2)^a = b^{-2}$ and on the other hand $(b^2)^a = b^2k^{-2}z$ and so $b^4 = k^2 z$. But $b^2 \in \langle k^2 \rangle$ implies $b^4 \in \langle k^4 \rangle$, a contradiction. Hence $b^2 \not\in \langle k^2 \rangle$ and so we can find an element $s \in \langle b^2 \rangle - \langle k \rangle$ such that $s^2 = k^{-2}$. Then
(sk)^2 = s^2k^2 = 1 and so sk is an involution in \(\Phi(G) \) which is not contained in \(\langle k \rangle \) and therefore sk \(\neq z \). But (sk)^b = skb = (sk)z and so \(\langle sk \rangle \) is not normal in G, a contradiction.

We have proved that \(G/\Phi(G) \) does not act faithfully on \(\langle k \rangle \). Then we can choose our generator \(a \in G - \Phi(G) \) so that \(k^a = k \). Using (3) we get \((a^2)^b = a^2k^2 \) and so \(1 \neq k^2 \in \langle a^2 \rangle \) since \(\langle a^2 \rangle \) is normal in G. From (5) we get \((k^2)^b = k^{-2} \). Suppose that \((k^2) = \langle a^2 \rangle \). Then we get \(a^{-z} = (a^2)^b = a^2k^2 \) and so \(k^2 = a^{-4} \), a contradiction. We have obtained:
\[
\begin{align*}
(7) & & k^a = k, & & (a^2)^b = a^2k^2, & & (k^2)^b = k^{-2}, & & \{1\} \neq \langle k^2 \rangle \trianglelefteq \langle a^2 \rangle, & & o(a) = 2^n, & & n \geq 3.
\end{align*}
\]

Suppose that \(k^b = kz \). Then (5) and (7) imply \(k^4 = 1 \) and so \(k^b = kz = k^{-1} \). It follows that we have to analyze the following three possibilities for the action of \(b \) on \(\langle k \rangle \): \(k^b = k^{-1}z \) with \(o(k) \geq 2^3 \), \(k^b = k \), and \(k^b = k^{-1} \).

ii1 Suppose \(k^b = k^{-1}z \) with \(o(k) \geq 2^3 \). Then (4) gives \((b^2)^a = b^2z \) and so \(z \in \langle b^2 \rangle \) (since \(\langle b^2 \rangle \) is normal in G) and \(\langle z \rangle \trianglelefteq \langle b^2 \rangle \) because \(b^2 \notin Z(G) \). Since (by (7)) \(\langle k^2 \rangle \trianglelefteq \langle a^2 \rangle \) and \(o(k^2) \geq 4 \), it follows \(o(a^2) \geq 2^3 \) and
\[
\langle z \rangle = \Omega_1(\langle k \rangle) = \Omega_1(\langle a \rangle) = \Omega_1(\langle b \rangle) \leq Z(G).
\]
From \(o(a^2) \geq 2^3 \) and \(k^2 \in \langle a^2 \rangle \), \(o(k^2) \geq 4 \), and \((k^2)^b = k^{-2} \) follows \((a^2)^b = a^{-2}z^e \) \((e = 0, 1)\) and \(C(a^2)(b) = \langle z \rangle \) so that \(\langle a^2 \rangle \trianglelefteq \langle b^2 \rangle \trianglelefteq \langle z \rangle \). Let \(v \) be an element of order 4 in \(\langle a^2 \rangle \) so that \(v^2 = z \) and \(v^b = v^{-1} = vz \). Let \(s \) be an element of order 4 in \(\langle b^2 \rangle \) so that \(s^2 = z \). We have \((vs)^2 = v^2s^2 = 1 \) and so \(vs \) is an involution in \(\Phi(G) - \langle a \rangle \) but \((vs)^b = (v^{-1}s)^z = (vs)^z \), a contradiction.

ii2 Suppose \(k^b = k \) so that (5) and (7) imply \(k^4 = 1 \) and \(k^2 = z \). Then (4) and (7) imply \((b^2)^a = b^2z \) and \((a^2)^b = a^2z \). Also, \(\langle z \rangle \trianglelefteq \langle a^2 \rangle \) and \(\langle z \rangle \trianglelefteq \langle b^2 \rangle \) since \(\langle a^2 \rangle \) and \(\langle b^2 \rangle \) are normal in G, \(a^2 \notin Z(G) \) and \(b^2 \notin Z(G) \). If \(a^2 \in \langle b^2 \rangle \), then \(a^2 \in Z(G) \) and if \(b^2 \in \langle a^2 \rangle \), then \(b^2 \in Z(G) \). This is a contradiction. Hence \(D = \langle a^2 \rangle \cap \langle b^2 \rangle \geq \langle z \rangle \) and \(D \) is a proper subgroup of \(\langle a^2 \rangle \) and \(\langle b^2 \rangle \). Because of the symmetry, we may assume \(o(a) \geq o(b) \) so that \(|\langle a^2 \rangle|/D \geq |\langle b^2 \rangle|/D| = 2^n, u \geq 1 \). We set \((b^2)^{2^n} = d \) so that \(D = \langle d \rangle \). We may choose an element \(a^e \in \langle a^2 \rangle - D \) such that \((a^e)^{2^n} = a^{-1} \). Then \((a^e)^{2^n} = 1 \) and \((a^e)^{2^n} \cong C_{2^n} \) with \(\langle a^e \rangle \cap D = \{1\} \). On the other hand, \((a^e)^{2^n} = (a^e)^{2^n} z = (a^e)^{2^n} z \), where \(z \in D \), a contradiction.

ii3 Finally, suppose \(k^b = k^{-1} \). From (4) follows \((b^2)^a = b^2 \) and so \(b^2 \in Z(G) \). By (7), \((a^2)^b = a^2K^2, \langle k^2 \rangle \trianglelefteq \langle a^2 \rangle \), and so \(o(a^2) \geq 4 \). Also, \((a^2)^b = a^2k, (a^2)^b = (a^2k^2)k^{-1} = a^2k \), and so \(a^2k \in Z(G) \).

ii3a First assume \(k \notin \langle a^2 \rangle \). We investigate for a moment the special case \(o(k) = 4 \), where \(k^2 = z, \langle z \rangle = \Omega_1(\langle k \rangle) = \Omega_1(\langle a \rangle) \) and \((a^2)^b = a^2z \). If \(o(a^2) > 4 \), then take an element \(v \) of order 4 in \(\langle a^4 \rangle \) so that \(v^2 = z \) and \(v^b = v \). In that case \((vk)^2 = v^2k^2 = 1 \) and so \(vk \) is an involution in \(\Phi(G) - \langle a^3 \rangle \) and \((vk)^b = v^k = z \), a contradiction. Hence \(o(a^2) = 4 \), \(a^4 = z, k^2 = z = a^{-4}, (a^2)^b = a^2z = a^{-2}, \langle a^2, k \rangle \) is an abelian group of type
(4, 2) acted upon invertingly by b, and a^2k is a central involution in G. Now suppose $o(k) \geq 8$. In that case $o(k^2) \geq 4$, $k^2 \in \langle a^2 \rangle$, $o(a^2) \geq 8$, and b inverts $\langle k^2 \rangle$, which implies $(a^2)^b = a^{-2}z^\epsilon$, $\epsilon = 0, 1$. On the other hand, $(a^2)^b = a^2k^2$ and so $k^2 = a^{-4}z$. Let v be an element of order 4 in $\langle a^4 \rangle$ so that $v^2 = z$ and $v^b = v^{-1} = vz$. Then we compute:

$$(a^2vk)^2 = a^4z^2 = z^{4+1}, \quad (a^2vk)^v = a^2k^2v^{-1}k^{-1} = (a^2vk)_z.$$

If $\epsilon = 1$, then a^2vk is an involution in $\Phi(G) - \langle a^2 \rangle$ and $\langle a^2vk \rangle$ is not normal in G. Thus, $\epsilon = 0$, $(a^2)^h = a^{-2}$, $k^2 = a^{-4}$, a^2k is an involution in $\Phi(G) - \langle a^2 \rangle$ and b inverts each element of $\langle a^2, k \rangle = \langle a^2 \rangle \times \langle a^2k \rangle$, where $a^2k \in Z(G)$.

We have proved that in any case $k^2 = a^{-4}$, $o(a^2) \geq 4$, $o(k) \geq 4$, and b inverts each element of the abelian group $\langle a^2, k \rangle = \langle a^2 \rangle \times \langle a^2k \rangle$, where a^2k is an involution contained in $Z(G)$.

It remains to determine $b^2 \in Z(G)$. Suppose $o(b^2) \geq 4$ and let $\langle s \rangle$ be a cyclic subgroup of order 4 in $\langle b^2 \rangle$ so that $s \in Z(G)$. Obviously, $s \not\in \langle a^2, k \rangle$ since $Z(G) \cap \langle a^2, k \rangle = \langle z \rangle \times \langle a^2k \rangle \cong E_4$. Let v be an element of order 4 in $\langle a^2 \rangle$ so that $v^2 = z$ and $v^b = v^{-1} = vz$. We have:

$$(vs)^b = v^{-1}s = (vs)z \quad \text{and} \quad (vs)^2 = v^2s^2 = zs^2.$$

If $s^2 = z$, then vs is an involution in $\Phi(G) - \langle a^2, k \rangle$ and $vs \not\in Z(G)$, a contradiction. Hence $s^2 \neq z$ so that $\langle v, s \rangle = \langle v \rangle \times \langle s \rangle \cong C_4 \times C_4$. But $(vs)^b = (vs)z$, $(vs)^2 = zs^2 \neq z$, and so (vs) is not normal in G, a contradiction. It follows that $o(b^2) \leq 2$. Hence we have either $b^2 \in \langle z, a^2k \rangle$, $\Phi(G) = \langle a^2, k \rangle = \langle a^2 \rangle \times \langle a^2k \rangle$, we have obtained the possibility (c1) of our theorem or b^2 is an involution in $\Phi(G) - \langle a^2, k \rangle$, $\Phi(G) = \langle a^2 \rangle \times \langle a^2k \rangle \times \langle b^2 \rangle$, and we have obtained the possibility (c2) of our theorem. Note that in both cases a centralizes $\Phi(G)$ and b inverts each element of $\Phi(G)$.

(ii3b) We assume $k \in \langle a^2 \rangle$. Since $o(k) \geq 4$, $k^b = k^{-1}$, $\langle a \rangle$ is normal in G, $o(a) \geq 8$, and b induces on $\langle a \rangle$ an automorphism of order 2, we get $a^b = a^{-1}z^\epsilon$, $\epsilon = 0, 1$, where $\langle z \rangle = \langle a \rangle$ $\cong \langle a \rangle$. On the other hand, (1) gives $a^b = ak$ and so $k = a^{-2}z^\epsilon$, which gives $G^e = \langle k \rangle = \langle a^2 \rangle \cong C_{2^{n-1}}$, where $o(a) = 2^n$, $n \geq 3$, and $z = a^{2^{-n}}$.

Since $\Phi(G) = \langle a^2, b^2 \rangle$ and $\Phi(G)$ is noncyclic, we have $b^2 \not\in \langle a^2 \rangle$ and we know that $b^2 \in Z(G)$. Suppose $o(b^2) \geq 4$ and let s be an element of order 4 in $\langle b^2 \rangle$. Let v be an element of order 4 in $\langle a^2 \rangle$ so that $v^2 = z$ and $v^b = v^{-1} = vz$. Then

$$(vs)^b = v^{-1}s = (vs)z \quad \text{and} \quad (vs)^2 = v^2s^2 = zs^2.$$

If $s^2 = z$, then vs is an involution in $\Phi(G) - \langle a^2 \rangle$ and $vs \not\in Z(G)$, a contradiction. Hence $s^2 \neq z$ so that $(v, s) = \langle v \rangle \times \langle s \rangle \cong C_4 \times C_4$. But (vs) is not normal in G, a contradiction. Hence b^2 is an involution in $\Phi(G) - \langle a^2 \rangle$ and so $\Phi(G) = \langle a^2 \rangle \times \langle b^2 \rangle \cong C_{2^{n-1}} \times C_2$ and $Z(G) = \langle z \rangle \times \langle b^2 \rangle \cong E_4$. Also note that a centralizes $\Phi(G)$ and b inverts each element of $\Phi(G)$. We have obtained the possibility (d) of our theorem. \[\square\]
REFERENCES

Z. Janko
Mathematical Institute, University of Heidelberg,
69120 Heidelberg, Germany

E-mail: janko@mathi.uni-heidelberg.de
Received: 31.1.2005.