
MATHEMATICAL COMMUNICATIONS 347
Math. Commun., Vol. 15, No. 2, pp. 347-358 (2010)

Cacti with minimum, second-minimum, and third-minimum
Kirchhoff indices

Hongzhuan Wang1, Hongbo Hua1,∗and Dongdong Wang1

1 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian,
Jiangsu-223 003, P.R.China

Received February 5, 2009; accepted December 4, 2009

Abstract. Resistance distance was introduced by Klein and Randić. The Kirchhoff index
Kf(G) of a graph G is the sum of resistance distances between all pairs of vertices. A
graph G is called a cactus if each block of G is either an edge or a cycle. Denote by
Cat(n; t) the set of connected cacti possessing n vertices and t cycles. In this paper, we
give the first three smallest Kirchhoff indices among graphs in Cat(n; t), and characterize
the corresponding extremal graphs as well.
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1. Introduction

Let G = (V (G), E(G)) be a graph whose sets of vertices and edges are V (G)= {v1, v2,
· · · , vn} and E(G), respectively.

In 1993, Klein and Randić [1] posed a new distance function named resistance
distance on the basis of electrical network theory. The term resistance distance was
used for the physical interpretation: one imagines unit resistors on each edge of a
connected graph G with vertices v1, v2, · · · , vn and takes the resistance distance
between vertices vi and vj of G to be the effective resistance between vertices vi and
vj , denoted by rG(vi, vj). Recall that the conventional distance between vertices vi

and vj , denoted by dG(vi, vj), is the length of a shortest path between them and the
famous Wiener index [2] is the sum of distances between all pairs of vertices; that
is,

W (G) =
∑

i<j

dG(vi, vj).

Analogous to the Wiener index, the Kirchhoff index [3] is defined as

Kf(G) =
∑

i<j

rG(vi, vj).

Similarly to the conventional distance, the resistance distance is also intrinsic to
the graph, not only with some nice purely mathematical and physical interpretations
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[4,5], but with a substantial potential for chemical applications. In fact, for those two
distance functions, the shortest-path might be imagined to be more relevant when
there is corpuscular communication (along edges) between two vertices, whereas the
resistance distance might be imagined to be more relevant when the communication
is wave- or fluid-like. Then, that chemical communication in molecules is rather
wavelike suggests the utility of this concept in chemistry. So in recent years, the
resistance distance has become much studied in the chemical literature [6-17]. It
is found that the resistance distance is closely related with many well-known graph
invariants, such as the connectivity index, the Balaban index, etc. This further
suggests the resistance distance is worthy of being investigated. The resistance
distance is also well studied in the mathematical literature. Much work has been
done to compute the Kirchhoff index of some classes of graphs, or give bounds
for the Kirchhoff index of graphs and characterize extremal graphs [10,15,18]. For
instance, unicyclic graphs with the extremal Kirchhoff index are characterized and
sharp bounds for the Kirchhoff index of such graphs are obtained [19]. In [20], the
authors further investigated the Kirchhoff index in unicyclic graphs, and determined
graphs with second- and third-minimal Kirchhoff indices as well as those graphs with
second- and third-maximal Kirchhoff indices.

A graph G is called a cactus if each block of G is either an edge or a cycle. Denote
by Cat(n, t) the set of connected cacti possessing n vertices and t cycles. In this
paper, we give the first three smallest Kirchhoff indices among graphs in Cat(n, t)
and characterize the corresponding extremal graphs as well.

2. Lemmas and main results

Before we state and prove our main results, we introduce some lemmas.

Lemma 1 (see [7]). Let x be a cut vertex of a connected graph G and a and b
vertices occurring in different components which arise upon deletion of x. Then
rG(a, b) = rG(a, x) + rG(x, b).

Lemma 2. Let G1 and G2 be connected graphs. If we identify any vertex, say x1, of
G1 with any other vertex, say x2, of G2 as a new common vertex x, and we obtain
a new graph G, then

Kf(G) = Kf(G1) + Kf(G2) + n1Kfx2(G2) + n2Kfx1(G1),

where Kfxi(Gi) =
∑

yi∈Gi

rGi(xi, yi) and ni = |V (Gi)| − 1 for i = 1, 2.
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Figure 1.
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Let G3, G4 and G5 be connected graphs as depicted in Fig. 1. By Operation I
we mean the graph transformation from G3 to G4, or from G3 to G5.

The following lemma is our main lemma, which shall play an important role in
proving our main results.

Lemma 3. Let G3, G4 and G5 be connected graphs as depicted in Fig. 1. Then the
following holds:

(a) If Kfv(X) ≥ Kfu(X), then Kf(G3) > Kf(G4);
(b) If Kfu(X) ≥ Kfv(X), then Kf(G3) > Kf(G5).

Proof. By Lemmas 1 and 2, one obtains

Kf(G4) = Kf(X) + Kf(Y ∪ Z) + (|X| − 1)Kfu(Y ∪ Z) + (|Y |+ |Z| − 2)Kfu(X)
= Kf(X) + Kf(Y ) + Kf(Z) + (|Y | − 1)Kfu(Z) + (|Z| − 1)Kfu(Y )

+(|X| − 1)(Kfu(Y ) + Kfu(Z)) + (|Y |+ |Z| − 2)Kfu(X)
= Kf(X) + Kf(Y ) + Kf(Z) + (|Y | − 1)Kfv(Z) + (|Z| − 1)Kfu(Y )

+(|X| − 1)(Kfu(Y ) + Kfv(Z)) + (|Y |+ |Z| − 2)Kfu(X),

Kf(G3) = Kf(Y ) + Kf(X ∪ Z) + (|Y | − 1)Kfu(X ∪ Z) + (n− |Y |)Kfu(Y )
= Kf(X) + Kf(Y ) + Kf(Z) + (|X| − 1)Kfv(Z) + (|Z| − 1)Kfv(X)

+(|Y | − 1)(Kfu(X) + Kfv(Z) + (|Z| − 1)rX(u, v)) + (n− |Y |)Kfu(Y )
= Kf(X) + Kf(Y ) + Kf(Z) + (|Y | − 1)Kfv(Z) + (|Z| − 1)Kfu(Y )

+(|X| − 1)(Kfu(Y ) + Kfv(Z)) + (|Y |+ |Z| − 2)Kfu(X).

Therefore,

Kf(G4)−Kf(G3) = |Y | − 1)Kfv(Z) + (|Z| − 1)Kfu(Y ) + (|X| − 1)Kfu(Y )
+(|X| − 1)Kfv(Z) + (|Y |+ |Z| − 2)Kfu(X)
−(|X| − 1)Kfv(Z)− (|Z| − 1)Kfv(X)− (|Y | − 1)Kfu(X)
−(|Y | − 1)Kfv(Z)− (|Y | − 1)(|Z| − 1)rX(u, v))
−(n− |Y |)Kfu(Y )

= (|Z| − 1)(Kfu(X)−Kfv(X))− (|Y | − 1)(|Z| − 1)rX(u, v).

If Kfv(X) ≥ Kfu(X), it then follows from the above equation that

Kf(G4)−Kf(G3) ≤ −(|Y | − 1)(|Z| − 1)rX(u, v) < 0,

which proves (a).
The same reasoning can be used to prove (b).
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Figure 2.

Now, we are in a position to state and prove our main results of this paper.

Theorem 1. Among all graphs in Cat(n, t) with n ≥ 13 and t ≥ 1, G0(n, t) is the
unique graph having the minimum Kirchhoff index.

Proof. Let Gmin be the graph in Cat(n, t) with the minimal Kirchhoff index. Our
goal is to prove that Gmin

∼= G0(n, t).
By contradiction. Suppose to the contrary that Gmin � G0(n, t).
We first assume that Gmin has no cut-edges. From Lemma 3, all cycles in Gmin

must share exactly one common vertex, say v.

Cl H H

v

v

Cl−1

G∗ G∗∗

Figure 3.

By Operation II we mean the graph transformation from G∗ to G∗∗.
We first prove the following assertion.

Assertion 1. Let G∗ and G∗∗ be two graphs as depicted in Fig.3., then Kf(G∗) >
Kf(G∗∗).

Proof. From Lemma 2 we obtain

Kf(G∗) = Kf(Cl) + Kf(H) + (l − 1)Kfv(H) + (|H| − 1)Kfv(Cl),
Kf(G∗∗) = Kf(Sl−1

l ) + Kf(H) + (l − 1)Kfv(H) + (|H| − 1)Kfv(Sl−1
l ),
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where Sl−1
l is the graph obtained from Cl−1 by attaching a pendant edge to one of

its vertices, Cl−1 is an l − 1-vertex cycle. Recall that Kfv(Cl) = (l2 − 1)/6 and
Kf(Cl) = (l3 − l)/(12), where v is any vertex of Cl. So we have

Kf(G∗)−Kf(G∗∗) =
(l3 − l)

12
− (l − 1)3 − (l − 1)

12
− 1− (l − 1)2 − 1

6
− (l − 2)

+(|H| − 1)(
l2 − 1

6
− (l − 1)2 − 1

6
− 1)

=
l2 − 11l + 12

12
+ (|H| − 1)(

2l − 7
6

)

=
(l − 11

2 )2

12
− 73

48
+ (n− l)(

2l − 7
6

).

• If n− l = 0, then l ≥ 13, so Kf(G∗)−Kf(G∗∗) ≥ (13− 11
2 )2

12 − 73
48 > 0;

• If n− l = 1, then l ≥ 12, so Kf(G∗)−Kf(G∗∗) ≥ − 73
48 + ( 2×12−7

6 ) > 0;
• If n− l = 2, then l ≥ 11, so Kf(G∗)−Kf(G∗∗) ≥ − 73

48 + 2× ( 2×11−7
6 ) > 0;

• If n− l = 3, then l ≥ 10, so Kf(G∗)−Kf(G∗∗) ≥ − 73
48 + 3× ( 2×10−7

6 ) > 0;
• If n− l = 4, then l ≥ 9, so Kf(G∗)−Kf(G∗∗) ≥ − 73

48 + 4× ( 2×9−7
6 ) > 0;

• If n− l = 5, then l ≥ 8, so Kf(G∗)−Kf(G∗∗) ≥ − 73
48 + 5× ( 2×8−7

6 ) > 0;
• If n− l = 6, then l ≥ 7, so Kf(G∗)−Kf(G∗∗) ≥ − 73

48 + 6× ( 2×7−7
6 ) > 0;

• If n− l = 7, then l ≥ 6, so Kf(G∗)−Kf(G∗∗) ≥ − 73
48 + 7× ( 2×6−7

6 ) > 0;
• If n− l = 8, then l ≥ 5. So Kf(G∗)−Kf(G∗∗) ≥ − 73

48 + 8× (2×5−7
6 ) > 0;

• If n− l = 9, then l ≥ 4. If l = 4, then Kf(G∗)−Kf(G∗∗) = 9
48 − 73

48 + 9
×( 2×4−7

6 ) > 0; If l ≥ 5, then Kf(G∗)−Kf(G∗∗) ≥ − 73
48 + 9× ( 2×5−7

6 ) > 0;
• If n− l ≥ 10, then Kf(G∗)−Kf(G∗∗) ≥ − 73

48 + 10× ( 2×4−7
6 ) > 0, because l ≥ 4.

This proves the assertion.

By the above Assertion, Gmin has no cycles of length greater than 3. As Gmin

has no cut-edges and all cycles in Gmin must share exactly one common vertex,
we have Gmin

∼= G0(n, t) with n = 2t + 1, a contradiction to our assumption that
Gmin � G0(n, t). So we may suppose now that Gmin contains at least one cut-edge.
If Gmin contains non-pendant cut-edges, then we can use Operation I in Fig. 1,
and we shall obtain a new graph G

′
, which is still in Cat(n, t). But by Lemma

3, Kf(G
′
) < Kf(Gmin), a contradiction to the minimality of Gmin. So all cut-

edges in Gmin are pendant edges. Moreover, all cycles in Gmin share exactly one
common vertex, say v, and there exists no cycle in Gmin of length greater than 3.
Furthermore, all pendant edges in Gmin are incident to v. Thus, Gmin

∼= G0(n, t),
a contradiction once again. These contradictions force us to draw a conclusion that
Gmin

∼= G0(n, t) if G has the minimal Kf(G)−value, completing the proof.

Denote by C3vC3 · · · vC3︸ ︷︷ ︸
t times

the graph obtained from t copies of C3 by fusing one

vertex of each C3 into a new common vertex v.

Corollary 1. For any graph G in Cat(n, t) with n ≥ 13 and t ≥ 1, Kf(G) ≥
n2 − 2t2 − 3n + t + 2 + nt

3 with equality if and only if G ∼= G0(n, t).
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Proof. According to Lemma 2, we obtain

Kf(G0(n, t) = Kf(C3vC3 · · · vC3︸ ︷︷ ︸
t times

) + Kf(Sn−2t) + 2tKfv(Sn−2t)

+(n− 2t− 1)Kfv(C3vC3 · · · vC3︸ ︷︷ ︸
t times

)

= Kf(C3vC3 · · · vC3︸ ︷︷ ︸
t times

) + (n− 2t− 1) + 2t(n− 2t− 1)

+
4t

3
(n− 2t− 1) + 2

(
n− 2t− 1

2

)
,

Kf(C3vC3 · · · vC3︸ ︷︷ ︸
t times

) = Kf(C3) + Kf(C3vC3 · · · vC3︸ ︷︷ ︸
(t−1) times

)

+2Kfv(C3vC3 · · · vC3︸ ︷︷ ︸
(t−1) times

) + 2Kfv(C3)

= Kf(C3vC3 · · · vC3︸ ︷︷ ︸
(t−1) times

) +
16t− 10

3
.

Note that Kf(C3) = 2. Hence, we obtain Kf(C3vC3 · · · vC3︸ ︷︷ ︸
t times

) = 8t2−2t
3 by an

elementary calculation, and then Kf(G0(n, t)) = n2−2t2−3n+t+2+ nt
3 . Combining

this fact and Theorem 1, we get the desired result.

In the following we shall consider the cacti with the second and the third smallest
Kirchhoff indices.

Suppose first that G has the second smallest Kirchhoff index among all elements
of Cat(n, t). Evidently, G can be changed into G0(n, t) by using exactly one step of
Operation I or II, for otherwise, one can employ one step of Operation I or II on G,
and obtain a new graph G′, which is still in Cat(n, t) but not isomorphic to G0(n, t),
which gives

Kf(G) > Kf(G′) > Kf(G0(n, t)),

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸

t t

v1 v1

n − 2t − 2

︸ ︷︷ ︸

n − 2t − 2

G7 G8

︷ ︸︸ ︷

︸ ︷︷ ︸

t

n − 2t − 3

v1

G6

v2

Figure 4.

contradicting our choice of G.
By the above arguments, one can conclude that G must be one of the graphs G6,

G7, and G8 as shown in Fig. 4.
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Theorem 2. Among all graphs in Cat(n, t) with n ≥ 13 and t ≥ 1, the cactus with
the second-minimum Kirchhoff index is G8 (see Fig. 4).

Proof. (i): Let H1 denote the common subgraph of G6 and G0(n, t). Thus, we can
view graphs G6 and G0(n, t) as the graphs depicted in Fig. 5.

H1 H1

G0(n, t) G6

v1 v1

Figure 5.

Using Lemma 2, we have

Kf(G0(n, t)) = Kf(S3) + Kf(H1) + 2Kfv1(H1) + (n− 3)Kfv1(S3)
= 4 + Kf(H1) + 2Kfv1(H1) + 2(n− 3),

Kf(G6) = Kf(P3) + Kf(H1) + 2Kfv1(H1) + (n− 3)Kfv1(P3)
= 4 + Kf(H1) + 2Kfv1(H1) + 3(n− 3).

Therefore,
Kf(G6) = Kf(G0(n, t)) + (n− 3).

(ii): Let H2 be the common subgraph of G7 and G0(n, t)(see Fig. 6). Here we
also let v1 denote the unique maximum-degree vertex in G0(n, t).

H2

v1

G0(n, t)

H2

v2

G7

Figure 6.

In view of Lemma 2,

Kf(G0(n, t)) = Kf(P2) + Kf(H2) + Kfv1(H2) + (n− 2)Kfv1(P2)
= Kf(H2) + Kfv1(H2) + (n− 1),

Kf(G7) = Kf(H2) + Kfv2(H2) + (n− 1)

= Kf(H2) + Kfv1(H2) +
2
3
(n− 4) + (n− 1).
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Therefore,

Kf(G7) = Kf(G0(n, t)) +
2
3
(n− 4). (1)

(iii): Let H3 be the common subgraph of G8 and G0(n, t)(see Fig. 7).

H3 C4

G8

v1

H3

C3

G0(n, t)

v1

Figure 7.

Denote by S3
4 the graph obtained by attaching one pendant edge to any vertex

of C3. So,

Kf(G8) = kf(C4) + Kf(H3) + 3Kfv1(H3) + (n− 4)Kfv1(C4),

Kf(G0(n, t)) = Kf(S3
4) + Kf(H3) + 3Kfv1(H3) + (n− 4)Kfv1(S

3
4).

Recall that Kfv1(C4) = 17
6 , and that Kf(C4) = 43−4

12 = 5, we thus have

Kf(G8)−Kf(G0(n, t)) =
42 − 11× 4 + 12

12
+ (n− 4)(

2× 4− 7
6

)

=
32
12

+
n− 4

6
=

n

6
− 2.

Therefore, Kf(G8) = Kf(G0(n, t)) + n
6 − 2.

By the above expressions obtained for the Kirchhoff indices of G6, G7 and G8,
we immediately have the desired result.

From Theorem 2 we immediately have the following result.

Corollary 2. For a graph G, not isomorphic to G0(n, t), in Cat(n, t) with n ≥ 13
and t ≥ 1, it holds that Kf(G) ≥ n2 − 2t2 − 17n

6 + t + nt
3 , with equality if and only

if G ∼= G8 (see Fig.4).

H4

G7

v3

H4

v3

G9

H4

v3

G10 G0

Figure 8.
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Figure 9.

By the same reasonings as those used in Theorem 2, we conclude that the possible
candidates having the third smallest Kirchhoff index must come from one graph of
G7, G9 −G13(see Fig.s 4 and 9).

Theorem 3. Among all graphs in Cat(n, t) with n ≥ 13 and t ≥ 1, the cactus with
the third-minimum Kirchhoff index is G11 (see Fig. 9).

Proof. By above discussions, we need only to determine the minimum cardinality
among Kf(G7), Kf(G9), Kf(G10), Kf(G11) , Kf(G12) and Kf(G13).

Let H4 be the common subgraph of G7, G9 and G10(see Fig.s 4, 8 and 9). Also,
we let G0 be a subgraph of G7(see Fig. 8). It is now reduced to

Kf(G9) = Kf(S4
5) + Kf(H4) + 4Kfv3(H4) + (n− 5)Kfv3(S

4
5)

=
23
2

+ Kf(H4) + 4Kfv3(H4) +
17
4

(n− 5),

Kf(G7) = Kf(G0) + Kf(H4) + 4Kfv3(H4) + (n− 5)Kfv3(G0)

=
40
3

+ Kf(H4) + 4Kfv3(H4) + 4(n− 5),

where S4
5 denotes the graph obtained by attaching one pendant edge to any

vertex of C4.
Therefore,

Kf(G9)−Kf(G7) =
3n− 37

12
> 0,

since n ≥ 13.
Furthermore,

Kf(G10) = Kf((S4
5)) + Kf(H4) + 4Kfv3(H4) + (n− 5)Kfv3((S

4
5))

=
23
2

+ Kf(H4) + 4Kfv3(H4) +
9
2
(n− 5).
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Therefore
Kf(G10)−Kf(G9) =

n− 5
4

> 0 (n ≥ 13).

Then
Kf(G10) > Kf(G9) > Kf(G7) (n ≥ 13).

In the following, we need only to compare G7, G11, G12 and G13.
Evidently, G11 can be changed into G8 by using exactly one step of Operation

II. Hence, by the Assertion in Theorem 1, we have

Kf(G11) = Kf(G8) +
l2 − 11l + 12

12
+ (| H | −1)(

2l − 7
6

).

Here, l = 4 and | H | −1 = n− 4. Therefore,

Kf(G11) = Kf(G8) +
42 − 11× 4 + 12

12
+ (n− 4)(

2× 4− 7
6

)

= Kf(G8) +
n

6
− 2

= Kf(G0(n, t)) +
n

3
− 4. (2)

From Eqs.(1) and (2) it follows that

Kf(G11)−Kf(G7) = −1
3
n− 4

3
< 0.

Evidently, G12 can be changed into G7 by using exactly one step of Operation
II. So we have

Kf(G12) = Kf(G7) +
n

6
− 2 = Kf(G0(n, t)) +

5n− 28
6

.

Thus
Kf(G12) > Kf(G7) > Kf(G11) (n ≥ 13).

It is obvious that G13 can be changed into G8 by using exactly one step of
Operation II, thus by the same reasoning as above, we get

Kf(G13) = Kf(G8) +
l2 − 11l + 12

12
+ (| H | −1)(

2l − 7
6

).

Here, l = 5 and | H | −1 = n− 5. Therefore,

Kf(G13) = Kf(G8) +
52 − 11× 5 + 12

12
+ (n− 5)(

2× 5− 7
6

)

= Kf(G8) +
n

2
− 4.

Combining this fact and the expression that Kf(G8) = Kf(G0(n, t)) + n
6 − 2,

we arrive at
Kf(G13)−Kf(G11) =

1
3
n− 2 =

n− 6
3

.

So Kf(G11) < Kf(G13) for n ≥ 13.
The proof of Theorem 3 is thus completed.
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Corollary 3. For a graph G in Cat(n, t) with n ≥ 13 and t ≥ 1, not isomorphic to
{G0(n, t), G8},

Kf(G) ≥ n2 − 2t2 − 8n

3
+ t− 2 +

nt

3

with equality if and only if G ∼= G11 (see Fig. 9).
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