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A note on generalized absolute summability factors
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Abstract. In this paper, a general theorem on | A, §|x- summability factors of infinite series
has been proved under weaker conditions.
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1. Introduction

Rhoades and Savas [4] recently have obtained sufficient conditions for the series
>~ apAy, to be absolutely summable of order k by a triangular matrix.

In this paper we generalize the result of Rhoades and Savas under weaker condi-
tions for |A4, 6|k, k> 1,0 < < 1/k.

A positive sequence {b,} is said to be almost increasing if there exists an in-
creasing sequence {c,} and positive constants A and B such that Ac, < b, < Bey,
(see, [1]). Obviously every increasing sequence is almost increasing. However, the
converse need not be true as can be seen by taking the example, say b, = e(=1)"n.

Let A be a lower triangular matrix, {s,} a sequence. Then

n
A, = E AnySy-
v=0

A series > a,, is said to be summable |A|, k > 1 if

> kA, = A |F < oo, (1)
n=1
and it is said to be summable |A,§|x, k> 1 and § > 0 if (see,[2])

> A, — Ay |F < oo, (2)

n=1
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We may associate with A two lower triangular matrices A and A defined as
follows:

n
dm,:Zam, n,v=0,1,2,...,
r=v
and
Gny = Gpy — Gp—1,0, n=12,3,....

With Sp = Z?:O )\Zaz
n n i
Yn = E AniS; = E Qpj § )\uau
i=0 =0 v=0
n n n
= § Ayau § Up; = § anuAuav
v=0 i=v v=0

and
n

Yn =Yn —Yn—1 = Z(dny - an—l,v))\vau = ZdnuAuaw (3)
v=0 v=0

Theorem 1. Let A be a lower triangular matrix satisfying
(i) Gno=1,n=0,1,...,,
(1) an-1, > an, for n>v+1, and

(i4i) nay, < O(1)

n—1
(iv) Z Ay |ny 1] = O<ann>7
v=1

m—+1

(v) Z n6k|Ay&m,| :O(V‘Skaw) and

n=v+1
m—+1
(i) > 0 lana = o(zﬁk).
n=v+1
If {X,} is an almost increasing sequence such that
(vit) A Xm = O(1),
(viii) Y (nX,)|A%M\s| = O(1), and

n=1

m 1 n
: Sk k_ —
(ix) nz::ln annltn|” = O(Xy,), where t, := 1 ; kay,

then the series > apA, is summable |A, 0|k, k> 1,0 < < 1/k.



ABSOLUTE SUMMABILITY METHODS 325

Lemma 1 (see [4]). If (X,,) is an almost increasing sequence, then under the con-
ditions of the theorem we have that

(i) > Xn|AX| < oo and

(ii) nXp|AN| = O(1).

Proof. From (3) we may write

(),

(“”V ‘) [ZmT Zrar}

A (am, V) Zrar Ann Zua,,

NE

Y, =

N
Il
_

I
3 <
HM:
»—‘H

M

v=1
n—1 I/+1 n—1 I/+ 1
= AI/ATLV v— v Anv v v
(A, )\ Vt+za,+1(m)yt
v=1 v=1
— 1 n 4+ 1DapnAntn
+Zan,u+1>\u+17tu #
=1 14 n

=1n1+ Tn2 + TnS + Tn4a say.

To finish the proof it is sufficient, by Minkowski’s inequality, to show that

oo

Z Sktk=Li ¥ < o0, for r=1,2,34.

Using Holder’s inequality and (iii),

k

m m n—1 l/—|—1
i Dot = 3t 3 A
m+1
(1) 3 nftets 1(Z|A | MIE)

m+1

Znék—i-k 1(Z|A anu || Mo |F 1t | )(nz:lmydm,l)k_l
v=1

Using the fact that, from (vii), {\,} is bounded, and condition (i) of Lemma 1,
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and (v)

m—+1

Zn nannk12|>‘|‘t||Aan'/|

m—+1

1) 3 n ) I(ZM A A 1)
m—+1

Zp‘ ||t | Z (nann)k71|Aydny|
n=v+1
m—+1

1)Z|Aulltu|k > AL an|
v=1 n=v+1

1) Zuék\)\y|aw|tu|k

ZP‘ |[Zar7‘|t ok Zarr\t |y 51@}
v=1

m—1
—om| Y- aln) Zamt [Frf + |Am|§jaw|t [Fr]
v=1

= 0(1) Y [AN[X, + O(1) An| X

= 0(1).

Using Holder’s inequality, (iii), and (iv),

m+41 m+1

1 k
Zn6k+k 1\T Zn6k+k 1‘Zanzj+1 (A v+
m+41
1 k
< D 1[Z|aw+1\|m ]
m—+1
= 0 3 e 1[Z|aw+1||m ]
m—+1 k
= 0 3 st 1[2( AN itolavs i, ]
v=1
m—+1

_ ank 12 VAN )ty Pyl o |
) k—1
X [Z aul/|an,y+1 |:|
v=1
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m—+1 n—1
=0(1) Z n** (nan,)" ! Z(V|A)‘V|)k|tu|kavu‘&n,v+1|
n=2 v=1
m—+1 n—1
=0(1) Z ngk(nann)k_l Z(V|A)‘V|)k_1(V|A)‘V|)auu|&n,u+1||t1/|k
n=2 v=1

Conclusion (ii) of Lemma 1 implies that v|AM,| = O(1). Therefore, using (iii),
(v) and (vi)

m m—+1
I == 0() > v[AN|awfto|* > 0¥ (nan) " ay,|
v=1 n=v+1
m m+1
= 0(1) Y _vIANfavlt* Y nFlan 4l
v=1 n=v+1

Therefore,

I, :=01) Z U‘Sky|A)\V|aW|tV|k.

v=1

Using summation by parts and (ix),

m v v—1
I, =0(1) Z V|IAN| {Zarr|tr|k7"6k - Z arrltrlkrék]
v=1 r=1 r=1
m—1
=0(1) Y |A@WAN)|X, +0(1).
v=1

But
A(VAN) = VAN, — (v + 1)AN 1 = VAN, — A 4.

Using (viii) and property (i) from Lemma 1, and the fact that {X,} is almost
increasing,

m—1 m—1
I=0(1) > v[A’A[X, +0(1) Y [AN1]X, 1 = O(1).
v=1 v=1

Using (iii), Holder’s inequality, (iv), summation by parts, property (i) of Lemma 1,
(vi), (vil) and (ix)

m—+1 m—+1 n—1 1
§ : Sk+k—1 k § : Ok+k—1 E ~

n + |Tn3| = n + ’ an7]/+1Ay+1;tV
n=2 n=2 v=1

m—+1 n—1 a k

Sk+k—1 n,v+1
POkl DB
n=2 v=1

m—+1

n—1 k
=0(1) Z ”MM&{Z |/\V+1||dn7u+1||t1/|a1/y}
n=2 v=1

k

IN
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m—+1

Zn“*’“ 1[Z|Au+1| Gt 1 |
— R k—1
X [Zauu|an,u+1|]
v=1

m—+1 n—1
1) Z nék(nann)k_l Z |)‘V+1‘k_1|>‘V+1‘auu|tu|k|&n,1/+1
= v=1
m m—+1
1) Z |)‘V+1||tv|k Z n6k|dn,u+1|
v=1 n=v+1

m
1) Z |>‘V+1|aVV|tV|kV6k

Z|Au+1|[zaw|t [k Zamt 5]

v=1
m—1
= O[S 18] 3 115+ Do 3 %]
v=1 r=1 r=1
m—1

= o) Z |AA 41Xy + O1)[ Ay 41| Xm

v=1

= 0(1).
Finally, using (iii), summation by parts, property (i) of Lemma 1 and (vii),
m m
1 Antn |
S kLT, = Znék-&-k—l‘ (n 4+ DannAnty,
n=1

n
= n=1

3

=0(1) Z n6k+k_1|ann|k|)‘n‘k‘tn|k

n=1
m
=0(1) Z nék(”ann)k_lann|/\n|k_l‘)‘n||tn‘k
n=1
=0(1) Z n(skann‘)‘nntn‘ka
n=1
as in the proof of I;. O

Setting § = 0 in the theorem yields the following corollary.

Corollary 1. Let A be a triangle satisfying conditions (i)-(iv) of Theorem 1 and let
{X,} be an almost increasing sequence satisfying conditions (vii)-(viii). If

(iz) Yoy annltn|® = O(Xm),

then the series > an A, s summable |Alg, k > 1.
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Corollary 2. Let {p,} be a positive sequence such that
P, =Y} _opr — o0, and satisfies

(i) npn =< O(Py),

m+1 sk D l/ék
y Do O(—)
(w) ngy;-l " |PnPn—1 ‘ Pu

If {X,} is an almost increasing sequence such that

(iv) > nXu|A%X\,|=0(1), and

n=1

(v) Z nék_l‘tn‘k = O0(Xn),
n=1

then the series . an\y is summable |N,p, 6|k, k > 1 for 0 < 6§ < 1/k.

Proof. Conditions (iii) and (iv) of Corollary 2 are conditions (vii) and (viii) of
Theorem 1, respectively.

Conditions (i), (ii) and (iv) of Theorem 1 are automatically satisfied for any
weighted mean method. Condition (iii) and (ix) of Theorem 1 become conditions (i)
and (v) of Corollary 2 and conditions (v) and (vi) of Theorem 1 become condition
(ii) of Corollary 2. O

Acknowledgement

The author wishes to thank the referees for their careful reading of the manuscript
and their helpful suggestions.

References

[1] S. AL1JANCIC, D. ARENDELOVIC, O—regularly varying functions, Publ. Inst. Math.
(Beograd) (N.S) 36(1977), 5-22.

[2] T.M.FLEET, On an extension of absolute summability and some theorems of Little-
wood and Paley, Proc. London Math. Soc. 3(1957), 113-141.

[3] B. E. RHOADES, Inclusion theorems for absolute matriz summability methods, J. Math.
Anal. Appl. 118(1993), 71-75.

[4] B.E. RHOADES, E.SAvAs, A note on absolute summability factors, Periodica Math.
Hung. 51(2005), 53-60.

[5] B. E. RHOADES, E. SAvAs, On |Alx summability factors, Acta Math. Hung. 112(2006),
15-23.



