Some monotonicity properties and inequalities for Γ and ζ functions

Valmir Krasniqi ${ }^{1}$, Toufik Mansour ${ }^{2}$ and Armend Sh. Shabani ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, University of Prishtina, Prishtinë 10000 , Republic of Kosova
${ }^{2}$ Department of Mathematics, University of Haifa, 31905 Haifa, Israel

Received July 31, 2009; accepted March 5, 2010

Abstract

In this paper several monotonicity properties and inequalities are given for Γ and Γ_{q} functions as well as for their logarithmic derivatives ψ and ψ_{q}. A p analogue of Riemann Zeta function ζ_{p} is introduced. Using the generalization of Schwarz inequality and Holder's inequality some inequalities relating ζ, ζ_{p}, Γ and Γ_{p} are obtained. By the use of Laplace Convolution Theorem, some monotonicity results related to digamma function ψ and its derivatives of order n are obtained. For the Γ_{p}-function, defined by Euler, some properties related to monotonicity are given. Also, some properties of a p analogue of the ψ function have been established.

AMS subject classifications: 33B15, 26A48
Key words: gamma function, psi function, zeta function

1. Introduction and preliminaries

A function f is said to be completely monotonic on an interval I, if f has derivatives of all orders on I and satisfies

$$
\begin{equation*}
(-1)^{n} f^{(n)}(x) \geq 0,(x \in I, n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

If inequality (1) is strict, then f is said to be strictly completely monotonic on I. Theorem of Bernstein (for example, see [19]) states that f is completely monotonic if and only if $f(x)=\int_{0}^{\infty} e^{-x t} d \mu(t)$, where μ is a nonnegative measure on $[0, \infty)$ such that for all $x>0$ the integral converges.

A positive function f is said to be logarithmically completely monotonic on an interval I, if f satisfies

$$
\begin{equation*}
(-1)^{n}[\ln f(x)]^{(n)} \geq 0,(x \in I, n=1,2, \ldots) \tag{2}
\end{equation*}
$$

If inequality (2) is strict, then f is said to be strictly logarithmically completely monotonic.
*Corresponding author. Email addresses: vali.99@hotmail.com (V. Krasniqi), toufik@math.haifa.ac.il (T. Mansour), armend_shabani@hotmail.com (A. Sh. Shabani)

The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. The digamma (or psi) function is defined for positive real numbers x as the logarithmic derivative of Euler's gamma function, that is $\psi(x)=\frac{d}{d x} \ln \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$. The following integral and series representations are valid (see [1]):

$$
\begin{equation*}
\psi(x)=-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} d t=-\gamma-\frac{1}{x}+\sum_{n \geq 1} \frac{x}{n(n+x)} \tag{3}
\end{equation*}
$$

where $\gamma=0.57721 \cdots$ denotes Euler's constant. Euler gave another equivalent definition for $\Gamma(x)$ (see [15]),

$$
\begin{equation*}
\Gamma_{p}(x)=\frac{p!p^{x}}{x(x+1) \cdots(x+p)}=\frac{p^{x}}{x\left(1+\frac{x}{1}\right) \cdots\left(1+\frac{x}{p}\right)}, \quad x>0 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(x)=\lim _{p \rightarrow \infty} \Gamma_{p}(x) \tag{5}
\end{equation*}
$$

The p-analogue of the psi function is defined as the logarithmic derivative of the Γ_{p} function (see [12]), that is

$$
\begin{equation*}
\psi_{p}(x)=\frac{d}{d x} \ln \Gamma_{p}(x)=\frac{\Gamma_{p}^{\prime}(x)}{\Gamma_{p}(x)} . \tag{6}
\end{equation*}
$$

The function ψ_{p} defined in (6) satisfies the following properties (see [12]). It has the following series representation

$$
\begin{equation*}
\psi_{p}(x)=\ln p-\sum_{k=0}^{p} \frac{1}{x+k} . \tag{7}
\end{equation*}
$$

It is increasing on $(0, \infty)$ and it is strictly completely monotonic on $(0, \infty)$. Its derivatives are given by

$$
\begin{equation*}
\psi_{p}^{(n)}(x)=\sum_{k=0}^{p} \frac{(-1)^{n-1} \cdot n!}{(x+k)^{n+1}} \tag{8}
\end{equation*}
$$

Jackson (see $[9,10,11,16]$) defined the q-analogue of the gamma function as

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, 0<q<1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{\left(q^{-1} ; q^{-1}\right)_{\infty}}{\left(q^{-x} ; q^{-1}\right)_{\infty}}(q-1)^{1-x} q^{\binom{x}{2}}, q>1 \tag{10}
\end{equation*}
$$

where $(a ; q)_{\infty}=\prod_{j \geq 0}\left(1-a q^{j}\right)$.
A standard reference for the q-Gamma function is [4].
The q-analogue of the psi function is defined for $0<q<1$ as the logarithmic derivative of the q-gamma function, that is, $\psi_{q}(x)=\frac{d}{d x} \log \Gamma_{q}(x)$. Many properties of
the q-gamma function were derived by Askey [5]. It is well known that $\Gamma_{q}(x) \rightarrow \Gamma(x)$ and $\psi_{q}(x) \rightarrow \psi(x)$ as $q \rightarrow 1^{-}$. From (9), for $0<q<1$ and $x>0$ we get

$$
\begin{equation*}
\psi_{q}(x)=-\log (1-q)+\log q \sum_{n \geq 0} \frac{q^{n+x}}{1-q^{n+x}}=-\log (1-q)+\log q \sum_{n \geq 1} \frac{q^{n x}}{1-q^{n}} \tag{11}
\end{equation*}
$$

and from (10) for $q>1$ and $x>0$ we obtain

$$
\begin{align*}
\psi_{q}(x) & =-\log (q-1)+\log q\left(x-\frac{1}{2}-\sum_{n \geq 0} \frac{q^{-n-x}}{1-q^{-n-x}}\right) \tag{12}\\
& =-\log (q-1)+\log q\left(x-\frac{1}{2}-\sum_{n \geq 1} \frac{q^{-n x}}{1-q^{-n}}\right)
\end{align*}
$$

A Stieltjes integral representation for $\psi_{q}(x)$ with $0<q<1$ is given in [7]. It is well-known that ψ^{\prime} is strictly completely monotonic on $(0, \infty)$, that is,

$$
(-1)^{n}\left(\psi^{\prime}(x)\right)^{(n)}>0 \quad \text { for } x>0 \text { and } n \geq 0
$$

see [1, Page 260]. From (11) and (12) we conclude that ψ_{q}^{\prime} has the same property for any $q>0$,

$$
(-1)^{n}\left(\psi_{q}^{\prime}(x)\right)^{(n)}>0 \quad \text { for } x>0 \text { and } n \geq 0
$$

If $q \in(0,1)$, using the second representation of $\psi_{q}(x)$ given in (11) it can be shown that

$$
\begin{equation*}
\psi_{q}^{(k)}(x)=\log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} \cdot q^{n x}}{1-q^{n}} \tag{13}
\end{equation*}
$$

and hence $(-1)^{k-1} \psi_{q}^{(k)}(x)>0$ with $x>1$, for all $k \geq 1$. If $q>1$, from the second representation of $\psi_{q}(x)$ given in (12) we obtain

$$
\begin{equation*}
\psi_{q}^{\prime}(x)=\log q\left(1+\sum_{n \geq 1} \frac{n q^{-n x}}{1-q^{-n x}}\right) \tag{14}
\end{equation*}
$$

and for $k \geq 2$,

$$
\begin{equation*}
\psi_{q}^{(k)}(x)=(-1)^{k-1} \log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} q^{-n x}}{1-q^{-n x}} \tag{15}
\end{equation*}
$$

and hence $(-1)^{k-1} \psi_{q}^{(k)}(x)>0$ with $x>0$, for all $q>1$.
In the next sections we derive several properties related to monotonicity and some inequalities for the functions $\Gamma_{p}, \Gamma_{q}, \Gamma, \zeta$ as well as for polygamma functions $\psi^{(m)}(x)$.

2. Inequalities for Γ, ψ, Γ_{q} and ψ_{q} functions

2.1. Inequalities for Γ and Γ_{q} functions

Lemma 1. Let a, x be positive real numbers such that $x+a>1$, and $q \in(0,1)$. Then $\gamma-\log (1-q)+\psi(x+a)-\psi_{q}(x+a)>0$.

Proof. Using series representation of function ψ and ψ_{q} we obtain

$$
\begin{aligned}
\gamma-\log (1-q)+\psi(x)-\psi_{q}(x)= & (x-1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(x+k)} \\
& -\log q \sum_{k=0}^{\infty} \frac{q^{x+k}}{1-q^{x+k}}>0
\end{aligned}
$$

which implies that $\gamma-\log (1-q)+\psi(x)-\psi_{q}(x)>0$ for all $x>1$ and $q \in(0,1)$. The result follows by replacing x by $x+a$.

Theorem 1. Let

$$
f(x)=\frac{e^{\gamma x}}{(1-q)^{x}} \cdot \frac{\Gamma(x+a)}{\Gamma_{q}(x+a)}
$$

with $x \in(0,1)$, where a is a real number such that $a+x>1$ and $q \in(0,1)$. Then the function $f(x)$ is increasing for $x \in(0,1)$ and the following double inequality holds

$$
\frac{(1-q)^{x} \Gamma(a)}{e^{\gamma x} \Gamma_{q}(a)}<\frac{\Gamma(x+a)}{\Gamma_{q}(x+a)}<\frac{e^{\gamma(1-x)}(1-q)^{x-1} \Gamma(1+a)}{\Gamma_{q}(1+a)} .
$$

Proof. Let $g(x)=\log f(x)$ for all $x \in(0,1)$. Then

$$
g^{\prime}(x)=\gamma-\log (1-q)+\psi(x+a)-\psi_{q}(x+a) .
$$

By Lemma 1 we have $g^{\prime}(x)>0$. So $g(x)$ is increasing on $(0,1)$, which implies that $f(x)$ is increasing on $(0,1)$ so we have $f(0)<f(x)<f(1)$ and the result follows.

For example, Theorem 1 for $a=1$ together with $\Gamma_{q}(2)=1$ give

$$
\frac{(1-q)^{x}}{e^{\gamma x}}<\frac{\Gamma(x+1)}{\Gamma_{q}(x+1)}<\frac{2(1-q)^{1-x}}{e^{\gamma(x-1)}} .
$$

2.2. Completely monotonic

Theorem 2. The function $G_{q}\left(x ; a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)$ given by

$$
\begin{equation*}
G_{q}(x)=G_{q}\left(x ; a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)=\prod_{i=1}^{n} \frac{\Gamma_{q}\left(x+a_{i}\right)}{\Gamma_{q}\left(x+b_{i}\right)}, q \in(0,1) \tag{16}
\end{equation*}
$$

is a completely monotonic function on $(0, \infty)$, for any a_{i} and $b_{i}, i=1,2, \ldots, n$, real numbers such that $0<a_{1} \leq \cdots \leq a_{n}, 0<b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ and $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for $k=1,2, \ldots, n$.

Proof. Let $h(x)=\sum_{i=1}^{n}\left(\log \Gamma_{q}\left(x+b_{i}\right)-\log \Gamma_{q}\left(x+a_{i}\right)\right)$. Then for $k \geq 0$ we have

$$
\begin{aligned}
(-1)^{k}\left(h_{q}^{\prime}(x)\right)^{(k)} & =(-1)^{k} \sum_{i=1}^{n}\left(\psi_{q}^{(k)}\left(x+b_{i}\right)-\psi_{q}^{(k)}\left(x+a_{i}\right)\right) \\
& =(-1)^{k} \sum_{i=1}^{n} \log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} q^{n x}}{1-q^{n}}\left(q^{b i}-q^{a i}\right) \\
& =(-1)^{k} \log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} q^{n x}}{1-q^{n}} \sum_{i=1}^{n}\left(q^{b i}-q^{a i}\right)
\end{aligned}
$$

Alzer [2] showed that if f is a decreasing and convex function on \mathbb{R}, then there holds

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(b_{i}\right) \leq \sum_{i=1}^{n} f\left(a_{i}\right) \tag{17}
\end{equation*}
$$

Thus, since the function $z \mapsto q^{z}, z>0$ is decreasing and convex on \mathbb{R}, we have that $\sum_{i=1}^{n}\left(q^{a i}-q^{b i}\right) \geq 0$, so $(-1)^{k}\left(G_{q}^{\prime}(x)\right)^{(k)} \geq 0$ for $k \geq 0$. Hence h_{q}^{\prime} is completely monotonic on $(0, \infty)$. Using the fact that if f^{\prime} is a completely monotonic function on $(0, \infty)$, then $\exp (-h)$ is also a completely monotonic function on $(0, \infty)$ (see [6]), we get the desired result.

In a similar way one can show that the Theorem 2 also remains true for $q>1$.
For the proof of the following lemma, see [6].
Lemma 2. If h^{\prime} is completely monotonic on $(0, \infty)$, then $\exp (-h)$ is also completely monotonic on $(0, \infty)$.

In order to present our next theorem we need the following lemma.
Lemma 3. For $q>1$, the function $e^{\psi_{q}(x)}-x$ is convex on $(0,+\infty)$.
Proof. Alzer and Grinshpan [3] showed that $f^{\prime \prime}(x)=\left(\psi_{q}^{\prime}(x)\right)^{2}+\psi_{q}^{\prime \prime}(x)>0$ for all $q>1$ and $x>0$. Hence $f(x)=e^{\psi_{q}(x)}-x$ is a convex function on $(0,+\infty)$ for $q>1$.

Theorem 3. The function

$$
\theta(x)=\psi_{q}(x)+\log \left(e^{\frac{q^{x} \log q}{q^{x}-1}}-1\right)
$$

is strictly increasing on $(0, \infty)$ for $q>1$ and $x>0$.
Proof. It is well known that for $x>0$ and $q>1$

$$
\Gamma_{q}(x+1)=\frac{\left(1-q^{x}\right) \cdot q^{\left(\frac{x-1}{2}\right)}}{1-q} \Gamma_{q}(x) .
$$

Taking the logarithm on both sides and differentiating yields

$$
\psi_{q}(x+1)=\frac{q^{x} \log q}{q^{x}-1}+\psi_{q}(x)
$$

Therefore, the exponential function of θ satisfies

$$
\begin{aligned}
e^{\theta(x)} & =e^{\psi_{q}(x)} \cdot e^{\log \left(e^{\frac{q^{x} \log q}{q^{x}-1}}-1\right)}=e^{\psi_{q}(x)} \cdot\left(e^{\frac{q^{x} \log q}{q^{x}-1}}-1\right) \\
& =e^{\psi_{q}(x)+\frac{q^{x} \log q}{q^{x}-1}}-e^{\psi_{q}(x)}=e^{\psi_{q}(x+1)}-e^{\psi_{q}(x)} .
\end{aligned}
$$

Let $s(x)=e^{\psi_{q}(x+1)}-e^{\psi_{q}(x)}$. Then

$$
s^{\prime}(x)=e^{\psi_{q}(x+1)} \psi_{q}^{\prime}(x+1)-e^{\psi_{q}(x)} \psi_{q}^{\prime}(x)=h(x+1)-h(x),
$$

where $h(x)=e^{\psi_{q}(x)} \psi_{q}^{\prime}(x)$. Then $h^{\prime}(x)=e^{\psi_{q}(x)}\left(\left(\psi_{q}^{\prime}(x)\right)^{2}+\psi_{q}^{\prime \prime}(x)\right)$, so by Lemma 3 we conclude that $h^{\prime}(x)>0$ so the function h is strictly increasing. It means $s^{\prime}(x)>0$ for $x \in(0, \infty)$ and this yields that s and θ are strictly increasing functions on $(0, \infty)$.

In the following, we denote $\psi_{n}(x)=\psi^{(n)}(x)$ for $n \geq 1$.
Theorem 4. Let $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Let $x, y>0$.
a) If $n=1,3,5, \ldots$ the following inequality holds

$$
\left(\psi_{n}(x)\right)^{\frac{1}{p}} \cdot\left(\psi_{n}(x)\right)^{\frac{1}{q}} \geq \psi_{n}\left(\frac{x}{p}+\frac{y}{q}\right)
$$

b) If $n=2,4,6 \ldots$ the following inequality holds

$$
\left(\psi_{n}(x)\right)^{\frac{1}{p}} \cdot\left(\psi_{n}(x)\right)^{\frac{1}{q}} \leq \psi_{n}\left(\frac{x}{p}+\frac{y}{q}\right) .
$$

Proof. a) The polygamma function has the following integral representation (see [1])

$$
\psi_{n}(x)=(-1)^{n+1} \int_{0}^{\infty} \frac{t^{n}}{1-e^{-t}} e^{-x t} d t, x>0
$$

Thus, $\psi_{n}(x)=\int_{0}^{\infty} \frac{t^{n}}{1-e^{-t}} e^{-x t} d t$, for all $x>0$ and n any odd positive integer number. By Holder's inequality

$$
\left|\int_{0}^{\infty} f(t) g(t) d t\right| \leq\left(\int_{0}^{\infty}|f(t)|^{p}\right)^{\frac{1}{p}} d t \cdot\left(\int_{0}^{\infty}|g(t)|^{q}\right)^{\frac{1}{q}} d t
$$

applied to functions $f(t)=\frac{t^{\frac{n}{p}} \cdot e^{-\frac{x t}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}}$ and $g(t)=\frac{t^{\frac{n}{q} \cdot e^{-\frac{x t}{q}}}\left(1-e^{-t}\right)^{\frac{1}{q}}}{\text { we obtain }}$

$$
\begin{aligned}
\psi_{n}\left(\frac{x}{p}+\frac{y}{q}\right) & =\int_{0}^{\infty} \frac{t^{n}}{1-e^{-t}} e^{\left(\frac{x}{p}+\frac{y}{q}\right) t} d t \\
& =\int_{0}^{\infty}\left(\frac{t^{\frac{n}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}} \cdot e^{-\frac{x t}{p}}\right) \cdot\left(\frac{t^{\frac{n}{q}}}{\left(1-e^{-t}\right)^{\frac{1}{q}}} \cdot e^{-\frac{y t}{q}}\right) d t \\
& \leq\left(\int_{0}^{\infty} \frac{t^{n}}{1-e^{-t}} \cdot e^{-x t} d t\right)^{\frac{1}{p}} \cdot\left(\int_{0}^{\infty} \frac{t^{n}}{1-e^{-t}} \cdot e^{-y t} d t\right)^{\frac{1}{q}} \\
& =\left(\psi_{n}(x)\right)^{\frac{1}{p}} \cdot\left(\psi_{n}(y)\right)^{\frac{1}{q}}
\end{aligned}
$$

as claimed.
b) Similarly to case a).

For example, Theorem 4 for $q=2, p=2$ gives

$$
\psi_{n}\left(\frac{x+y}{2}\right) \leq \sqrt{\psi_{n}(x) \cdot \psi_{n}(y)}
$$

In [17] it has been shown that the function

$$
f(x)=\frac{\left(\frac{x}{e}\right)^{x}}{\Gamma\left(x+\frac{1}{2}\right)}
$$

is logarithmically completely monotonic on $(0, \infty)$. We extend this result as follows.
Theorem 5. The function $f(x)=\frac{(x+1)^{x}}{e^{x} \Gamma(x+1)}$ is logarithmically completely monotonic on $(-1, \infty)$.

Proof. Using the integral representation

$$
\ln \Gamma(x+1)=x \ln (x+1)-x+\int_{0}^{\infty} \frac{e^{-t}}{t}\left(\frac{1}{t}-\frac{1}{e^{t}-1}\right)\left(1-e^{-x t}\right) d t
$$

we obtain $\ln f(x)=\int_{0}^{\infty} \frac{e^{-t}}{t}\left(\frac{1}{t}-\frac{1}{e^{t}-1}\right)\left(e^{-x t}-1\right) d t$. The function $h(y)=e^{-y}-1$ is completely monotonic on \mathbb{R}. Since $\frac{1}{t}-\frac{1}{e^{t}-1}>0$ for all $t>0$, we conclude that f is logarithmically completely monotonic on $(-1, \infty)$.

We mention that some results related to completely monotonicity have been given in [8]

2.3. Riemann zeta function and gamma function

In this section we will introduce the function ζ_{p} and we will prove some relations.
Definition 1. We define the function ζ_{p} as

$$
\begin{equation*}
\zeta_{p}(s)=\frac{1}{\Gamma_{p}(s)} \int_{0}^{p} \frac{t^{s-1}}{\left(1+\frac{t}{p}\right)^{p}-1} d t \tag{18}
\end{equation*}
$$

Note that when $p \longrightarrow \infty$ we obtain a ζ function.
For the proof of the following Lemma see for example equation (1.4) in [13].
Lemma 4 (A generalization of Schwarz inequality). Let f, g be two nonnegative functions of a real variable and m, n real numbers such that integrals in (19) exist. Then

$$
\begin{equation*}
\int_{a}^{b} g(t)(f(t))^{m} d t \cdot \int_{a}^{b} g(t)(f(t))^{n} d t \geq\left(\int_{a}^{b} g(t)(f(t))^{\frac{m+n}{2}}\right)^{2} d t \tag{19}
\end{equation*}
$$

Theorem 6. The following inequality is valid

$$
\begin{equation*}
\frac{s+p+1}{s+p+2} \cdot \frac{\zeta_{p}(s)}{\zeta_{p}(s+1)} \geq \frac{s}{s+1} \cdot \frac{\zeta_{p}(s+1)}{\zeta_{p}(s+2)} \tag{20}
\end{equation*}
$$

Proof. Applying Lemma 4 with $g(t)=\frac{1}{\left(1+\frac{p}{t}\right)^{p}-1}, f(t)=t$.

$$
\int_{0}^{p} \frac{t^{s-1}}{\left(1+\frac{p}{t}\right)^{p}-1} d t \cdot \int_{0}^{p} \frac{t^{s+1}}{\left(1+\frac{p}{t}\right)^{p}-1} d t \geq\left(\int_{0}^{p} \frac{t^{s}}{\left(1+\frac{p}{t}\right)^{p}-1}\right)^{2} d t
$$

Further, using (18) we have

$$
\zeta_{p}(s) \Gamma_{p}(s) \zeta_{p}(s+2) \Gamma_{p}(s+2) \geq\left(\zeta_{p}(s+1)\right)^{2}\left(\Gamma_{p}(s+1)\right)^{2}
$$

By using $\Gamma_{p}(s+1)=\frac{p s}{s+p+1} \Gamma_{p}(s)$ the result follows.
Now when p tends to infinty, then we receive the results of [5].
Theorem 7. We denote by $\zeta(u)$ the Riemann zeta function. Then

$$
\frac{\Gamma\left(\frac{u}{p}+\frac{v}{q}\right)}{\Gamma^{\frac{1}{p}}(u) \cdot \Gamma^{\frac{1}{q}}(v)} \leq \frac{\zeta^{\frac{1}{p}}(u) \cdot \zeta^{\frac{1}{q}}(u)}{\zeta\left(\frac{u}{p}+\frac{v}{q}\right)}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $\frac{u}{p}+\frac{v}{q}>1$.
Proof. For $u>1$ the Riemann zeta function satisfies the integral relation

$$
\begin{equation*}
\zeta(u)=\frac{1}{\Gamma(u)} \int_{0}^{\infty} \frac{t^{u-1}}{e^{t}-1} d t \tag{21}
\end{equation*}
$$

Using Holder's inequality for $p>1$ we have

$$
\begin{equation*}
\left|\int_{0}^{\infty} f(t) \cdot g(t) d t\right| \leq\left(\int_{0}^{\infty}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{\infty}|g(t)|^{q} d t\right)^{\frac{1}{q}} \tag{22}
\end{equation*}
$$

Using equations (21), (22) with $f(t)=\frac{t^{\frac{u-1}{p}}}{\left(e^{t}-1\right)^{\frac{1}{p}}}$ and $g(t)=\frac{t^{\frac{u-1}{q}}}{\left(e^{t}-1\right)^{\frac{1}{q}}}$ we obtain

$$
\Gamma\left(\frac{u}{p}+\frac{v}{q}\right) \cdot \zeta\left(\frac{u}{p}+\frac{v}{q}\right) \leq \Gamma^{\frac{1}{p}}(u) \cdot \Gamma^{\frac{1}{q}}(v) \cdot \zeta^{\frac{1}{p}}(u) \cdot \zeta^{\frac{1}{q}}(v),
$$

which completes the proof.
For example, Theorem 7 for $p=q=2$ gives

$$
\frac{\Gamma\left(\frac{u+v}{2}\right)}{\sqrt{\Gamma(u) \cdot \Gamma(v)}} \leq \frac{\sqrt{\zeta(u) \cdot \zeta(v)}}{\zeta\left(\frac{u+v}{2}\right)}
$$

2.4. Laplace transform and ψ functions

In this section, by using the convolution theorem for the Laplace transform (see [19]) we will show some monotonicity results related to ψ function. First we need the following Definition and Theorem from [18].
Definition 2. A function g is called strongly completely monotonic on $(0, \infty)$ if

$$
x \mapsto(-1)^{n} x^{n+1} g^{(n)}(x)
$$

is nonnegative and decreasing on $(0, \infty)$ for $n=0,1,2, \ldots$.
Theorem 8. The function g is strongly completely monotonic if and only if

$$
g(x)=\int_{0}^{\infty} p(t) e^{-x t} d t
$$

where $p(t)$ is nonnegative and increasing and the integral converges for all $x>0$.
Now we give our results.
Theorem 9. The function $\theta_{n}(x)=\left|\psi^{(n+1)}(x)\right|-\frac{n}{x}\left|\psi^{(n)}(x)\right|$ is strongly completely monotonic on $(0, \infty)$.
Proof. Using integral representation for $\psi^{(n)}(x)$ one has

$$
\theta_{n}(x)=\int_{0}^{\infty} \frac{e^{-x t} t^{n+1}}{1-e^{-t}} d t-n \int_{0}^{\infty} e^{-x t} d t \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1-e^{-t}} d t
$$

By the convolution Theorem for the Laplace transforms we have

$$
\theta_{n}(x)=\int_{0}^{\infty} \frac{e^{-x t} t^{n+1}}{1-e^{-t}} d t-n \int_{0}^{\infty} e^{-x t}\left[\int_{0}^{t} \frac{s^{n}}{1-e^{-s}} d s\right] d t
$$

Hence $\theta_{n}(x)=\int_{0}^{\infty} e^{-x t} q(t) d t$, where $q(t)=\frac{t^{n+1}}{1-e^{-t}}-n \int_{0}^{t} \frac{s^{n}}{1-e^{-s}} d s$. Then $q^{\prime}(t)=$ $\frac{t^{n} e^{-t}\left(e^{t}-1-t\right)}{\left(1-e^{-t}\right)^{2}}>0$, so $q(t)>\lim _{t \rightarrow 0} q(t)=0$.

Theorem 10. Let $f(x)=\psi^{\prime}(x+1)+x \psi^{\prime \prime}(x+1)$ or equivalently $f(x)=\sum_{n=1}^{\infty} \frac{n-x}{n+x}$. The function $\frac{f(x)}{x}$ is completely monotonic on $(-1, \infty)$.
Proof. Clearly $\frac{f(x)}{x}=\frac{1}{x} \psi^{\prime}(x+1)+\psi^{\prime \prime}(x+1)$. Using integral representation of ψ^{\prime} and $\psi^{\prime \prime}$ one obtains

$$
\frac{f(x)}{x}=\int_{0}^{\infty} e^{-x t} d t \int_{0}^{\infty} \frac{t e^{-t} e^{-x t}}{1-e^{-t}} d t+\int_{0}^{\infty} \frac{e^{-x t} e^{-t} t^{2}}{1-e^{-t}} d t
$$

By the convolution Theorem for the Laplace Transforms we have

$$
\frac{f(x)}{x}=\int_{0}^{\infty} e^{-x t}\left[\int_{0}^{t} \frac{s e^{-s}}{1-e^{-s}} d s\right] d t+\int_{0}^{\infty} \frac{e^{-x t} e^{-t} t^{2}}{1-e^{-t}} d t=\int_{0}^{\infty} e^{-x t} q(t) d t
$$

where $q(t)=\int_{0}^{t} \frac{s e^{-s}}{1-e^{-s}} d s+\frac{e^{-t} t^{2}}{1-e^{-t}}>0$.

3. Inequalities for the Γ_{p} and ψ_{p}

In this section we treat several inequalities for Γ_{p} and ψ_{p}.
Theorem 11. Let n be a positive integer.
(1) If n is even, then $\psi_{p}^{(n)}(x+y) \geq \psi_{p}^{(n)}(x)+\psi_{p}^{(n)}(y)$.
(2) If n is odd, then $\psi_{p}^{(n)}(x+y) \leq \psi_{p}^{(n)}(x)+\psi_{p}^{(n)}(y)$.

Proof. From [14] we have

$$
\begin{aligned}
& \psi_{p}^{(n)}(x+y)-\psi_{p}^{(n)}(x)-\psi_{p}^{(n)}(y) \\
& \quad=(-1)^{n} \sum_{k=0}^{p}\left(\frac{1}{(x+y+k)^{n+1}}-\frac{1}{(x+k)^{n+1}}-\frac{1}{(y+k)^{n+1}}\right) .
\end{aligned}
$$

Since the function $f(x)=\frac{1}{(x+k)^{n+1}}$ is convex from $f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(f(x)+f(y))$, we obtain that

$$
\begin{equation*}
\frac{2 \cdot 2^{n+1}}{(x+y+k)^{n+1}} \leq \frac{1}{(x+k)^{n+1}}+\frac{1}{(y+k)^{n+1}} . \tag{23}
\end{equation*}
$$

On the other hand, it is clear that

$$
\begin{equation*}
\frac{2 \cdot 2^{n+1}}{(x+y+k)^{n+1}}>\frac{1}{(x+y+k)^{n+1}} . \tag{24}
\end{equation*}
$$

From (23) and (24) we have that $\frac{1}{(x+y+k)^{n+1}}-\frac{1}{(x+k)^{n+1}}-\frac{1}{(y+k)^{n+1}}<0$, which implies the result.

Lemma 5 (Integral representation for Γ_{p}, ψ_{p} and $\psi_{p}^{(m)}$). The following representations are valid:

$$
\begin{gather*}
\Gamma_{p}(x)=\frac{p^{x}}{x\left(1+\frac{x}{1}\right) \cdot \ldots \cdot\left(1+\frac{x}{p}\right)}=\int_{0}^{p}\left(1-\frac{t}{p}\right)^{p} t^{x-1} d t \tag{25}\\
\psi_{p}(x)=\ln p-\int_{0}^{\infty} \frac{e^{-x t}\left(1-e^{-p t}\right)}{1-e^{-t}} d t \tag{26}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi_{p}^{(m)}(x)=(-1)^{m+1} \cdot \int_{0}^{\infty} \frac{t^{m} \cdot e^{-x t}}{1-e^{-t}}\left(1-e^{-p t}\right) d t \tag{27}
\end{equation*}
$$

Proof. For the proof of relation (25) see [15]. Next we prove (26). From (7) one has

$$
\begin{aligned}
\psi_{p}(x) & =\ln p-\frac{1}{x}-\frac{1}{x+1}-\ldots-\frac{1}{x+p} \\
& =\ln p-\int_{0}^{\infty} e^{-x t} d t-\int_{0}^{\infty} e^{-(x+1) t} d t-\ldots-\int_{0}^{\infty} e^{-(x+p) t} d t \\
& =\ln p-\int_{0}^{\infty} \frac{e^{-x t}\left(1-e^{-p t}\right)}{1-e^{-t}} d t .
\end{aligned}
$$

By deriving m times expression (26) one obtains (27).

Theorem 12. For positive integers m, n and $x>0$ we have

$$
\psi_{p}^{(m)}(x) \cdot \psi_{p}^{(n)}(x) \geq\left(\psi_{p}^{\left(\frac{m+n}{2}\right)}(x)\right)^{2}
$$

where $\frac{m+n}{2}$ is an integer.
Proof. We choose integers m, n both even or odd, so $\frac{m+n}{2}$ is an integer. By (19) with $g(t)=\frac{e^{-x t}}{1-e^{-t}} \cdot\left(1-e^{-p t}\right), f(t)=t$ and $a=0, b=\infty$ we obtain

$$
\int_{0}^{\infty} g(t) t^{m} d t \int_{0}^{\infty} g(t) t^{n} d t \geq\left(\int_{0}^{\infty} g(t) \cdot t^{\frac{m+n}{2}}\right)^{2} d t
$$

that is,

$$
\psi_{p}^{(m)}(x) \cdot \psi_{p}^{(n)}(x) \geq\left(\psi_{p}^{\left(\frac{m+n}{2}\right)}(x)\right)^{2}
$$

which completes the proof.
Note that when $m=n+2$ we have

$$
\frac{\psi_{p}^{(n)}(x)}{\psi_{p}^{(n+1)}(x)} \geq \frac{\psi_{p}^{(n+1)}(x)}{\psi_{p}^{(n+2)}(x)}
$$

$n=1,2, \ldots$ and $x>0$. Also when $p \longrightarrow \infty$ we obtain all results of [13].
Theorem 13. Let a_{i} and $b_{i}(i=1,2, \ldots, n)$ be real numbers such that $0<a_{1} \leq$ $\cdots \leq a_{n}, 0<b_{1} \leq \cdots \leq b_{n}$ and $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for $k=1,2, \ldots, n$. Then the function

$$
x \mapsto \prod_{i=1}^{n} \frac{\Gamma_{p}\left(x+a_{i}\right)}{\Gamma_{p}\left(x+b_{i}\right)}
$$

is completely monotonic on $(0, \infty)$.
Proof. Let $h(x)=\sum_{i=1}^{n}\left(\log \Gamma_{p}\left(x+b_{i}\right)-\log \Gamma_{p}\left(x+a_{i}\right)\right)$. Then for $k \geq 0$ we have

$$
\begin{aligned}
(-1)^{k}\left(h^{\prime}(x)\right)^{(k)}= & \sum_{i=1}^{n}\left(\psi_{p}^{(k)}\left(x+b_{i}\right)-\psi_{p}^{(k)}\left(x+a_{i}\right)\right) \\
= & (-1)^{k} \sum_{i=1}^{n}(-1)^{k+1} \sum_{n=0}^{p} \frac{k!}{\left(x+b_{i}+n\right)^{k+1}} \\
& -(-1)^{k+1} \sum_{n=0}^{p} \frac{k!}{\left(x+a_{i}+n\right)^{k+1}} \\
= & (-1)^{2 k+1} k!\sum_{i=1}^{n} \sum_{n=0}^{p}\left(\frac{1}{\left(x+b_{i}+n\right)^{k+1}}-\frac{1}{\left(x+a_{i}+n\right)^{k+1}}\right)
\end{aligned}
$$

Since the function $x \mapsto \frac{1}{(x+n)^{k}}$ is decreasing and convex on \mathbb{R}, from (17) we conclude that

$$
\sum_{i=1}^{n}\left(\frac{1}{\left(x+b_{i}+n\right)^{k+1}}-\frac{1}{\left(x+a_{i}+n\right)^{k+1}}\right) \leq 0
$$

and that implies that $(-1)^{k}\left(h^{\prime}(x)\right)^{(k)} \geq 0$ for $k \geq 0$. Hence h^{\prime} is completely monotonic on $(0, \infty)$. By Lemma 2 we have that

$$
\exp (-h(x))=\prod_{i=1}^{n} \frac{\Gamma_{p}\left(x+a_{i}\right)}{\Gamma_{p}\left(x+b_{i}\right)}
$$

is also completely monotonic on $(0, \infty)$.

References

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New York, 1965.
[2] H. Alzer, On some inequalities for the gamma and psi function, Math. Comp. 66(1997), 373-389.
[3] H. Alzer, A. Z. Grinshpan, Inequalities for the gamma and q-gamma functions, J. Approx. Theory 144(2007), 67-83.
[4] G. E. Andrews, R.A. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
[5] R. Askey, The q-gamma and q-beta functions, Applicable Anal. 8(1978/79), 125141.
[6] S. Bocher, Harmonic Analysis and the Theory of Probability, Dover Publications, New York, 2005.
[7] M. E. H. Ismail, M. E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, in: Approximation and Computation, International Series of Numerical Mathematics, (R. V. M. Zahar, ed.), Birkhäuser, 1994, 309-323.
[8] M. E. H. Ismail, L. Lorch, M. Muldoon, Completely monotonic functions associated with the gamma functionand its q-analogues, J. Math. Anal. Appl. 116(1986), 1-9.
[9] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76(1999), 320-329.
[10] T. Kim, A note on the q-multiple zeta functions, Advan. Stud. Contemp. Math. 8(2004), 111-113.
[11] T. Kim, S. H. Rim, A note on the q-integral and q-series, Advanced Stud. Contemp. Math. 2(2000), 37-45.
[12] V. Krasniqi, A. Sh. Shabani, Convexity properties and inequalities for a generalized gamma function, Applied Mathematics E-Notes 10(2010), 27-35.
[13] A. Laforgia, P. Natali, A Turán-type inequalities for some special functions, J. Inequal. Pure Appl. Math. 7 (2006), Article 32.
[14] T. Mansour, A. Sh. Shabani, Some inequalities for the q-Digamma function, J. Inequal. Pure Appl. Math. 10(2009), Article 12.
[15] J. SÁndor, Selected chapters of geometry, analysis and number theory, preprint.
[16] H. M. Srivastava, T. Kim, Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russian J. Math. Phys. 12(2005), 241-268.
[17] J. Sh. Sun, Z. Q. Guo, A note on logarithmically completely monotonic functions involving the gamma functions, Commun. Math. Ana. 2(2007), 12-16.
[18] S. Y. Trimble, J. Wells, F. T. Wright, Superaddittive functions and a statistical application, SIAM J. Math. Anal. 20(1989), 1255-1259.
[19] D. V. Wider, The Laplace Transform, Princeton University Press, Princeton, 1941.

