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Abstract
The paper considers the singular value decomposition (SVD) of a general matrix. Some immediate applica-
tions, such as determining the spectral and Frobenius norm, rank and pseudoinverse of the matrix are 
described. Applications also include approximating the given matrix by a matrix of a lower rank. It is also 
shown how to use SVD for solving the homogeneous linear system and the least squares problem. The 
paper consists of three parts:
1.)  The singular value decomposition,
2.) Some applications of the singular value decomposition,
3.) Applications in geodesy.
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1.	 THE SINGULAR VALUE 
DECOMPOSITION

1.1	 Basic notions and notation

By  m × n (  m × n) is denoted the set of m × n 
complex (real) matrices.

Let A∈  m × n. � Two most common vector subs-
paces associated with A are the range of A,

ℜ(A) = {Ax: x∈  n}⊆  m,

and the kernel (null-subspace) of A:

N(A) = {x: Ax = 0} ⊆  n.

The range of A is spanned by the columns of A, 
so it is sometimes called the column space of A. If 
A then ℜ(A) and N(A) are appropriately defined 
using the vector spaces  m and  n.

The dimensions of ℜ(A) and N(A) are the rank 
and the defect of A.

The spectral radius of a square matrix A,

spr(A) = max{| λ|; λ∈σ(A)},

is the largest distance of an eigenvalue of A to 
zero. Here σ(A) is the spectrum of A which is the 
set of eigenvalues of A.

The trace of A is the sum of its diagonal elements:

			       .

It can be shown that tr(A) is the sum of the ei-
genvalues of A.
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The diagonal part of A=(a i,j) is the diagonal matrix:

					              .

      If A  is not square then diag(A) has additional zero rows or co-
lumns.

The spectral and the Frobenius norm of an m × n matrix are defined 
by
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respectively. Here A* is the hermitian transpose of A. If A is real, then 
A* = Aτ is just the transpose of A.

 The matrix A is normal if A*A = AA*. The complex (real) matrix U is 
unitary (orthogonal) if U*U = UU* = I.

 
1.2	 The singular value decomposition

The following theorem serves as the definition of the singular value 
decomposition.

Theorem 1.
Let A∈  m × n. Then there exist unitary matrices U∈  m × m and 

V∈  n × n,
so that

U* AV = Σ = diag(σ1, σ2,...,σmin{m,n} ),
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where σ1 ≥ σ2 ≥ ... ≥ σmin{m,n} ≥ 0. The nonnegative numbers 
σ1, σ2, ... , σmin{m,n}  are the singular values of A and the columns of U(V) 
are the left (right) singular vectors of A.

Matrix Σ is uniquely determined by the matrix A. However, the ma-
trices U and V are not unique. If the singular values are multiple, then 
U and V can be post-multiplied by an arbitrary block-diagonal unitary 
matrix, whose diagonal blocks are of appropriate dimensions.

   The singular value decomposition has hundreds of applications. It 
is an excellent tool in matrix theory. It is often used for solving different 
matrix problems which arise in science, economy, engineering, medicine, 
and even in human sciences. Data mining, web searching, image reco-
gnition, just to mention some contemporary problems which use SVD, 
often of large matrices. Its widespread use is enhanced by the fact that 
there exist excellent, efficient and accurate methods for computing it. 
There are several classes of methods, the most important are: one-sided 
Jacobi methods, divide and conquer (DC), differential qd (DQD) and QR 
methods.

We will first list several immediate consequences of this decompo-
sition.

Let A = UΣV* be the singular value decomposition of the matrix 
A∈  m × n,  so that:

σ1 ≥ σ2 ≥ ... ≥ σr > σr+1 = ... = σp = 0,   p = min{m,n}.

Let U = [u1,...,um], V = [v1,...,vm] be the column representations 
(often called partitions) of U and V, respectively.  

Then it is easy to show that the following holds:

(i)	 rank(A) = r ,

(ii)	 N(A) = span{vr+1,...,vn},

(iii)	 ℜ(A) = span{u1,...,ur},

(iv)	 * *
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= = Σ∑ , such that,

	 Ur = [u1, ..., ur ] ∈  m × r,

	 Vr = [v1, ..., vr ] ∈  n × r,

	 Σr = diag(σ1, ..., σr ) ∈  r × r,

(v)	 || A ||F
2 = σ1

2 + ... + σr
2,

(vi)	 || A ||F = σ1.

It can also be shown that the distance (in spectral norm) of a square 
matrix A and the set of singular matrices of the same dimension, is equal 
to the smallest singular value of A.This follows from a more general re-
sult, the Ekhard, Young and Mirsky theorem.

Theorem 2.
Let A∈  m × n and let A = UΣV* be the singular value decomposition 

of A so that:

σ1 ≥ σ2 ≥ ... ≥ σr > σr+1 = ... = σp = 0,   p = min{m,n},

holds. If k < r = rank(A) and *
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Thus, the closest rank k approximation of A is obtained by using the 
first k singular values and vectors of A.

2.	 SOME APPLICATIONS OF THE SINGULAR VALUE 
DECOMPOSITION

Here, we will address several applications.

2.1	 Determining the pseudoinverse of a general 
matrix

 Here, we will consider the Moore-Penrose pseudoinverse.

Let A∈  m × n. The matrix X∈  n × m is pseudoinverse of A∈  m × n, if the 
following four conditions are fulfilled:

(i)	 AXA = A,

(ii)	 XAX = X,

(iii)	 (AX)* = AX,

(iv)	 (XA)* = XA.

The conditions (i) - (iv) ensure that the matrix X is unique. It is usu-
ally denoted by A†.

Let A = UΣV* be the singular value decomposition of A. Then the 
pseudoinverse A†  of the matrix A is given by the expression:

A† = VΣ+U*,

where:

Σ† = diag(σ1
+, ..., σ+

min{m,n} ) ∈  n × m,

and:
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By using the SVD of A, it is easy to prove the following properties of A†.

1.	 (A†)† = A,

2.	 (Aτ)† = (A†)τ,

3.	 (A)† = (A†),

4.	 rank(A) = rank(A†) = rank(AA†) = rank(A†A),

5.	 If A∈  m × n with rank n, then A† = (A*A)-1A* and A†A = In,

6.	 If A∈  m × n with rank m, then A† = A*(AA*)-1 and AA† = Im.

In addition, one can easily prove that AA† (A†A) is orthogonal pro-
jector onto ℜ(A) (ℜ(A*)). This fact is important when solving the over-
determined system of the linear equations Ax = b, A∈  m × n in the least 
squares sense.
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β = A† y = V Σ+ U τ y.

Such β is the solution of the least squares problem and among all 
solutions, it has the minimum Euclidean norm.

3.	 APPLICATIONS IN GEODESY

The singular value decomposition and the pseudoinverse are taught 
in the courses: Analysis and processing of geodetic measurements, and 
Special algorithms of geodetic measurement processing at the Faculty of 
Geodesy, University of Zagreb. 

Using any web browser, one can find many applications of SVD in 
Geodesy. Such as the following presentation: 

2.2	 Solving a homogeneous system of linear 
equations

Let A∈  m × n be the matrix of rank r. Then, solving the homogeneous 
system of linear equations, Ax = 0, reduces to determining the null-su-
bspace of the matrix A. From item (ii) of immediate consequences of the 
SVD, one finds out that:

N(A) = span{vr+1,...,vn}.

Here vr+1,...,vn are the last n-r columns of the matrix V from the SVD 
of A. Since V is unitary, these vectors form an orthonormal basis of the 
subspace   N(A). Since the SVD of A can be very accurately computed, 
this approach for solving the homogenous linear system is most com-
monly used.

 
2.3	 Solving the linear least squares problem

Let us consider an overdetermined system:
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Such a system, has usually no solution. Therefore, it is reformulated 
into the least squares problem,

minβ || y - Aβ ||2.

Suppose that there exists n × m, matrix S, so that AS is an orthogonal 
projection onto ℜ(A). In that case, the solution is given by:

β = Sy,

because,
                 

Aβ = A(Sy) = (AS) y,

is the orthogonal projection of y onto ℜ(A).

If A = U ΣV τ is the singular value decomposition of A, then the pse-
udoinverse A† of A, given by A† = U Σ+V τ has the property that AA† is 
orthogonal projector on ℜ(A). Indeed we have:

AA† = U ΣV τV Σ+U τ = UPUt,

where the square matrix P is obtained from Σ, by replacing the non-
zero diagonal elements with ones.  Matrices A and Σ have the same rank, 
and AA† = UPU τ is the orthogonal projector onto ℜ(A). Thus, A† is just 
the wanted matrix S. The final conclusion is that unknown β∈  n is given 
by the expression:

Figure 1. http://www.iag2009.com.ar/presentations 
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