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EQUIVARIANT FIBRANT SPACES

ALEXANDER BYKOV AND MARCELINO TEXIS

Benemérita Universidad Auténoma de Puebla, México

ABSTRACT. In this paper the concept of a G-fibrant space is intro-
duced. It is shown that any compact metrizable group G is a G-fibrant.

1. INTRODUCTION

The general approach to the concept of a fibrant object is the following
(c.f.[5]): if in a category C some class ¥ of morphisms is specified then an
object Y of C is called X-fibrant if for every morphism s € 3, s : A — X
and every morphism f : A — Y there is a morphism F : X — Y such that
F os = f. The classical fibrant objects appear in [9] for the closed model
categories where X is the class of trivial cofibrations. A fibrant space in the
sense of F. Cathey is a ¥-fibrant object, where ¥ is the class of SSDR-maps
in the category of metrizable spaces ([6]). In the present paper we provide an
equivariant version of a fibrant space.

It is well-known (see [8]) that every compact metrizable group can be
represented as an inverse limit of a sequence of Lie groups bonded by fibrations
(Proposition 3.3), and therefore it is already a fibrant space in the sense of
F. Cathey. On the other hand, due to R. Palais ([7]), every compact Lie
group G is a G-ANR (Proposition 3.2) and hence it is a G-fibrant space.
These are the basic facts utilized in the proof of our main theorem (Theorem
3.1): every compact metrizable group G is a G-fibrant space. This result
justifies the consideration of equivariant fibrant spaces. Also it is clear that
equivariant fibrant spaces as well as equivariant SSDR-maps can be used in
the construction of the equivariant strong shape category following the way

7

of F. Cathey, which is given in [6] for the “non-equivariant” case.
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2. THE BASIC NOTIONS

The basic definitions and facts of the equivariant theory, that is the theory
of G-spaces and G-maps, can be found in [4]. Throughout the paper the letter
G will denote a compact Hausdorff group. By G-A(N)R, it is denoted the
class of G-equivariant absolute (neighborhood) retracts for all G-metrizable
spaces (see, for instance, [2] for the equivariant theory of retracts). In this
paper all G-spaces are assumed to be metrizable.

A closed invariant subspace A of a G-space X is called a G-shape strong
deformation retract of X if there exists a G-equivariant embedding i : X — Y
for some G-AR space Y such that for any pair of invariant neighborhoods U
and V of i(X) and i(A) respectively in Y, there is a G-homotopy H : X x I —
U rel. A such that H(z,0) =i(z) and H(z,1) € V for any z € X.

Note that if for a G-pair (X, A) an embedding ¢ : X < M satisfies the
conditions of the above definition then these conditions hold for any other
closed G-equivariant embedding j : X <— Z where Z is a G-AR space.

A closed G-equivariant embedding s : A — X is called ¢ G-SSDR-map
if s embeds A in X as a G-shape strong deformation retract of X.

A G-space Y is called a G-fibrant if for every G-SSDR-map s : A — X
and every G-map f : A — Y, there exists a G-map F' : X — Y such that
Fos=f.

Recall that a map p : E — B is a G-fibration if for every G-space X and
every commutative diagram of G-maps

P h

do p

X x1I B

where 8o(z) = (z,0), there exists H : X x I — E such that H o 8y = h and
po H=H.

For example, the G-fibrations naturally appear in the following situation.
Let U be a G-space. The space U’ of paths w : I — U, provided with
the compact-open topology, can be treated as a (G-space with the action:
(9 xw)(t) = gw(t). Then the projection p : U! — U x U, given by p(w) =
(w(0),w(1)), is a G-fibration.

The following theorem is an equivariant version of Theorem 1.2 of [6].

THEOREM 2.1. Let s : A — X be a closed G-embedding. Then the fol-
lowing conditions are equivalent:

(a) s is a G-SSDR-map;
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(b) for any G-equivariant map f A — Y, where Y is G-ANR, there is
a G-equivariant extension f X — Y such that f os = f, and if

fl,fg X —Y are any two such extensions, then f1 ~a f2 rel. s(A);
(¢c) For any G-fibration p : E — B, where E and B are G-ANR-spaces
and any commutative diagram of G-equivariant maps

A E
s p
X B
there exists a G-equivariant map F : X — E such that Fos = f and

poF =F.

We shall give the proof of the theorem though it is quite analogous to the

proof of its “non-equivariant” case.

Proor. (a) = (b). Clearly, we can assume that A C X and s(a) = a.
Let X — M be an equivariant closed embedding of X in some G-AR space
M (See [3], Proposition 1). Since each G-AR space for metrizable spaces is
a G-AE ([3], Proposition 2), there is a G-extension f:V =Y of fon some
invariant open neighborhood V' of A in M. By the definition of a G—SSDR—
map, we can find a G-homotopy H : X x I — M such that H(z,0) =
H(z,1) € V and H(a,t) =a for z € X, a € A, t € I. The required extensmn
f:X =Y can be given by f(z) = f(H(z 1)).

Let fl, f2 X — Y be two G-extensions of f. Define a G-equivariant
map F: X XOUAXTUX x1—=Y by F(z,0) = fi(z), F(z,1) = fa(x),
F(a,t) = f(a) for x € X, a € A, t € I. Considering X as a closed invariant
subset of a G-AR space M, and therefore X x I as a closed invariant subset
of the G-AR space M x I, we find a G-extension ' : W — Y of I on some
invariant neighborhood W of X x 0UA x IUX x 1in M x I. Clearly, one
can choose an invariant neighborhood U of X in M such that U x {0} C W
and U x {0} C W. Besides, a standard compactness argument guarantees the
existence of an invariant neighborhood V of A in M such that V x I C W.
Taking a G-homotopy D : X x I — U such that D(x,0) = z, D(z,1) € V
and D(a,t) = a for x € X, a € A, t € I, we can establish G-homotopies
F': fi ~q hirel. A, F" . fy ~c hy rel. A and H : hy ~¢ hs rel. A by
F'(z,t) = F(D(z,t),0), F"(z,t) = F(D(z,t),1) and H(z,t) = F(D(z,1),t).
Thus fl ~a ]72 rel. A.

(b) = (c). Since E is a G-ANR there exists a G-extension F : X — E

such that Fos = f. We have Fo s =po T o s and by the second part of
(b) there is a G-homotopy H : F ~¢g pF rel. s(A). Applying the covering
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homotopy property we get a G-homotopy H:X X1 —E, H:F ~a F rel.
s(A), such that po H =H. So Fos= f and po F = F as required.

(c) = (a). As above, we can assume that X is an invariant closed subset
of some G-AR space M and that A is an invariant closed subset of of X, so
s(a) = a for a € A. Let U and V be invariant open neighborhoods of X and
A respectively in M. First applying (c) to the G-fibration V' — « and the
inclusioni : A — V we get a G-map r : X — V such that ros = i. Afterwards
applying (c¢) to the commutative diagram

4 f

UI

F

X UxU

where p(w) = (w(0),w(1)), f(a)(t) = a, F(x) = (x,r(z)), we obtain a G-map
F:X — U!such that Fos = f, po ' = F. Now observe that the map
D : X x I — U defined by D(x,t) = F(x)(t) satisfies the conditions of the
definition of a G-SSDR-map. O

COROLLARY 2.2. Every G-ANR is a G-fibrant space.

3. MAIN RESULT
The main result of this paper is the following
THEOREM 3.1. Every compact metrizable group G is a G-fibrant space.
In the proof of this theorem, we shall use the propositions given below.

PROPOSITION 3.2. ([7], Proposition 1.6.6) Let G be a compact Lie group
and H be its closed subgroup. Then G/H is a G-ANR space.

The following result is actually proved in the classical book of Pontrjagin
[8]. Note that it can be easily obtained from Corollary 4.4 of [4]: for every
neighborhood U of the unit e of a compact group G, there exists a group
morphism ¢ : G — O(n) such that ker o C U.

ProrosiTION 3.3. Let G be a compact metrizable group. Then there
exists a decreasing sequence {N;}ien of its normal closed subgroups such that
the quotient groups G/N; are Lie groups, (| N; = {e} and

ieN
lim{G/N;,q]} =G
where qf :G/N; — G/N;, j > i, are the natural projections.

We omit a routine proof of the following statement.
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PROPOSITION 3.4. Let G be a compact metrizable group and {N;};en be
a sequence of its closed normal subgroups satisfying Proposition 3.3.

(a) If X is a G-space, then
X = lm{X/N;, i}
where pg : X/N; — X/N;, j > i, are the natural projections.
(b) Let X andY be G-spaces represented according to (a) as
X = hm{X/Ni,pﬂf } and Y = lim{Y/N;, q}.
If the G/N;-maps fi : X/N; — Y/N;, i € N, are such that - fi11 =
flpfl, i.e. the diagram £,

1+1

X/Ni+1 Y/Ni+1
pit! g

commutes for each i € N, then there exists a unique G-map f: X —Y
such that q;f = fip; for each i, where p; : X — X/N;, ¢; : Y — Y/N;

are N;-orbit projections.

PROPOSITION 3.5. Let G be a compact group and N be a closed normal
subgroup of G. If s : A — X is a G-SSDR-map, then the induced map
s/N:A/N — X/N is a G/N-SSDR-map.

PROOF. Let jo : X/N — Y be a closed G/N-embedding of X/N in
a G/N-ANR space Y. By Lemma 1 of [1] there exist a G-space Z and a
closed G-embedding 30 : X — Z such that Z/N =Y and joop = q1 030,
where p: X — X/N, q1 : Z — Y are the N-orbit maps. Let 31 = M
be a closed G-embedding of Z in a G-AR space M (See [3], Proposition
1). Then by Theorem 1 of [2] M/N is a G/N-ANR space and we get a
closed G /N-embedding j = j; o Jo X/N — M/N, where the embedding

: Z /N — M/N is induced by j;. Moreover, for the closed G- embedding
] —]10_]0 X — M and the N-orbit map g : M — M /N we have goj = jop.

Now let U and V be invariant neighborhoods of X/N and A/N respec-
tively in M/N. Then U = ¢~ *(U) and V = ¢~!(V) are invariant neighbor-
hoods of X and A respectively in M. Slnce s: A— X is a G-SSDR-map
there exists a G-homotopy H : X x I — U rel. A such that H(z,0) = z and
H(z,1) € V. It is clear that the induced G/N-homotopy H : X/N x I — U,
defined by H(N(z),t) = N(H(x,t)), satisfies the analogous properties and it
means that s/N : A/N — X/N is a G/N-SSDR-map. O

We need the following version of the covering homotopy theorem (compare
[4], Ch. II, Theorem 7.3).
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ProprosSITION 3.6. Let G be a compact Lie group and N be a normal
closed subgroup of G. Suppose that for a G-space X, a G/N-homotopy H :
X/NxI— G/N and a G-map h : X — G are such that the following diagram

commutes
h
X

Qo q

X/N x I G/N

where 0y(z) = (p(),0) and p : X — X/N, q : G — G/N are the N-
orbit maps. Then there exists a G-homotopy H: X x1I — G such that
H(z,0) = h(z) and go H=Ho (p x 15).

Moreover, if A is an invariant closed subset of X such that H(p(a),t) =
H(p(a),0) for any a € A, t € I, then the covering homotopy H can be chosen
so that H(a,t) = h(a) for anya € A, t € 1.

PRrOOF. Note that the existence of the G-map h : X — G implies that
the action of the group G on X is of a quite simple structure. Indeed, let
S = h~1(e), where e is the unit element of the group G, and let p : X — S
be a map defined by p(x) = (h(x))"'z. Then p is a retraction such that
p(gz) = p(x) for any g € G, x € X. Now consider the product G x S as a
G-space endowed with the action g(¢’,s) = (gg’,s). It can be easily verified
that the map ¢ : X — G x S, given by p(z) = (h(x), p(x)), is a G-map and,
moreover, it is a G-equivalence because the G-map ¥ : G x S — X, where
¥(g, 8) = gs, is the inverse map for . In fact, we shall use this G-equivalence
in the construction of the covering homotopy H.

Let F: Sx I — G/N be a homotopy defined by F(s,t) = H(p(s),t). For
the given invariant closed subset A C X, let U = AN S, that is U = p(A).
Then, if u € U, we have F(u,t) = H(p(u),t) = H(p(u),0) = F(u,0) for any
tel

Since N is a Lie group, the projection ¢ : G — G/N is a locally trivial
fibration (see [4], Ch. II, Theorem 5.8) and hence it has the regular homotopy
lifting property. In particular, considering the commutative diagram

G/N
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where f(s) = e and 8o(s) = (s,0) for s € S, one can find a homotopy F :

S x I — G which preserves the commutativity of the diagram, that is to say,

qOF F, F060—fand moreover, F(u t)—efor anyueU,tel.
Finally, the required covering homotopy H: X x I — G can be defined

by H(z,t) = h(z)F(p (2),t). The verification of this fact is straightforward.
Indeed, we have H(x,0) = h(z)F(p(z),0), but

F(p(w),0) = F o do(p(x)) = f(p(x)) = e,

and hence H(z,0) = h(z).
Since ¢ : G — G/N is a group morphism and go F = F, we get

q(H (2,1)) = q(h(2))a(F(p(2),1)) = q(h(2)) F(p(x).t).

By the definition of the homotopy F', we have F(p(z),t) = H(p(p(x)),t), but
H is a G/N-map, and therefore, ¢(h(z))H (p(p(x)),t) = H(q(h(z))p(p(z)),1).
Reminding that ¢ : G — G/N and p : X — X/N are N-orbit maps, we obtain

q(h(x))p(p(x)) = p(h(z)p(x)) = p(z).

Thus q(H(z,t)) = H(p(x),t), that is go H = Ho (p x 1).
Besides, if a € A, we have p(a) € U, and therefore,
H(a,t) = h(a)F(p(a),t) = h(a)e = h(a) for any t € 1. O

PROOF OF THEOREM 3.1. Let j : A — X be a G-SSDR-map and [ :
A — G be a G-map. In order to show that G is a G-fibrant, we must find a
G-map F': X — G such that Foj=f.

According to Proposition 3.3, we represent the group G' as an inverse limit
of Lie groups G = l(iLn{G/Ni, ql}.

The G-maps j and f induce for each k the G/Nji-maps jir = j/Ng :
A/Ny — X/Ng, fx = f/Ni : A/Ny, — G/Nj. Then for each k the following

diagram commutes ‘
k1 Jr4a

X/Ngt1 A/Ni41 G/Ni+1
k+1
ptt et @
X/Ny, A/Ny : G/Ny

where pkH, qZH, k+1 are the natural projections. It is clear that these

projections can be treated as orbit projections with respect to the action of
the closed subgroup N;/N;11 of the Lie group G/N;y+1 on X/N;11, A/N;t11
and G/N;11 respectively. For each k the map ji is a G/Ni-SSDR-map by
Proposition 3.5, and G/Ny, is a G/N;-ANR by Proposition 3.2, and therefore
there exists a G/Ng-equivariant extension F, : X/Nj, — G/Ny, of fi, such that
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Fyjr = fr. Using these extensions we shall construct by induction G/Nj-
maps Tj : X/N — G/Ny, satisfying the conditions TkpZH = q’,§+1Tk+1 and
Tjx = fr for every k € N. Let T7 = Fy and suppose that T}, is already found.
We have to construct the map Tj1.

One has
- k+1 k+1 _  _k+1 _ k41 . _ k41 - . . ka1
Tigery = frry " =ap " fer1 =@ Fevijierr = FEpp T e = Fljery,

where F}' : X/Nj, — G/N}, is the G/Nj-map induced by Fj41. Hence T}j, =
F}: jx because r’,:"’l is surjective. According to Theorem 2.1, there is a G/N-
homotopy H : F}f ~ Ty, rel.jp(A/Ng), H : X/Ny x I — G/Njy.

Now consider the following commutative diagram

Fri1
X/Nit1 G/Ni+1
Ao qrtt
X/Ny, x T G/N,

where d([z]) = (p}[2],0) for [z] = Niy1(x) € X/Niy1.

Taking into account this diagram, we are going to apply Proposition 3.6
to the Lie group G/Nj41 acting on X /N1 and to its closed normal subgroup
Ni/Niy1. Note that one can consider the G/Nyi1-space X/Nj, as the orbit
space X/Ng+1/Ni/Ngi1.

By Proposition 3.6, we get a G/N.1-homotopy

H: X/Nigy1 x I — G/Nyj1

such that H([z],0) = Fyy1([z]), gy (H([z],t) = H(pf ™ ([z]),t) and, for any
t € I, H([a],t) = Fiy1([a]) if [a] € jr1(A/Ngir). Putting Tiya([2]) =
H([z],1) we get the required G/Ng41-map Tiy1 : X/Niy1 — G/Ngy1. This
completes the inductive step.

The sequence {7}, }ren, according to Proposition 3.4, determines a unique
G-map F : X — G such that qx F' = Typy for each k. Since Tyjr = fx for
each k, we can state that F'oj = f. O
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