Some monotonicity properties and inequalities for Γ and ζ -functions

VALMIR KRASNIQI¹, TOUFIK MANSOUR² AND ARMEND SH. SHABANI^{1,*}

¹ Department of Mathematics, University of Prishtina, Prishtinë 10000, Republic of Kosova

² Department of Mathematics, University of Haifa, 31 905 Haifa, Israel

Received July 31, 2009; accepted March 5, 2010

Abstract. In this paper several monotonicity properties and inequalities are given for Γ and Γ_q functions as well as for their logarithmic derivatives ψ and ψ_q . A *p* analogue of Riemann Zeta function ζ_p is introduced. Using the generalization of Schwarz inequality and Holder's inequality some inequalities relating ζ, ζ_p, Γ and Γ_p are obtained. By the use of Laplace Convolution Theorem, some monotonicity results related to digamma function ψ and its derivatives of order *n* are obtained. For the Γ_p -function, defined by Euler, some properties related to monotonicity are given. Also, some properties of a *p* analogue of the ψ function have been established.

AMS subject classifications: 33B15, 26A48

Key words: gamma function, psi function, zeta function

1. Introduction and preliminaries

A function f is said to be completely monotonic on an interval I, if f has derivatives of all orders on I and satisfies

$$(-1)^n f^{(n)}(x) \ge 0, (x \in I, n = 0, 1, 2, \ldots).$$
(1)

If inequality (1) is strict, then f is said to be strictly completely monotonic on I. Theorem of Bernstein (for example, see [19]) states that f is completely monotonic if and only if $f(x) = \int_0^\infty e^{-xt} d\mu(t)$, where μ is a nonnegative measure on $[0, \infty)$ such that for all x > 0 the integral converges.

A positive function f is said to be logarithmically completely monotonic on an interval I, if f satisfies

$$(-1)^{n} [\ln f(x)]^{(n)} \ge 0, (x \in I, n = 1, 2, \ldots).$$
(2)

If inequality (2) is strict, then f is said to be strictly logarithmically completely monotonic.

http://www.mathos.hr/mc

©2010 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email addresses:* vali.99@hotmail.com (V.Krasniqi), toufik@math.haifa.ac.il (T.Mansour), armend_shabani@hotmail.com (A.Sh.Shabani)

The Euler gamma function $\Gamma(x)$ is defined for x > 0 by $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$. The digamma (or psi) function is defined for positive real numbers x as the logarithmic derivative of Euler's gamma function, that is $\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$. The following integral and series representations are valid (see [1]):

$$\psi(x) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-xt}}{1 - e^{-t}} dt = -\gamma - \frac{1}{x} + \sum_{n \ge 1} \frac{x}{n(n+x)},$$
(3)

where $\gamma = 0.57721 \cdots$ denotes Euler's constant. Euler gave another equivalent definition for $\Gamma(x)$ (see [15]),

$$\Gamma_p(x) = \frac{p! p^x}{x(x+1)\cdots(x+p)} = \frac{p^x}{x(1+\frac{x}{1})\cdots(1+\frac{x}{p})}, \quad x > 0,$$
(4)

where

$$\Gamma(x) = \lim_{p \to \infty} \Gamma_p(x).$$
(5)

The p-analogue of the psi function is defined as the logarithmic derivative of the Γ_p function (see [12]), that is

$$\psi_p(x) = \frac{d}{dx} \ln \Gamma_p(x) = \frac{\Gamma'_p(x)}{\Gamma_p(x)}.$$
(6)

The function ψ_p defined in (6) satisfies the following properties (see [12]). It has the following series representation

$$\psi_p(x) = \ln p - \sum_{k=0}^p \frac{1}{x+k}.$$
(7)

It is increasing on $(0,\infty)$ and it is strictly completely monotonic on $(0,\infty)$. Its derivatives are given by

$$\psi_p^{(n)}(x) = \sum_{k=0}^p \frac{(-1)^{n-1} \cdot n!}{(x+k)^{n+1}}.$$
(8)

Jackson (see [9, 10, 11, 16]) defined the q-analogue of the gamma function as

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x}, \ 0 < q < 1,$$
(9)

and

$$\Gamma_q(x) = \frac{(q^{-1}; q^{-1})_{\infty}}{(q^{-x}; q^{-1})_{\infty}} (q-1)^{1-x} q^{\binom{x}{2}}, q > 1,$$
(10)

where $(a;q)_{\infty} = \prod_{j \ge 0} (1 - aq^j).$

A standard reference for the q-Gamma function is [4].

The q-analogue of the psi function is defined for 0 < q < 1 as the logarithmic derivative of the q-gamma function, that is, $\psi_q(x) = \frac{d}{dx} \log \Gamma_q(x)$. Many properties of

the q-gamma function were derived by Askey [5]. It is well known that $\Gamma_q(x) \to \Gamma(x)$ and $\psi_q(x) \to \psi(x)$ as $q \to 1^-$. From (9), for 0 < q < 1 and x > 0 we get

$$\psi_q(x) = -\log(1-q) + \log q \sum_{n \ge 0} \frac{q^{n+x}}{1-q^{n+x}} = -\log(1-q) + \log q \sum_{n \ge 1} \frac{q^{nx}}{1-q^n} \quad (11)$$

and from (10) for q > 1 and x > 0 we obtain

$$\psi_q(x) = -\log(q-1) + \log q \left(x - \frac{1}{2} - \sum_{n \ge 0} \frac{q^{-n-x}}{1-q^{-n-x}} \right)$$

= $-\log(q-1) + \log q \left(x - \frac{1}{2} - \sum_{n \ge 1} \frac{q^{-nx}}{1-q^{-n}} \right).$ (12)

A Stieltjes integral representation for $\psi_q(x)$ with 0 < q < 1 is given in [7]. It is well-known that ψ' is strictly completely monotonic on $(0, \infty)$, that is,

$$(-1)^n (\psi'(x))^{(n)} > 0 \text{ for } x > 0 \text{ and } n \ge 0,$$

see [1, Page 260]. From (11) and (12) we conclude that ψ'_q has the same property for any q > 0,

$$(-1)^n (\psi'_q(x))^{(n)} > 0 \text{ for } x > 0 \text{ and } n \ge 0$$

If $q \in (0, 1)$, using the second representation of $\psi_q(x)$ given in (11) it can be shown that

$$\psi_q^{(k)}(x) = \log^{k+1} q \sum_{n \ge 1} \frac{n^k \cdot q^{nx}}{1 - q^n} \tag{13}$$

and hence $(-1)^{k-1}\psi_q^{(k)}(x) > 0$ with x > 1, for all $k \ge 1$. If q > 1, from the second representation of $\psi_q(x)$ given in (12) we obtain

$$\psi_q'(x) = \log q \left(1 + \sum_{n \ge 1} \frac{nq^{-nx}}{1 - q^{-nx}} \right)$$
(14)

and for $k \geq 2$,

$$\psi_q^{(k)}(x) = (-1)^{k-1} \log^{k+1} q \sum_{n \ge 1} \frac{n^k q^{-nx}}{1 - q^{-nx}}$$
(15)

and hence $(-1)^{k-1}\psi_q^{(k)}(x) > 0$ with x > 0, for all q > 1.

In the next sections we derive several properties related to monotonicity and some inequalities for the functions $\Gamma_p, \Gamma_q, \Gamma, \zeta$ as well as for polygamma functions $\psi^{(m)}(x)$.

2. Inequalities for Γ , ψ , Γ_q and ψ_q functions

2.1. Inequalities for Γ and Γ_q functions

Lemma 1. Let a, x be positive real numbers such that x + a > 1, and $q \in (0, 1)$. Then $\gamma - \log(1 - q) + \psi(x + a) - \psi_q(x + a) > 0$.

Proof. Using series representation of function ψ and ψ_q we obtain

$$\gamma - \log(1 - q) + \psi(x) - \psi_q(x) = (x - 1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(x+k)} - \log q \sum_{k=0}^{\infty} \frac{q^{x+k}}{1 - q^{x+k}} > 0,$$

which implies that $\gamma - \log(1 - q) + \psi(x) - \psi_q(x) > 0$ for all x > 1 and $q \in (0, 1)$. The result follows by replacing x by x + a.

Theorem 1. Let

$$f(x) = \frac{e^{\gamma x}}{(1-q)^x} \cdot \frac{\Gamma(x+a)}{\Gamma_q(x+a)}$$

with $x \in (0,1)$, where a is a real number such that a+x > 1 and $q \in (0,1)$. Then the function f(x) is increasing for $x \in (0,1)$ and the following double inequality holds

$$\frac{(1-q)^{x}\Gamma(a)}{e^{\gamma x}\Gamma_{q}(a)} < \frac{\Gamma(x+a)}{\Gamma_{q}(x+a)} < \frac{e^{\gamma(1-x)}(1-q)^{x-1}\Gamma(1+a)}{\Gamma_{q}(1+a)}.$$

Proof. Let $g(x) = \log f(x)$ for all $x \in (0, 1)$. Then

$$g'(x) = \gamma - \log(1 - q) + \psi(x + a) - \psi_q(x + a).$$

By Lemma 1 we have g'(x) > 0. So g(x) is increasing on (0, 1), which implies that f(x) is increasing on (0, 1) so we have f(0) < f(x) < f(1) and the result follows. \Box

For example, Theorem 1 for a = 1 together with $\Gamma_q(2) = 1$ give

$$\frac{(1-q)^x}{e^{\gamma x}} < \frac{\Gamma(x+1)}{\Gamma_q(x+1)} < \frac{2(1-q)^{1-x}}{e^{\gamma(x-1)}}.$$

2.2. Completely monotonic

Theorem 2. The function $G_q(x; a_1, b_1, \ldots, a_n, b_n)$ given by

$$G_q(x) = G_q(x; a_1, b_1, \dots, a_n, b_n) = \prod_{i=1}^n \frac{\Gamma_q(x + a_i)}{\Gamma_q(x + b_i)}, q \in (0, 1)$$
(16)

is a completely monotonic function on $(0, \infty)$, for any a_i and b_i , i = 1, 2, ..., n, real numbers such that $0 < a_1 \le \cdots \le a_n$, $0 < b_1 \le b_2 \le \cdots \le b_n$ and $\sum_{i=1}^k a_i \le \sum_{i=1}^k b_i$ for k = 1, 2, ..., n.

Proof. Let $h(x) = \sum_{i=1}^{n} (\log \Gamma_q(x+b_i) - \log \Gamma_q(x+a_i))$. Then for $k \ge 0$ we have

$$(-1)^{k} (h'_{q}(x))^{(k)} = (-1)^{k} \sum_{i=1}^{n} (\psi_{q}^{(k)}(x+b_{i}) - \psi_{q}^{(k)}(x+a_{i}))$$
$$= (-1)^{k} \sum_{i=1}^{n} \log^{k+1} q \sum_{n \ge 1} \frac{n^{k} q^{nx}}{1-q^{n}} (q^{bi} - q^{ai})$$
$$= (-1)^{k} \log^{k+1} q \sum_{n \ge 1} \frac{n^{k} q^{nx}}{1-q^{n}} \sum_{i=1}^{n} (q^{bi} - q^{ai}).$$

Alzer [2] showed that if f is a decreasing and convex function on \mathbb{R} , then there holds

$$\sum_{i=1}^{n} f(b_i) \le \sum_{i=1}^{n} f(a_i).$$
(17)

Thus, since the function $z \mapsto q^z, z > 0$ is decreasing and convex on \mathbb{R} , we have that $\sum_{i=1}^{n} (q^{ai} - q^{bi}) \ge 0$, so $(-1)^k (G'_q(x))^{(k)} \ge 0$ for $k \ge 0$. Hence h'_q is completely monotonic on $(0, \infty)$. Using the fact that if f' is a completely monotonic function on $(0, \infty)$, then $\exp(-h)$ is also a completely monotonic function on $(0, \infty)$ (see [6]), we get the desired result.

In a similar way one can show that the Theorem 2 also remains true for q > 1. For the proof of the following lemma, see [6].

Lemma 2. If h' is completely monotonic on $(0, \infty)$, then $\exp(-h)$ is also completely monotonic on $(0, \infty)$.

In order to present our next theorem we need the following lemma.

Lemma 3. For q > 1, the function $e^{\psi_q(x)} - x$ is convex on $(0, +\infty)$.

Proof. Alzer and Grinshpan [3] showed that $f''(x) = (\psi'_q(x))^2 + \psi''_q(x) > 0$ for all q > 1 and x > 0. Hence $f(x) = e^{\psi_q(x)} - x$ is a convex function on $(0, +\infty)$ for q > 1.

Theorem 3. The function

$$\theta(x) = \psi_q(x) + \log\left(e^{\frac{q^x \log q}{q^x - 1}} - 1\right)$$

is strictly increasing on $(0, \infty)$ for q > 1 and x > 0.

Proof. It is well known that for x > 0 and q > 1

$$\Gamma_q(x+1) = \frac{(1-q^x) \cdot q^{\binom{x-1}{2}}}{1-q} \Gamma_q(x).$$

Taking the logarithm on both sides and differentiating yields

$$\psi_q(x+1) = \frac{q^x \log q}{q^x - 1} + \psi_q(x).$$

Therefore, the exponential function of θ satisfies

$$e^{\theta(x)} = e^{\psi_q(x)} \cdot e^{\log\left(e^{\frac{q^x \log q}{q^x - 1}} - 1\right)} = e^{\psi_q(x)} \cdot \left(e^{\frac{q^x \log q}{q^x - 1}} - 1\right)$$
$$= e^{\psi_q(x) + \frac{q^x \log q}{q^x - 1}} - e^{\psi_q(x)} = e^{\psi_q(x+1)} - e^{\psi_q(x)}.$$

Let $s(x) = e^{\psi_q(x+1)} - e^{\psi_q(x)}$. Then

$$s'(x) = e^{\psi_q(x+1)}\psi'_q(x+1) - e^{\psi_q(x)}\psi'_q(x) = h(x+1) - h(x),$$

where $h(x) = e^{\psi_q(x)}\psi'_q(x)$. Then $h'(x) = e^{\psi_q(x)}((\psi'_q(x))^2 + \psi''_q(x))$, so by Lemma 3 we conclude that h'(x) > 0 so the function h is strictly increasing. It means s'(x) > 0 for $x \in (0, \infty)$ and this yields that s and θ are strictly increasing functions on $(0, \infty)$.

In the following, we denote $\psi_n(x) = \psi^{(n)}(x)$ for $n \ge 1$.

Theorem 4. Let p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Let x, y > 0. a) If $n = 1, 3, 5, \ldots$ the following inequality holds

$$(\psi_n(x))^{\frac{1}{p}} \cdot (\psi_n(x))^{\frac{1}{q}} \ge \psi_n\left(\frac{x}{p} + \frac{y}{q}\right).$$

b) If n = 2, 4, 6... the following inequality holds

$$(\psi_n(x))^{\frac{1}{p}} \cdot (\psi_n(x))^{\frac{1}{q}} \le \psi_n\left(\frac{x}{p} + \frac{y}{q}\right).$$

Proof. a) The polygamma function has the following integral representation (see [1])

$$\psi_n(x) = (-1)^{n+1} \int_0^\infty \frac{t^n}{1 - e^{-t}} e^{-xt} dt, x > 0.$$

Thus, $\psi_n(x) = \int_0^\infty \frac{t^n}{1-e^{-t}} e^{-xt} dt$, for all x > 0 and n any odd positive integer number. By Holder's inequality

$$\left|\int_0^\infty f(t)g(t)dt\right| \le \left(\int_0^\infty |f(t)|^p\right)^{\frac{1}{p}} dt \cdot \left(\int_0^\infty |g(t)|^q\right)^{\frac{1}{q}} dt$$

applied to functions $f(t) = \frac{t^{\frac{n}{p}} \cdot e^{-\frac{xt}{p}}}{(1-e^{-t})^{\frac{1}{p}}}$ and $g(t) = \frac{t^{\frac{n}{q}} \cdot e^{-\frac{xt}{q}}}{(1-e^{-t})^{\frac{1}{q}}}$ we obtain

$$\begin{split} \psi_n \Big(\frac{x}{p} + \frac{y}{q} \Big) &= \int_0^\infty \frac{t^n}{1 - e^{-t}} e^{\Big(\frac{x}{p} + \frac{y}{q} \Big)^t} dt \\ &= \int_0^\infty \Big(\frac{t^{\frac{n}{p}}}{(1 - e^{-t})^{\frac{1}{p}}} \cdot e^{-\frac{xt}{p}} \Big) \cdot \Big(\frac{t^{\frac{n}{q}}}{(1 - e^{-t})^{\frac{1}{q}}} \cdot e^{-\frac{yt}{q}} \Big) dt \\ &\leq \Big(\int_0^\infty \frac{t^n}{1 - e^{-t}} \cdot e^{-xt} dt \Big)^{\frac{1}{p}} \cdot \Big(\int_0^\infty \frac{t^n}{1 - e^{-t}} \cdot e^{-yt} dt \Big)^{\frac{1}{q}} \\ &= (\psi_n(x))^{\frac{1}{p}} \cdot (\psi_n(y))^{\frac{1}{q}}, \end{split}$$

as claimed.

b) Similarly to case a).

For example, Theorem 4 for q = 2, p = 2 gives

$$\psi_n\left(\frac{x+y}{2}\right) \le \sqrt{\psi_n(x)\cdot\psi_n(y)}.$$

In [17] it has been shown that the function

$$f(x) = \frac{\left(\frac{x}{e}\right)^x}{\Gamma\left(x + \frac{1}{2}\right)}$$

is logarithmically completely monotonic on $(0, \infty)$. We extend this result as follows.

Theorem 5. The function $f(x) = \frac{(x+1)^x}{e^x \Gamma(x+1)}$ is logarithmically completely monotonic on $(-1, \infty)$.

Proof. Using the integral representation

$$\ln\Gamma(x+1) = x\ln(x+1) - x + \int_0^\infty \frac{e^{-t}}{t} \left(\frac{1}{t} - \frac{1}{e^t - 1}\right) (1 - e^{-xt}) dt$$

we obtain $\ln f(x) = \int_0^\infty \frac{e^{-t}}{t} \left(\frac{1}{t} - \frac{1}{e^{t-1}}\right) (e^{-xt} - 1) dt$. The function $h(y) = e^{-y} - 1$ is completely monotonic on \mathbb{R} . Since $\frac{1}{t} - \frac{1}{e^t - 1} > 0$ for all t > 0, we conclude that f is logarithmically completely monotonic on $(-1, \infty)$.

We mention that some results related to completely monotonicity have been given in [8]

2.3. Riemann zeta function and gamma function

In this section we will introduce the function ζ_p and we will prove some relations.

Definition 1. We define the function ζ_p as

$$\zeta_p(s) = \frac{1}{\Gamma_p(s)} \int_0^p \frac{t^{s-1}}{\left(1 + \frac{t}{p}\right)^p - 1} dt.$$
 (18)

Note that when $p \longrightarrow \infty$ we obtain a ζ function.

For the proof of the following Lemma see for example equation (1.4) in [13].

Lemma 4 (A generalization of Schwarz inequality). Let f, g be two nonnegative functions of a real variable and m, n real numbers such that integrals in (19) exist. Then

$$\int_{a}^{b} g(t)(f(t))^{m} dt \cdot \int_{a}^{b} g(t)(f(t))^{n} dt \ge \left(\int_{a}^{b} g(t)(f(t))^{\frac{m+n}{2}}\right)^{2} dt.$$
(19)

371

Theorem 6. The following inequality is valid

$$\frac{s+p+1}{s+p+2} \cdot \frac{\zeta_p(s)}{\zeta_p(s+1)} \ge \frac{s}{s+1} \cdot \frac{\zeta_p(s+1)}{\zeta_p(s+2)}.$$
 (20)

Proof. Applying Lemma 4 with $g(t) = \frac{1}{\left(1 + \frac{p}{t}\right)^p - 1}, f(t) = t.$

$$\int_{0}^{p} \frac{t^{s-1}}{\left(1+\frac{p}{t}\right)^{p}-1} dt \cdot \int_{0}^{p} \frac{t^{s+1}}{\left(1+\frac{p}{t}\right)^{p}-1} dt \ge \left(\int_{0}^{p} \frac{t^{s}}{\left(1+\frac{p}{t}\right)^{p}-1}\right)^{2} dt.$$

Further, using (18) we have

$$\zeta_p(s)\Gamma_p(s)\zeta_p(s+2)\Gamma_p(s+2) \ge (\zeta_p(s+1))^2(\Gamma_p(s+1))^2.$$

By using $\Gamma_p(s+1) = \frac{ps}{s+p+1}\Gamma_p(s)$ the result follows.

Now when p tends to infinity, then we receive the results of [5].

Theorem 7. We denote by $\zeta(u)$ the Riemann zeta function. Then

$$\frac{\Gamma\left(\frac{u}{p} + \frac{v}{q}\right)}{\Gamma^{\frac{1}{p}}(u) \cdot \Gamma^{\frac{1}{q}}(v)} \le \frac{\zeta^{\frac{1}{p}}(u) \cdot \zeta^{\frac{1}{q}}(u)}{\zeta\left(\frac{u}{p} + \frac{v}{q}\right)}$$

where $\frac{1}{p} + \frac{1}{q} = 1$ and $\frac{u}{p} + \frac{v}{q} > 1$.

Proof. For u > 1 the Riemann zeta function satisfies the integral relation

$$\zeta(u) = \frac{1}{\Gamma(u)} \int_0^\infty \frac{t^{u-1}}{e^t - 1} dt.$$
 (21)

Using Holder's inequality for p > 1 we have

$$\left|\int_{0}^{\infty} f(t) \cdot g(t)dt\right| \leq \left(\int_{0}^{\infty} |f(t)|^{p} dt\right)^{\frac{1}{p}} \left(\int_{0}^{\infty} |g(t)|^{q} dt\right)^{\frac{1}{q}}.$$
(22)

Using equations (21), (22) with $f(t) = \frac{t^{\frac{u-1}{p}}}{(e^t - 1)^{\frac{1}{p}}}$ and $g(t) = \frac{t^{\frac{u-1}{q}}}{(e^t - 1)^{\frac{1}{q}}}$ we obtain

$$\Gamma\left(\frac{u}{p}+\frac{v}{q}\right)\cdot\zeta\left(\frac{u}{p}+\frac{v}{q}\right)\leq\Gamma^{\frac{1}{p}}(u)\cdot\Gamma^{\frac{1}{q}}(v)\cdot\zeta^{\frac{1}{p}}(u)\cdot\zeta^{\frac{1}{q}}(v),$$

which completes the proof.

For example, Theorem 7 for p = q = 2 gives

$$\frac{\Gamma\left(\frac{u+v}{2}\right)}{\sqrt{\Gamma(u)\cdot\Gamma(v)}} \le \frac{\sqrt{\zeta(u)\cdot\zeta(v)}}{\zeta\left(\frac{u+v}{2}\right)}.$$

2.4. Laplace transform and ψ functions

In this section, by using the convolution theorem for the Laplace transform (see [19]) we will show some monotonicity results related to ψ function. First we need the following Definition and Theorem from [18].

Definition 2. A function g is called strongly completely monotonic on $(0, \infty)$ if

$$x \mapsto (-1)^n x^{n+1} g^{(n)}(x)$$

is nonnegative and decreasing on $(0, \infty)$ for $n = 0, 1, 2, \ldots$

Theorem 8. The function g is strongly completely monotonic if and only if

$$g(x) = \int_0^\infty p(t)e^{-xt}dt,$$

where p(t) is nonnegative and increasing and the integral converges for all x > 0.

Now we give our results.

Theorem 9. The function $\theta_n(x) = |\psi^{(n+1)}(x)| - \frac{n}{x}|\psi^{(n)}(x)|$ is strongly completely monotonic on $(0, \infty)$.

Proof. Using integral representation for $\psi^{(n)}(x)$ one has

$$\theta_n(x) = \int_0^\infty \frac{e^{-xt}t^{n+1}}{1 - e^{-t}} dt - n \int_0^\infty e^{-xt} dt \int_0^\infty \frac{t^n e^{-xt}}{1 - e^{-t}} dt.$$

By the convolution Theorem for the Laplace transforms we have

$$\theta_n(x) = \int_0^\infty \frac{e^{-xt}t^{n+1}}{1 - e^{-t}} dt - n \int_0^\infty e^{-xt} \left[\int_0^t \frac{s^n}{1 - e^{-s}} ds \right] dt.$$

Hence $\theta_n(x) = \int_0^\infty e^{-xt} q(t) dt$, where $q(t) = \frac{t^{n+1}}{1-e^{-t}} - n \int_0^t \frac{s^n}{1-e^{-s}} ds$. Then $q'(t) = \frac{t^n e^{-t} (e^t - 1 - t)}{(1 - e^{-t})^2} > 0$, so $q(t) > \lim_{t \to 0} q(t) = 0$.

Theorem 10. Let $f(x) = \psi'(x+1) + x\psi''(x+1)$ or equivalently $f(x) = \sum_{n=1}^{\infty} \frac{n-x}{n+x}$. The function $\frac{f(x)}{x}$ is completely monotonic on $(-1, \infty)$.

Proof. Clearly $\frac{f(x)}{x} = \frac{1}{x}\psi'(x+1) + \psi''(x+1)$. Using integral representation of ψ' and ψ'' one obtains

$$\frac{f(x)}{x} = \int_0^\infty e^{-xt} dt \int_0^\infty \frac{te^{-t}e^{-xt}}{1 - e^{-t}} dt + \int_0^\infty \frac{e^{-xt}e^{-t}t^2}{1 - e^{-t}} dt$$

By the convolution Theorem for the Laplace Transforms we have

$$\frac{f(x)}{x} = \int_0^\infty e^{-xt} \left[\int_0^t \frac{se^{-s}}{1 - e^{-s}} ds \right] dt + \int_0^\infty \frac{e^{-xt}e^{-t}t^2}{1 - e^{-t}} dt = \int_0^\infty e^{-xt}q(t) dt,$$

where $q(t) = \int_0^t \frac{se^{-s}}{1 - e^{-s}} ds + \frac{e^{-t}t^2}{1 - e^{-t}} > 0.$

3. Inequalities for the Γ_p and ψ_p

In this section we treat several inequalities for Γ_p and ψ_p .

Theorem 11. Let n be a positive integer.

- (1) If n is even, then $\psi_p^{(n)}(x+y) \ge \psi_p^{(n)}(x) + \psi_p^{(n)}(y)$.
- (2) If n is odd, then $\psi_p^{(n)}(x+y) \le \psi_p^{(n)}(x) + \psi_p^{(n)}(y)$.

Proof. From [14] we have

$$\psi_p^{(n)}(x+y) - \psi_p^{(n)}(x) - \psi_p^{(n)}(y) = (-1)^n \sum_{k=0}^p \Big(\frac{1}{(x+y+k)^{n+1}} - \frac{1}{(x+k)^{n+1}} - \frac{1}{(y+k)^{n+1}} \Big).$$

Since the function $f(x) = \frac{1}{(x+k)^{n+1}}$ is convex from $f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}\left(f(x) + f(y)\right)$, we obtain that

$$\frac{2 \cdot 2^{n+1}}{(x+y+k)^{n+1}} \le \frac{1}{(x+k)^{n+1}} + \frac{1}{(y+k)^{n+1}}.$$
(23)

On the other hand, it is clear that

$$\frac{2 \cdot 2^{n+1}}{(x+y+k)^{n+1}} > \frac{1}{(x+y+k)^{n+1}}.$$
(24)

From (23) and (24) we have that $\frac{1}{(x+y+k)^{n+1}} - \frac{1}{(x+k)^{n+1}} - \frac{1}{(y+k)^{n+1}} < 0$, which implies the result.

Lemma 5 (Integral representation for Γ_p , ψ_p and $\psi_p^{(m)}$). The following representations are valid:

$$\Gamma_p(x) = \frac{p^x}{x(1+\frac{x}{1})\cdots(1+\frac{x}{p})} = \int_0^p \left(1-\frac{t}{p}\right)^p t^{x-1} dt$$
(25)

$$\psi_p(x) = \ln p - \int_0^\infty \frac{e^{-xt}(1 - e^{-pt})}{1 - e^{-t}} dt$$
(26)

and

$$\psi_p^{(m)}(x) = (-1)^{m+1} \cdot \int_0^\infty \frac{t^m \cdot e^{-xt}}{1 - e^{-t}} (1 - e^{-pt}) dt.$$
(27)

Proof. For the proof of relation (25) see [15]. Next we prove (26). From (7) one has

$$\begin{split} \psi_p(x) &= \ln p - \frac{1}{x} - \frac{1}{x+1} - \dots - \frac{1}{x+p} \\ &= \ln p - \int_0^\infty e^{-xt} dt - \int_0^\infty e^{-(x+1)t} dt - \dots - \int_0^\infty e^{-(x+p)t} dt \\ &= \ln p - \int_0^\infty \frac{e^{-xt} (1 - e^{-pt})}{1 - e^{-t}} dt. \end{split}$$

By deriving m times expression (26) one obtains (27).

Theorem 12. For positive integers m, n and x > 0 we have

$$\psi_p^{(m)}(x) \cdot \psi_p^{(n)}(x) \ge \left(\psi_p^{(\frac{m+n}{2})}(x)\right)^2,$$

where $\frac{m+n}{2}$ is an integer.

Proof. We choose integers m, n both even or odd, so $\frac{m+n}{2}$ is an integer. By (19) with $g(t) = \frac{e^{-xt}}{1-e^{-t}} \cdot (1-e^{-pt}), f(t) = t$ and $a = 0, b = \infty$ we obtain

$$\int_0^\infty g(t)t^m dt \int_0^\infty g(t)t^n dt \ge \left(\int_0^\infty g(t) \cdot t^{\frac{m+n}{2}}\right)^2 dt,$$

that is,

$$\psi_p^{(m)}(x) \cdot \psi_p^{(n)}(x) \ge \left(\psi_p^{(\frac{m+n}{2})}(x)\right)^2,$$

which completes the proof.

Note that when m = n + 2 we have

$$\frac{\psi_p^{(n)}(x)}{\psi_p^{(n+1)}(x)} \ge \frac{\psi_p^{(n+1)}(x)}{\psi_p^{(n+2)}(x)},$$

 $n = 1, 2, \dots$ and x > 0. Also when $p \longrightarrow \infty$ we obtain all results of [13].

Theorem 13. Let a_i and b_i (i = 1, 2, ..., n) be real numbers such that $0 < a_1 \le \cdots \le a_n$, $0 < b_1 \le \cdots \le b_n$ and $\sum_{i=1}^k a_i \le \sum_{i=1}^k b_i$ for k = 1, 2, ..., n. Then the function

$$x \mapsto \prod_{i=1}^{n} \frac{\Gamma_p(x+a_i)}{\Gamma_p(x+b_i)}$$

is completely monotonic on $(0,\infty)$.

Proof. Let $h(x) = \sum_{i=1}^{n} (\log \Gamma_p(x+b_i) - \log \Gamma_p(x+a_i))$. Then for $k \ge 0$ we have

$$(-1)^{k} (h'(x))^{(k)} = \sum_{i=1}^{n} (\psi_{p}^{(k)}(x+b_{i}) - \psi_{p}^{(k)}(x+a_{i}))$$

$$= (-1)^{k} \sum_{i=1}^{n} (-1)^{k+1} \sum_{n=0}^{p} \frac{k!}{(x+b_{i}+n)^{k+1}}$$

$$-(-1)^{k+1} \sum_{n=0}^{p} \frac{k!}{(x+a_{i}+n)^{k+1}}$$

$$= (-1)^{2k+1} k! \sum_{i=1}^{n} \sum_{n=0}^{p} \left(\frac{1}{(x+b_{i}+n)^{k+1}} - \frac{1}{(x+a_{i}+n)^{k+1}}\right).$$

Since the function $x \mapsto \frac{1}{(x+n)^k}$ is decreasing and convex on \mathbb{R} , from (17) we conclude that

$$\sum_{i=1}^{n} \left(\frac{1}{(x+b_i+n)^{k+1}} - \frac{1}{(x+a_i+n)^{k+1}} \right) \le 0$$

375

and that implies that $(-1)^k (h'(x))^{(k)} \ge 0$ for $k \ge 0$. Hence h' is completely monotonic on $(0, \infty)$. By Lemma 2 we have that

$$\exp(-h(x)) = \prod_{i=1}^{n} \frac{\Gamma_p(x+a_i)}{\Gamma_p(x+b_i)}$$

is also completely monotonic on $(0, \infty)$.

References

- M. ABRAMOWITZ, I. A. STEGUN, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New York, 1965.
- [2] H. ALZER, On some inequalities for the gamma and psi function, Math. Comp. 66(1997), 373–389.
- H. ALZER, A. Z. GRINSHPAN, Inequalities for the gamma and q-gamma functions, J. Approx. Theory 144(2007), 67–83.
- [4] G. E. ANDREWS, R. A. ASKEY, R. ROY, Special Functions, Cambridge University Press, Cambridge, 1999.
- [5] R. ASKEY, The q-gamma and q-beta functions, Applicable Anal. 8(1978/79), 125– 141.
- [6] S. BOCHER, Harmonic Analysis and the Theory of Probability, Dover Publications, New York, 2005.
- [7] M. E. H. ISMAIL, M. E. MULDOON, Inequalities and monotonicity properties for gamma and q-gamma functions, in: Approximation and Computation, International Series of Numerical Mathematics, (R. V. M. Zahar, ed.), Birkhäuser, 1994, 309–323.
- [8] M. E. H. ISMAIL, L. LORCH, M. MULDOON, Completely monotonic functions associated with the gamma function its q-analogues, J. Math. Anal. Appl. 116(1986), 1–9.
- T. KIM, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76(1999), 320–329.
- [10] T. KIM, A note on the q-multiple zeta functions, Advan. Stud. Contemp. Math. 8(2004), 111–113.
- [11] T. KIM, S. H. RIM, A note on the q-integral and q-series, Advanced Stud. Contemp. Math. 2(2000), 37–45.
- [12] V. KRASNIQI, A. SH. SHABANI, Convexity properties and inequalities for a generalized gamma function, Applied Mathematics E-Notes 10(2010), 27–35.
- [13] A. LAFORGIA, P. NATALI, A Turán-type inequalities for some special functions, J. Inequal. Pure Appl. Math. 7(2006), Article 32.
- [14] T. MANSOUR, A. SH. SHABANI, Some inequalities for the q-Digamma function, J. Inequal. Pure Appl. Math. 10(2009), Article 12.
- [15] J. SÁNDOR, Selected chapters of geometry, analysis and number theory, preprint.
- [16] H. M. SRIVASTAVA, T. KIM, Y. SIMSEK, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russian J. Math. Phys. 12(2005), 241–268.
- [17] J. SH. SUN, Z. Q. GUO, A note on logarithmically completely monotonic functions involving the gamma functions, Commun. Math. Ana. 2(2007), 12–16.
- [18] S. Y. TRIMBLE, J. WELLS, F. T. WRIGHT, Superaddittive functions and a statistical application, SIAM J. Math. Anal. 20(1989), 1255–1259.
- [19] D. V. WIDER, The Laplace Transform, Princeton University Press, Princeton, 1941.