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EQUIVARIANT FIBRANT SPACES
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Abstract. In this paper the concept of a G-fibrant space is intro-
duced. It is shown that any compact metrizable group G is a G-fibrant.

1. Introduction

The general approach to the concept of a fibrant object is the following
(c.f.[5]): if in a category C some class Σ of morphisms is specified then an
object Y of C is called Σ-fibrant if for every morphism s ∈ Σ, s : A → X ,
and every morphism f : A → Y there is a morphism F : X → Y such that
F ◦ s = f . The classical fibrant objects appear in [9] for the closed model
categories where Σ is the class of trivial cofibrations. A fibrant space in the
sense of F. Cathey is a Σ-fibrant object, where Σ is the class of SSDR-maps
in the category of metrizable spaces ([6]). In the present paper we provide an
equivariant version of a fibrant space.

It is well-known (see [8]) that every compact metrizable group can be
represented as an inverse limit of a sequence of Lie groups bonded by fibrations
(Proposition 3.3), and therefore it is already a fibrant space in the sense of
F. Cathey. On the other hand, due to R. Palais ([7]), every compact Lie
group G is a G-ANR (Proposition 3.2) and hence it is a G-fibrant space.
These are the basic facts utilized in the proof of our main theorem (Theorem
3.1): every compact metrizable group G is a G-fibrant space. This result
justifies the consideration of equivariant fibrant spaces. Also it is clear that
equivariant fibrant spaces as well as equivariant SSDR-maps can be used in
the construction of the equivariant strong shape category following the way
of F. Cathey, which is given in [6] for the “non-equivariant” case.
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2. The basic notions

The basic definitions and facts of the equivariant theory, that is the theory
of G-spaces and G-maps, can be found in [4]. Throughout the paper the letter
G will denote a compact Hausdorff group. By G-A(N)R, it is denoted the
class of G-equivariant absolute (neighborhood) retracts for all G-metrizable
spaces (see, for instance, [2] for the equivariant theory of retracts). In this
paper all G-spaces are assumed to be metrizable.

A closed invariant subspace A of a G-space X is called a G-shape strong
deformation retract of X if there exists a G-equivariant embedding i : X ↪→ Y
for some G-AR space Y such that for any pair of invariant neighborhoods U
and V of i(X) and i(A) respectively in Y , there is a G-homotopy H : X×I →
U rel. A such that H(x, 0) = i(x) and H(x, 1) ∈ V for any x ∈ X .

Note that if for a G-pair (X,A) an embedding i : X ↪→ M satisfies the
conditions of the above definition then these conditions hold for any other
closed G-equivariant embedding j : X ↪→ Z where Z is a G-AR space.

A closed G-equivariant embedding s : A ↪→ X is called a G-SSDR-map
if s embeds A in X as a G-shape strong deformation retract of X .

A G-space Y is called a G-fibrant if for every G-SSDR-map s : A ↪→ X
and every G-map f : A → Y , there exists a G-map F : X → Y such that
F ◦ s = f .

Recall that a map p : E → B is a G-fibration if for every G-space X and
every commutative diagram of G-maps

-

-

? ?

E

p

B

h

H

δ0

X

X × I

where δ0(x) = (x, 0), there exists H̃ : X × I → E such that H̃ ◦ δ0 = h and

p ◦ H̃ = H .
For example, the G-fibrations naturally appear in the following situation.

Let U be a G-space. The space U I of paths ω : I → U , provided with
the compact-open topology, can be treated as a G-space with the action:
(g ? ω)(t) = gω(t). Then the projection p : U I → U × U , given by p(ω) =
(ω(0), ω(1)), is a G-fibration.

The following theorem is an equivariant version of Theorem 1.2 of [6].

Theorem 2.1. Let s : A ↪→ X be a closed G-embedding. Then the fol-
lowing conditions are equivalent:

(a) s is a G-SSDR-map;
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(b) for any G-equivariant map f : A → Y , where Y is G-ANR, there is

a G-equivariant extension f̃ : X → Y such that f̃ ◦ s = f , and if

f̃1, f̃2 : X → Y are any two such extensions, then f̃1 'G f̃2 rel. s(A);
(c) For any G-fibration p : E → B, where E and B are G-ANR-spaces

and any commutative diagram of G-equivariant maps
-

-

? ?

E

p

B

f

F

s

A

X

there exists a G-equivariant map F̃ : X → E such that F̃ ◦ s = f and

p ◦ F̃ = F .

We shall give the proof of the theorem though it is quite analogous to the
proof of its “non-equivariant” case.

Proof. (a) ⇒ (b). Clearly, we can assume that A ⊂ X and s(a) = a.
Let X ↪→ M be an equivariant closed embedding of X in some G-AR space
M (See [3], Proposition 1). Since each G-AR space for metrizable spaces is

a G-AE ([3], Proposition 2), there is a G-extension f̂ : V → Y of f on some
invariant open neighborhood V of A in M . By the definition of a G-SSDR-
map, we can find a G-homotopy H : X × I → M such that H(x, 0) = x,
H(x, 1) ∈ V and H(a, t) = a for x ∈ X , a ∈ A, t ∈ I . The required extension

f̃ : X → Y can be given by f̃(x) = f̂(H(x, 1)).

Let f̃1, f̃2 : X → Y be two G-extensions of f . Define a G-equivariant

map F : X × 0 ∪ A × I ∪ X × 1 → Y by F (x, 0) = f̃1(x), F (x, 1) = f̃2(x),
F (a, t) = f(a) for x ∈ X , a ∈ A, t ∈ I . Considering X as a closed invariant
subset of a G-AR space M , and therefore X × I as a closed invariant subset
of the G-AR space M × I , we find a G-extension F : W → Y of F on some
invariant neighborhood W of X × 0 ∪ A × I ∪X × 1 in M × I . Clearly, one
can choose an invariant neighborhood U of X in M such that U × {0} ⊂ W
and U ×{0} ⊂W . Besides, a standard compactness argument guarantees the
existence of an invariant neighborhood V of A in M such that V × I ⊂ W .
Taking a G-homotopy D : X × I → U such that D(x, 0) = x, D(x, 1) ∈ V
and D(a, t) = a for x ∈ X , a ∈ A, t ∈ I , we can establish G-homotopies

F ′ : f̃1 'G h1 rel. A, F ′′ : f̃2 'G h2 rel. A and H : h1 'G h2 rel. A by
F ′(x, t) = F (D(x, t), 0), F ′′(x, t) = F (D(x, t), 1) and H(x, t) = F (D(x, 1), t).

Thus f̃1 'G f̃2 rel. A.

(b) ⇒ (c). Since E is a G-ANR there exists a G-extension F : X → E
such that F ◦ s = f . We have F ◦ s = p ◦ F ◦ s and by the second part of
(b) there is a G-homotopy H : F 'G pF rel. s(A). Applying the covering
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homotopy property we get a G-homotopy H̃ : X × I → E, H̃ : F̃ 'G F̃ rel.

s(A), such that p ◦ H̃ = H . So F̃ ◦ s = f and p ◦ F̃ = F as required.

(c) ⇒ (a). As above, we can assume that X is an invariant closed subset
of some G-AR space M and that A is an invariant closed subset of of X , so
s(a) = a for a ∈ A. Let U and V be invariant open neighborhoods of X and
A respectively in M . First applying (c) to the G-fibration V → ∗ and the
inclusion i : A→ V we get a G-map r : X → V such that r◦s = i. Afterwards
applying (c) to the commutative diagram

-

-

? ?

UI

p

U × U

f

F

s

A

X

where p(ω) = (ω(0), ω(1)), f(a)(t) = a, F (x) = (x, r(x)), we obtain a G-map
F : X → U I such that F ◦ s = f , p ◦ F = F . Now observe that the map
D : X × I → U defined by D(x, t) = F (x)(t) satisfies the conditions of the
definition of a G-SSDR-map.

Corollary 2.2. Every G-ANR is a G-fibrant space.

3. Main result

The main result of this paper is the following

Theorem 3.1. Every compact metrizable group G is a G-fibrant space.

In the proof of this theorem, we shall use the propositions given below.

Proposition 3.2. ([7], Proposition 1.6.6) Let G be a compact Lie group
and H be its closed subgroup. Then G/H is a G-ANR space.

The following result is actually proved in the classical book of Pontrjagin
[8]. Note that it can be easily obtained from Corollary 4.4 of [4]: for every
neighborhood U of the unit e of a compact group G, there exists a group
morphism ϕ : G→ O(n) such that kerϕ ⊆ U .

Proposition 3.3. Let G be a compact metrizable group. Then there
exists a decreasing sequence {Ni}i∈N of its normal closed subgroups such that
the quotient groups G/Ni are Lie groups,

⋂
i∈N

Ni = {e} and

lim
←−

{G/Ni, qji } = G

where qji : G/Nj → G/Ni, j ≥ i, are the natural projections.

We omit a routine proof of the following statement.
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Proposition 3.4. Let G be a compact metrizable group and {Ni}i∈N be
a sequence of its closed normal subgroups satisfying Proposition 3.3.

(a) If X is a G-space, then

X = lim
←−

{X/Ni, pji}

where pji : X/Nj → X/Ni, j ≥ i, are the natural projections.
(b) Let X and Y be G-spaces represented according to (a) as

X = lim
←−

{X/Ni, pji} and Y = lim
←−

{Y/Ni, qji }.
If the G/Ni-maps fi : X/Ni → Y/Ni, i ∈ N, are such that qi+1

i fi+1 =

fip
i+1
i , i.e. the diagram

-

-

? ?

Y/Ni+1

qi+1
i

Y/Ni

fi+1

fi

pi+1
i

X/Ni+1

X/Ni

commutes for each i ∈ N, then there exists a unique G-map f : X → Y
such that qif = fipi for each i, where pi : X → X/Ni, qi : Y → Y/Ni
are Ni-orbit projections.

Proposition 3.5. Let G be a compact group and N be a closed normal
subgroup of G. If s : A → X is a G-SSDR-map, then the induced map
s/N : A/N → X/N is a G/N -SSDR-map.

Proof. Let j0 : X/N ↪→ Y be a closed G/N -embedding of X/N in
a G/N -ANR space Y . By Lemma 1 of [1] there exist a G-space Z and a

closed G-embedding ĵ0 : X ↪→ Z such that Z/N = Y and j0 ◦ p = q1 ◦ ĵ0,

where p : X → X/N , q1 : Z → Y are the N -orbit maps. Let ĵ1 : Z ↪→ M
be a closed G-embedding of Z in a G-AR space M (See [3], Proposition
1). Then by Theorem 1 of [2] M/N is a G/N -ANR space and we get a
closed G/N -embedding j = j1 ◦ j0 : X/N ↪→ M/N , where the embedding

j1 : Z/N ↪→ M/N is induced by ĵ1. Moreover, for the closed G-embedding

ĵ = ĵ1 ◦ ĵ0 : X ↪→M and the N -orbit map q : M →M/N we have q◦ ĵ = j ◦p.
Now let U and V be invariant neighborhoods of X/N and A/N respec-

tively in M/N . Then Û = q−1(U) and V̂ = q−1(V ) are invariant neighbor-
hoods of X and A respectively in M . Since s : A ↪→ X is a G-SSDR-map

there exists a G-homotopy Ĥ : X × I → Û rel. A such that Ĥ(x, 0) = x and

Ĥ(x, 1) ∈ V̂ . It is clear that the induced G/N -homotopy H : X/N × I → U ,

defined by H(N(x), t) = N(Ĥ(x, t)), satisfies the analogous properties and it
means that s/N : A/N ↪→ X/N is a G/N -SSDR-map.

We need the following version of the covering homotopy theorem (compare
[4], Ch. II, Theorem 7.3).
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Proposition 3.6. Let G be a compact Lie group and N be a normal
closed subgroup of G. Suppose that for a G-space X, a G/N -homotopy H :
X/N×I → G/N and a G-map h : X → G are such that the following diagram
commutes

-

-

? ?

G

q

G/N

h

H

∂0

X

X/N × I

where ∂0(x) = (p(x), 0) and p : X → X/N , q : G → G/N are the N -

orbit maps. Then there exists a G-homotopy H̃ : X × I → G such that

H̃(x, 0) = h(x) and q ◦ H̃ = H ◦ (p× 1I).
Moreover, if A is an invariant closed subset of X such that H(p(a), t) =

H(p(a), 0) for any a ∈ A, t ∈ I, then the covering homotopy H̃ can be chosen

so that H̃(a, t) = h(a) for any a ∈ A, t ∈ I.

Proof. Note that the existence of the G-map h : X → G implies that
the action of the group G on X is of a quite simple structure. Indeed, let
S = h−1(e), where e is the unit element of the group G, and let ρ : X → S
be a map defined by ρ(x) = (h(x))−1x. Then ρ is a retraction such that
ρ(gx) = ρ(x) for any g ∈ G, x ∈ X . Now consider the product G × S as a
G-space endowed with the action g(g′, s) = (gg′, s). It can be easily verified
that the map ϕ : X → G × S, given by ϕ(x) = (h(x), ρ(x)), is a G-map and,
moreover, it is a G-equivalence because the G-map ψ : G × S → X , where
ψ(g, s) = gs, is the inverse map for ϕ. In fact, we shall use this G-equivalence

in the construction of the covering homotopy H̃ .
Let F : S× I → G/N be a homotopy defined by F (s, t) = H(p(s), t). For

the given invariant closed subset A ⊆ X , let U = A ∩ S, that is U = ρ(A).
Then, if u ∈ U , we have F (u, t) = H(p(u), t) = H(p(u), 0) = F (u, 0) for any
t ∈ I .

Since N is a Lie group, the projection q : G → G/N is a locally trivial
fibration (see [4], Ch. II, Theorem 5.8) and hence it has the regular homotopy
lifting property. In particular, considering the commutative diagram

-

-

? ?

G

q

G/N

f

F

δ0

S

S × I
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where f(s) = e and δ0(s) = (s, 0) for s ∈ S, one can find a homotopy F̃ :
S × I → G which preserves the commutativity of the diagram, that is to say,

q ◦ F̃ = F , F̃ ◦ δ0 = f and, moreover, F̃ (u, t) = e for any u ∈ U , t ∈ I .

Finally, the required covering homotopy H̃ : X × I → G can be defined

by H̃(x, t) = h(x)F̃ (ρ(x), t). The verification of this fact is straightforward.

Indeed, we have H̃(x, 0) = h(x)F̃ (ρ(x), 0), but

F̃ (ρ(x), 0) = F̃ ◦ δ0(ρ(x)) = f(ρ(x)) = e,

and hence H̃(x, 0) = h(x).

Since q : G → G/N is a group morphism and q ◦ F̃ = F , we get

q(H̃(x, t)) = q(h(x))q(F̃ (ρ(x), t)) = q(h(x))F (ρ(x), t).

By the definition of the homotopy F , we have F (ρ(x), t) = H(p(ρ(x)), t), but
H is a G/N -map, and therefore, q(h(x))H(p(ρ(x)), t) = H(q(h(x))p(ρ(x)), t).
Reminding that q : G → G/N and p : X → X/N are N -orbit maps, we obtain

q(h(x))p(ρ(x)) = p(h(x)ρ(x)) = p(x).

Thus q(H̃(x, t)) = H(p(x), t), that is q ◦ H̃ = H ◦ (p× 1I).
Besides, if a ∈ A, we have ρ(a) ∈ U , and therefore,

H̃(a, t) = h(a)F̃ (ρ(a), t) = h(a)e = h(a) for any t ∈ I .

Proof of Theorem 3.1. Let j : A ↪→ X be a G-SSDR-map and f :
A → G be a G-map. In order to show that G is a G-fibrant, we must find a
G-map F : X → G such that F ◦ j = f .

According to Proposition 3.3, we represent the groupG as an inverse limit
of Lie groups G = lim

←−
{G/Ni, qji }.

The G-maps j and f induce for each k the G/Nk-maps jk = j/Nk :
A/Nk ↪→ X/Nk, fk = f/Nk : A/Nk → G/Nk. Then for each k the following
diagram commutes

-

-

? ?

G/Nk+1

qk+1
k

G/Nk

fk+1

fk

rk+1
k

A/Nk+1

A/Nk

X/Nk+1

X/Nk

?

pk+1
k

�

�

jk+1

jk

where pk+1
k , qk+1

k , rk+1
k are the natural projections. It is clear that these

projections can be treated as orbit projections with respect to the action of
the closed subgroup Ni/Ni+1 of the Lie group G/Ni+1 on X/Ni+1, A/Ni+1

and G/Ni+1 respectively. For each k the map jk is a G/Nk-SSDR-map by
Proposition 3.5, and G/Nk is a G/Nk-ANR by Proposition 3.2, and therefore
there exists a G/Nk-equivariant extension Fk : X/Nk → G/Nk of fk such that
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Fkjk = fk. Using these extensions we shall construct by induction G/Nk-

maps Tk : X/Nk → G/Nk satisfying the conditions Tkp
k+1
k = qk+1

k Tk+1 and
Tkjk = fk for every k ∈ N. Let T1 = F1 and suppose that Tk is already found.
We have to construct the map Tk+1.

One has

Tkjkr
k+1
k = fkr

k+1
k = qk+1

k fk+1 = qk+1
k Fk+1jk+1 = F ∗k p

k+1
k jk+1 = F ∗k jkr

k+1
k ,

where F ∗k : X/Nk → G/Nk is the G/Nk-map induced by Fk+1. Hence Tkjk =

F ∗k jk because rk+1
k is surjective. According to Theorem 2.1, there is a G/Nk-

homotopy H : F ∗k ' Tk rel.jk(A/Nk), H : X/Nk × I → G/Nk.
Now consider the following commutative diagram

-

-

? ?

G/Nk+1

qk+1
k

G/Nk

Fk+1

H

∂0

X/Nk+1

X/Nk × I

where ∂0([x]) = (pk+1
k [x], 0) for [x] = Nk+1(x) ∈ X/Nk+1.

Taking into account this diagram, we are going to apply Proposition 3.6
to the Lie group G/Nk+1 acting on X/Nk+1 and to its closed normal subgroup
Nk/Nk+1. Note that one can consider the G/Nk+1-space X/Nk as the orbit
space X/Nk+1/Nk/Nk+1.

By Proposition 3.6, we get a G/Nk+1-homotopy

H̃ : X/Nk+1 × I → G/Nk+1

such that H̃([x], 0) = Fk+1([x]), qk+1
k (H̃([x], t) = H(pk+1

k ([x]), t) and, for any

t ∈ I , H̃([a], t) = Fk+1([a]) if [a] ∈ jk+1(A/Nk+1). Putting Tk+1([x]) =

H̃([x], 1) we get the required G/Nk+1-map Tk+1 : X/Nk+1 → G/Nk+1. This
completes the inductive step.

The sequence {Tk}k∈N, according to Proposition 3.4, determines a unique
G-map F : X → G such that qkF = Tkpk for each k. Since Tkjk = fk for
each k, we can state that F ◦ j = f .
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México

Received : 21.1.2004.

Revised : 2.3.2005.


