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Abstract. In this paper several monotonicity properties and inequalities are given for I'
and T'; functions as well as for their logarithmic derivatives ¢ and 4. A p analogue of
Riemann Zeta function (, is introduced. Using the generalization of Schwarz inequality
and Holder’s inequality some inequalities relating ¢, (,,I" and I', are obtained. By the use
of Laplace Convolution Theorem, some monotonicity results related to digamma function
1 and its derivatives of order n are obtained. For the I',-function, defined by Euler, some
properties related to monotonicity are given. Also, some properties of a p analogue of the
1 function have been established.
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1. Introduction and preliminaries

A function f is said to be completely monotonic on an interval I, if f has derivatives
of all orders on I and satisfies

(~1)"f™(z) >0,(x e [,n=0,1,2,...). (1)

If inequality (1) is strict, then f is said to be strictly completely monotonic on I.
Theorem of Bernstein (for example, see [19]) states that f is completely monotonic
if and only if f(z) = [;° e *'du(t), where y is a nonnegative measure on [0, 00) such
that for all x > 0 the integral converges.

A positive function f is said to be logarithmically completely monotonic on an
interval I, if f satisfies

(—=1)"[In f(2)]™ >0,(x € I,n=1,2,...). (2)

If inequality (2) is strict, then f is said to be strictly logarithmically completely
monotonic.
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The Euler gamma function I'(z) is defined for # > 0 by I'(z) = [~ t* e~ dt.
The digamma (or psi) function is defined for positive real numbers x as the logarith-

mic derivative of Euler’s gamma function, that is 1(z) = &£ InI'(z) = I;/((j)). The

following integral and series representations are valid (see [1]):

v =t [ G = -1 ®)
v= 0 1—e"t ™ n(n+z)’
n>1
where v = 0.57721--- denotes Euler’s constant. Euler gave another equivalent
definition for T'(z) (see [15]),
p'p” P
I'y(z) = = , x>0, 4
o() z(z+1)--(z+p) 2z(14+7)-1+3) )
where
I'(z) = lim T'p(z). (5)

p— 00

The p-analogue of the psi function is defined as the logarithmic derivative of the
I',, function (see [12]), that is

(e) = AT (0) = {2 )

The function 1, defined in (6) satisfies the following properties (see [12]). It has the
following series representation

S |
Yp(z) =Inp — . (7)
p kZ:O T+ k

It is increasing on (0,00) and it is strictly completely monotonic on (0,00). Its
derivatives are given by

Py = 3 E ot (®)

Jackson (see [9, 10, 11, 16]) defined the g-analogue of the gamma function as

I,(x) = ((q‘i;;qq))(’;a - 0<g<1, (9)
and o
e R CIVESE (10)

where (a;¢)oc = [[;50(1 — aq’).

A standard reference for the g-Gamma function is [4].

The g-analogue of the psi function is defined for 0 < ¢ < 1 as the logarithmic
derivative of the ¢-gamma function, that is, ¢, (z) = % log T'y(z). Many properties of
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the g-gamma function were derived by Askey [5]. It is well known that I'y(z) — I'(z)
and ¢ (z) — ¢¥(z) as ¢ — 17. From (9), for 0 < ¢ <1 and = > 0 we get

n—+x nx
q
q(a) = log(lfq)Hoquwf*log(lftJ)Hoqu1 &= (D
n>0 n>1
and from (10) for ¢ > 1 and z > 0 we obtain
b(a) = —log(g —1) +logg |z — 5 — 2 13&)
n=0 (12)

—nx

= —log(g—1) +logg |z —3— X f‘qn>

n>1

A Stieltjes integral representation for i,(x) with 0 < ¢ < 1 is given in [7]. It is
well-known that ¢’ is strictly completely monotonic on (0, c0), that is,

(=)™ (' (z))™ >0 foraz>0andn>0,

see [1, Page 260]. From (11) and (12) we conclude that ¢} has the same property
for any ¢ > 0,
(_1)n(¢;($))(n) >0 forz>0andn>0.

If ¢ € (0,1), using the second representation of ¢q(x) given in (11) it can be shown
that

P# (2) = log"t

(13)

n>1

and hence (—1)k_11[)((1k)(ac) > 0 with z > 1, for all £ > 1. If ¢ > 1, from the second
representation of ¢, (z) given in (12) we obtain

Uiy() = loga(1+ > ) (14)

n>1

and for k > 2,

k ,—nx

D (x) = (~1) " loght qZ”q (15)

n>1

and hence (—1)k—1¢§’“) (x) > 0 with > 0, for all ¢ > 1.
In the next sections we derive several properties related to monotonicity and
some inequalities for the functions I',,I'g,I', ( as well as for polygamma functions

Y ().
2. Inequalities for I', ¢, I', and 7, functions

2.1. Inequalities for I' and I'; functions

Lemma 1. Let a,x be positive real numbers such that x +a > 1, and q¢ € (0,1).
Then v —log(1 — q) + ¥ (z + a) — q(x 4+ a) > 0.
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Proof. Using series representation of function ¢ and ), we obtain

—log(1 = q) + ¢(x) — thg(z) = (z = 1) kzzo E+1)( erk)

x+k

q
loqu T >0

which implies that v —log(1l — ¢) + ¥(x) — 4(z) > 0 for all z > 1 and ¢ € (0,1).
The result follows by replacing x by = + a. O

Theorem 1. Let
evr I'(z+a)
(1—q)® Fq(-”""“)

fz) =

with x € (0,1), where a is a real number such that a+x > 1 and q € (0,1). Then the
function f(x) is increasing for x € (0,1) and the following double inequality holds

(1-9)'T(@) _ Ta+a) _ 0901 - 'T(1 +a)
coTy(a) ~ Ty(w+a) r,(1+a)

Proof. Let g(z) =log f(z) for all z € (0,1). Then
g'(z) =~ —log(1 - q) +¥(z +a) — y(z + a).

By Lemma 1 we have ¢'(x) > 0. So g(z) is increasing on (0, 1), which implies that
f(z) is increasing on (0,1) so we have f(0) < f(z) < f(1) and the result follows. [

For example, Theorem 1 for a = 1 together with I'y(2) = 1 give

(1-¢® T@+1) 201-q)'°
< <
" S T,x+1) - er@ D

2.2. Completely monotonic

Theorem 2. The function G4(z;a1,b1,...,an,by) given by

T (x + ay)
G =Gy(z;a1,b1,...,an,b,) = | | 22—, 0,1 16
Q(x) q(m7ala 1 , @ ) grq(x+bz) qe( ) ( )
is a completely monotonic function on (0,00), for any a; and b;, i =1,2,...,n, real

numbers such that 0 < a1 < -+ < ap, 0< by <by <--- < b, and Ele a; < Zle b;
fork=1,2,....n
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Proof. Let h(z) =Y (logTy(x + b;) —logTy(z + a;)). Then for k > 0 we have

n

(—UkUé@ﬂY“==(—UkE:H%“($+bH-—¢$Nw+-mD

i=1

ﬁﬁébg
i=1
= log Z

n>1

ai)

n>1

kna:

n
Alzer [2] showed that if f is a decreasing and convex function on R, then there holds

o Fb) <D flaw). (17)
i=1 i=1

Thus, since the function z — ¢*, 2z > 0 is decreasing and convex on R, we have that
S (g —g") >0, so (fl)k(G;(x))(’“) > 0 for k > 0. Hence h; is completely
monotonic on (0,00). Using the fact that if f' is a completely monotonic function

n (0,00), then exp(—h) is also a completely monotonic function on (0, c0) (see [6]),
we get the desired result. O

In a similar way one can show that the Theorem 2 also remains true for ¢ > 1.
For the proof of the following lemma, see [6].

Lemma 2. If 1’ is completely monotonic on (0,00), then exp(—h) is also completely
monotonic on (0,00).

In order to present our next theorem we need the following lemma.
Lemma 3. For q > 1, the function e¥«®) — z is convex on (0, +00).

Proof. Alzer and Grinshpan [3] showed that f”(z) = (¢} (x))* + ¢}/ (z) > 0 for all

g > 1and x > 0. Hence f(z) = e¥(®) — x is a convex function on (0, +oc) for
q>1. O

Theorem 3. The function

0(z) = q(z) + log (e T 1)
is strictly increasing on (0,00) for ¢ > 1 and x > 0.
Proof. It is well known that for z > 0 and ¢ > 1

(1—q%)-q("2")

Fyx+1)= 4

Ly().

Taking the logarithm on both sides and differentiating yields

ql%q

¢q(x+ 1) = wq( )-
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Therefore, the exponential function of 6 satisfies

g% logq
e a¥—-1 —1

lo g% log q
@) _ a(@) g( ) — eva(®) (e e 1)

— Y@ FTEL (@) _ pwa(e+l) | (@)

Let s(z) = e¥a(@+D) — ¢¥a(@) Then
§'(z) = e Tyl (x4 1) — eP ! (z) = h(z + 1) — h(z),

where h(r) = er(m)wg(x). Then h'(z) = ewg(i)((z/);(x))Q + ¢, (x)), so by Lemma
3 we conclude that h'(x) > 0 so the function h is strictly increasing. It means
s'(x) > 0 for z € (0,00) and this yields that s and 6 are strictly increasing functions
on (0, c0). O

In the following, we denote v, (z) = (™ (z) for n > 1.

1 1
Theorem 4. Let p,q > 1 such that — + — =1. Let x,y > 0.
p q
a) If n =1,3,5,... the following inequality holds

(n@)? - Wale))s > (04 7).

b) If n =2,4,6... the following inequality holds

($n(2))7 - ($n(2))7 < wn(g n g).

Proof. a) The polygamma function has the following integral representation (see
(1)
tn

ﬁ@iztdt,x > 0.
— €

nla) = (a4t [

Thus, ¢, (x) = fooo 1fn e~ ®tdt, for all z > 0 and n any odd positive integer number.

et

By Holder’s inequality

[ o] ([ ) [loor)'a

applied to functions f(t) = +2-¢ i and g(t) = +2¢ we obtain
(1-et)? (1)
oo tn <g+z)t
77[}71(E y) :/ e\” /) dt
P g o l—e*

IN
o\
8
—_
|
3
-
[y}
|
8
o~
QL
Py
~
S =
—
o\
8
—_
| |
IS 3
L
ml
<
~+~
QL
Py
NG
Q-
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as claimed.
b) Similarly to case a). O

For example, Theorem 4 for ¢ = 2,p = 2 gives

In [17] it has been shown that the function

f(x):F(x—i—é)

is logarithmically completely monotonic on (0, 00). We extend this result as follows.

Theorem 5. The function f(x) = eﬁ%jfl) is logarithmically completely monotonic

on (—1,00).
Proof. Using the integral representation
—t

Cetrl 1 ot
lnF(x+1)—xln(aj+1)—x+/O T<¥_ﬁ>(l_e )dt

we obtain In f(z) = [~ et (l — )(e’f’:t — 1)dt. The function h(y) =e ¥ — 1 is

0 t \t  e-1
1
completely monotonic on R. Since PR
et —
is logarithmically completely monotonic on (—1,00). O

> 0 for all ¢ > 0, we conclude that f

We mention that some results related to completely monotonicity have been given
in [8]
2.3. Riemann zeta function and gamma function

In this section we will introduce the function ¢, and we will prove some relations.

Definition 1. We define the function (, as

gp(s):Fpl(S) /O ; :;_)pldt. (18)

Note that when p — oo we obtain a ¢ function.
For the proof of the following Lemma see for example equation (1.4) in [13].

Lemma 4 (A generalization of Schwarz inequality). Let f,g be two nonnegative
functions of a real variable and m,n real numbers such that integrals in (19) exist.

Then
b

/ g / g ( [ s ) )

a
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Theorem 6. The following inequality is valid
stptl  Gls) o s Glstl)

: . 20
s+ Gl D)~ s+l Gls+2) (20)
1
Proof. Applying Lemma 4 with g(t) = ———5——, f(t) = t.
(1 + g) 1
p tsfl P ts+1 P ts 2
dt~/ dtZ(/ 7) dt.
I O ) B
Further, using (18) we have
Go(8)Tp()Gp(s + 2)Tp(s +2) = (Gpls + 1))*(Tp(s + 1))
By using I',)(s + 1) = Sﬁ;ﬁf‘p(s) the result follows. O
Now when p tends to infinty, then we receive the results of [5].
Theorem 7. We denote by ((u) the Riemann zeta function. Then
u v 1 1
r(x+t) _ O (w)-Ci(u)
To(w) Ti) ~ ¢(2+2)
1 1
where — 4+ - =1 and3+9>1.
p g p g
Proof. For u > 1 the Riemann zeta function satisfies the integral relation
1 oo tu—l
= — —dt. 21
= | 7 (21)
Using Holder’s inequality for p > 1 we have
[ee] 00 1 oo 1
[ s gwarl < ([T 1rora) ([ lgorar) (2
0 0 0
tL—l tui—l
Using equations (21), (22) with f(t) = — and ¢g(t) = — we obtain
(et —1)» (et —1)a
u v u v 1 1 1 1
F(,+,>,<(,+,) <T?(u)-Ta(v)-Cr(u)-Ca(v),
i » 3 (u) - T () - 7 (u) - 7 (v)
which completes the proof. O

For example, Theorem 7 for p = ¢ = 2 gives

r(4) <o
T(u)-T(v) ~ <<%) '
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2.4. Laplace transform and 1 functions

In this section, by using the convolution theorem for the Laplace transform (see
[19]) we will show some monotonicity results related to ¢ function. First we need
the following Definition and Theorem from [18].

Definition 2. A function g is called strongly completely monotonic on (0,00) if
z e (=1)" " g ()
is nonnegative and decreasing on (0,00) for n =0,1,2,....

Theorem 8. The function g is strongly completely monotonic if and only if

o(z) = / " (e tr,

where p(t) is nonnegative and increasing and the integral converges for all x > 0.
Now we give our results.

Theorem 9. The function 6, (z) = |+ (x)] — %W(") ()] is strongly completely
monotonic on (0,00).

Proof. Using integral representation for ¢("™ () one has

e’} efxttn+1 [e’] [e’e} tnefxt
0, () :/ ———dt - n/ efmtdt/ Sdt.
0 1—e 0 0 1—e—

By the convolution Theorem for the Laplace transforms we have

00 —xttn-‘rl 00 i t n
0 1—e" 0 0 1—e5

tn+1

Hence 6, (z) = fooo e—wtq(t)dt, where ¢(t) = T - nfot %ds. Then /() —
% >0, 50 ¢() > lim ¢(t) = 0. -

Theorem 10. Let f(z) = ' (z+1)+z¢" (x+1) or equivalently f(x) = > 07 2=%

n=1 ntx "’

The function 1@ g completely monotonic on (—1,00).

Proof. Clearly @ = 1¢/(x + 1) + ¢"(z 4+ 1). Using integral representation of ¢’
and 1"’ one obtains

0o ¢ —t,—xt oo —uxt —tt2
f@) _ / et s / L / e
v Jo o L—e o l—et

By the convolution Theorem for the Laplace Transforms we have

N [Fete [
A e [0 17675d‘3}dt+ = dt = ; e "'q(t)dt,

where ¢(t) = fot 2 ds + f:;t_zt > 0. O
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3. Inequalities for the I', and v,

In this section we treat several inequalities for I', and ,,.

Theorem 11. Let n be a positive integer.
(1) If nis even, then $5" (z +y) > i (x) + 5" ().
(2) If n is odd, then v (z +y) < 4" (2) + 45" ().

Proof. From [14] we have

) (@ +y) — ) (z) — i (y)

= 1 1 1
- kz—:o((x+y+k)"+1 (@R (y+k‘)"+1)'

Since the function f(x) = W is convex from f(%) < %(f(m) + f(y)), we
obtain that

2.2ntl 1 . 1 (23)
(x+y+ k) = (@ k)mt o (y+ k)
On the other hand, it is clear that
2.2ntl 1
(24)

> .
Cry+ o @ry
1 1

From (23) and (24) we have that (Hyjk)nﬂ — GEOTT T GrT < 0, which implies
the result. O

Lemma 5 (Integral representation for I, ¢, and @bl(,m)). The following representa-
tions are valid:

p° P NP . 1
T (2) = :/ 1— =) =g 25
A B (Y 0( p) (25)
0 gmwt(] — Pt
vty =mp— [~ (26)
0 _e
and
OOtm 679315

B4 () = (~1)m / (1— eyt (27)

o Ll—et
Proof. For the proof of relation (25) see [15]. Next we prove (26). From (7) one
has

1 1 1

x xz+1 7 x4p

By deriving m times expression (26) one obtains (27). O
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Theorem 12. For positive integers m,n and x > 0 we have

Ui @) @) > (6 @)

where ML

is an integer.

m-+n

Proof. We choose integers m,n both even or odd, so is an integer. By (19)
—xt

with g(t) = &= - (1 — e ?"), f(t) =t and a = 0,b = co we obtain

T—e ?
/oo g(t)tmdt/oo g(t)t"dt > (/Oo g(t) - t%fdt,
0 0 0
that is,
W (@) 0 (@) > (057 @)
which completes the proof. O

Note that when m = n + 2 we have
n n+1
w@) ey ()
1,[);£n+1)(x) ¢1(7n+2)(17)

n=1,2,... and z > 0. Also when p — oo we obtain all results of [13].

Theorem 13. Let a; and b; (1 = 1,2,...,n) be real numbers such that 0 < a; <
o<y, 0<b <o < by, and Zleai < Zlebi for k =1,2,...,n. Then the

function
S Tp(x + a)
= || =—/———=
is completely monotonic on (0,00).

Proof. Let h(z) =Y . (log'y(z + b;) — logT'p(x + a;)). Then for k > 0 we have

(=DF(n ()™ = §n (@ (x + b;) — i (@ + a;))
i=1
k!

= (-1)* <—1)’“+1;m

n
1=

1

p
k!
k+1
—-(=1) 7;0 (x + a; +n)k+

n P 1 1
= (—1)**+1k! ;nz::o ((3: +hi+ )M (@t a + n)k“)'

Since the function = + —L— is decreasing and convex on R, from (17) we conclude

(z+n)k
that

- 1 1
- <
Z((m—!—bi—&—n)kﬂ (m—l—ai—kn)k“)o

=1
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and that implies that (—1)*(h'(z))*) > 0 for k¥ > 0. Hence &’ is completely mono-
tonic on (0,00). By Lemma 2 we have that

n
Ty(z+ a;)
exp(—h(x)) = || 77—+
};[1 p(@+bi)
is also completely monotonic on (0, c0). O
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