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Abstract. In this paper several monotonicity properties and inequalities are given for Γ
and Γq functions as well as for their logarithmic derivatives ψ and ψq. A p analogue of
Riemann Zeta function ζp is introduced. Using the generalization of Schwarz inequality
and Holder’s inequality some inequalities relating ζ, ζp, Γ and Γp are obtained. By the use
of Laplace Convolution Theorem, some monotonicity results related to digamma function
ψ and its derivatives of order n are obtained. For the Γp-function, defined by Euler, some
properties related to monotonicity are given. Also, some properties of a p analogue of the
ψ function have been established.
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1. Introduction and preliminaries

A function f is said to be completely monotonic on an interval I, if f has derivatives
of all orders on I and satisfies

(−1)nf (n)(x) ≥ 0, (x ∈ I, n = 0, 1, 2, . . .). (1)

If inequality (1) is strict, then f is said to be strictly completely monotonic on I.
Theorem of Bernstein (for example, see [19]) states that f is completely monotonic
if and only if f(x) =

∫∞
0

e−xtdµ(t), where µ is a nonnegative measure on [0,∞) such
that for all x > 0 the integral converges.

A positive function f is said to be logarithmically completely monotonic on an
interval I, if f satisfies

(−1)n[ln f(x)](n) ≥ 0, (x ∈ I, n = 1, 2, . . .). (2)

If inequality (2) is strict, then f is said to be strictly logarithmically completely
monotonic.
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The Euler gamma function Γ(x) is defined for x > 0 by Γ(x) =
∫∞
0

tx−1e−tdt.
The digamma (or psi) function is defined for positive real numbers x as the logarith-
mic derivative of Euler’s gamma function, that is ψ(x) = d

dx ln Γ(x) = Γ′(x)
Γ(x) . The

following integral and series representations are valid (see [1]):

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt = −γ − 1

x
+

∑

n≥1

x

n(n + x)
, (3)

where γ = 0.57721 · · · denotes Euler’s constant. Euler gave another equivalent
definition for Γ(x) (see [15]),

Γp(x) =
p!px

x(x + 1) · · · (x + p)
=

px

x(1 + x
1 ) · · · (1 + x

p )
, x > 0, (4)

where
Γ(x) = lim

p→∞
Γp(x). (5)

The p-analogue of the psi function is defined as the logarithmic derivative of the
Γp function (see [12]), that is

ψp(x) =
d

dx
ln Γp(x) =

Γ′p(x)
Γp(x)

. (6)

The function ψp defined in (6) satisfies the following properties (see [12]). It has the
following series representation

ψp(x) = ln p−
p∑

k=0

1
x + k

. (7)

It is increasing on (0,∞) and it is strictly completely monotonic on (0,∞). Its
derivatives are given by

ψ(n)
p (x) =

p∑

k=0

(−1)n−1 · n!
(x + k)n+1

. (8)

Jackson (see [9, 10, 11, 16]) defined the q-analogue of the gamma function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1, (9)

and

Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(
x
2), q > 1, (10)

where (a; q)∞ =
∏

j≥0(1− aqj).
A standard reference for the q-Gamma function is [4].
The q-analogue of the psi function is defined for 0 < q < 1 as the logarithmic

derivative of the q-gamma function, that is, ψq(x) = d
dx log Γq(x). Many properties of



Monotonicity, inequalities for Γ and ζ functions 367

the q-gamma function were derived by Askey [5]. It is well known that Γq(x) → Γ(x)
and ψq(x) → ψ(x) as q → 1−. From (9), for 0 < q < 1 and x > 0 we get

ψq(x) = − log(1− q) + log q
∑

n≥0

qn+x

1− qn+x
= − log(1− q) + log q

∑

n≥1

qnx

1− qn
(11)

and from (10) for q > 1 and x > 0 we obtain

ψq(x) = − log(q − 1) + log q

(
x− 1

2 −
∑
n≥0

q−n−x

1−q−n−x

)

= − log(q − 1) + log q

(
x− 1

2 −
∑
n≥1

q−nx

1−q−n

)
.

(12)

A Stieltjes integral representation for ψq(x) with 0 < q < 1 is given in [7]. It is
well-known that ψ′ is strictly completely monotonic on (0,∞), that is,

(−1)n(ψ′(x))(n) > 0 for x > 0 and n ≥ 0,

see [1, Page 260]. From (11) and (12) we conclude that ψ′q has the same property
for any q > 0,

(−1)n(ψ′q(x))(n) > 0 for x > 0 and n ≥ 0.

If q ∈ (0, 1), using the second representation of ψq(x) given in (11) it can be shown
that

ψ(k)
q (x) = logk+1 q

∑

n≥1

nk · qnx

1− qn
(13)

and hence (−1)k−1ψ
(k)
q (x) > 0 with x > 1, for all k ≥ 1. If q > 1, from the second

representation of ψq(x) given in (12) we obtain

ψ′q(x) = log q
(
1 +

∑

n≥1

nq−nx

1− q−nx

)
(14)

and for k ≥ 2,

ψ(k)
q (x) = (−1)k−1 logk+1 q

∑

n≥1

nkq−nx

1− q−nx
(15)

and hence (−1)k−1ψ
(k)
q (x) > 0 with x > 0, for all q > 1.

In the next sections we derive several properties related to monotonicity and
some inequalities for the functions Γp, Γq, Γ, ζ as well as for polygamma functions
ψ(m)(x).

2. Inequalities for Γ, ψ, Γq and ψq functions

2.1. Inequalities for Γ and Γq functions

Lemma 1. Let a, x be positive real numbers such that x + a > 1, and q ∈ (0, 1).
Then γ − log(1− q) + ψ(x + a)− ψq(x + a) > 0.
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Proof. Using series representation of function ψ and ψq we obtain

γ − log(1− q) + ψ(x)− ψq(x) = (x− 1)
∞∑

k=0

1
(k + 1)(x + k)

− log q

∞∑

k=0

qx+k

1− qx+k
> 0,

which implies that γ − log(1 − q) + ψ(x) − ψq(x) > 0 for all x > 1 and q ∈ (0, 1).
The result follows by replacing x by x + a.

Theorem 1. Let

f(x) =
eγx

(1− q)x
· Γ(x + a)
Γq(x + a)

with x ∈ (0, 1), where a is a real number such that a+x > 1 and q ∈ (0, 1). Then the
function f(x) is increasing for x ∈ (0, 1) and the following double inequality holds

(1− q)xΓ(a)
eγxΓq(a)

<
Γ(x + a)
Γq(x + a)

<
eγ(1−x)(1− q)x−1Γ(1 + a)

Γq(1 + a)
.

Proof. Let g(x) = log f(x) for all x ∈ (0, 1). Then

g′(x) = γ − log(1− q) + ψ(x + a)− ψq(x + a).

By Lemma 1 we have g′(x) > 0. So g(x) is increasing on (0, 1), which implies that
f(x) is increasing on (0, 1) so we have f(0) < f(x) < f(1) and the result follows.

For example, Theorem 1 for a = 1 together with Γq(2) = 1 give

(1− q)x

eγx
<

Γ(x + 1)
Γq(x + 1)

<
2(1− q)1−x

eγ(x−1)
.

2.2. Completely monotonic

Theorem 2. The function Gq(x; a1, b1, . . . , an, bn) given by

Gq(x) = Gq(x; a1, b1, . . . , an, bn) =
n∏

i=1

Γq(x + ai)
Γq(x + bi)

, q ∈ (0, 1) (16)

is a completely monotonic function on (0,∞), for any ai and bi, i = 1, 2, . . . , n, real
numbers such that 0 < a1 ≤ · · · ≤ an, 0 < b1 ≤ b2 ≤ · · · ≤ bn and

∑k
i=1 ai ≤

∑k
i=1 bi

for k = 1, 2, . . . , n.
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Proof. Let h(x) =
∑n

i=1(log Γq(x + bi)− log Γq(x + ai)). Then for k ≥ 0 we have

(−1)k(h′q(x))(k) = (−1)k
n∑

i=1

(ψ(k)
q (x + bi)− ψ(k)

q (x + ai))

= (−1)k
n∑

i=1

logk+1 q
∑

n≥1

nkqnx

1− qn
(qbi − qai)

= (−1)k logk+1 q
∑

n≥1

nkqnx

1− qn

n∑

i=1

(qbi − qai).

Alzer [2] showed that if f is a decreasing and convex function on R, then there holds

n∑

i=1

f(bi) ≤
n∑

i=1

f(ai). (17)

Thus, since the function z 7→ qz, z > 0 is decreasing and convex on R, we have that∑n
i=1(q

ai − qbi) ≥ 0, so (−1)k(G′q(x))(k) ≥ 0 for k ≥ 0. Hence h′q is completely
monotonic on (0,∞). Using the fact that if f ′ is a completely monotonic function
on (0,∞), then exp(−h) is also a completely monotonic function on (0,∞) (see [6]),
we get the desired result.

In a similar way one can show that the Theorem 2 also remains true for q > 1.
For the proof of the following lemma, see [6].

Lemma 2. If h′ is completely monotonic on (0,∞), then exp(−h) is also completely
monotonic on (0,∞).

In order to present our next theorem we need the following lemma.

Lemma 3. For q > 1, the function eψq(x) − x is convex on (0, +∞).

Proof. Alzer and Grinshpan [3] showed that f ′′(x) = (ψ′q(x))2 + ψ′′q (x) > 0 for all
q > 1 and x > 0. Hence f(x) = eψq(x) − x is a convex function on (0, +∞) for
q > 1.

Theorem 3. The function

θ(x) = ψq(x) + log
(
e

qx log q
qx−1 − 1

)

is strictly increasing on (0,∞) for q > 1 and x > 0.

Proof. It is well known that for x > 0 and q > 1

Γq(x + 1) =
(1− qx) · q(x−1

2 )

1− q
Γq(x).

Taking the logarithm on both sides and differentiating yields

ψq(x + 1) =
qx log q

qx − 1
+ ψq(x).
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Therefore, the exponential function of θ satisfies

eθ(x) = eψq(x) · elog

(
e

qx log q
qx−1 −1

)
= eψq(x) ·

(
e

qx log q
qx−1 − 1

)

= eψq(x)+ qx log q
qx−1 − eψq(x) = eψq(x+1) − eψq(x).

Let s(x) = eψq(x+1) − eψq(x). Then

s′(x) = eψq(x+1)ψ′q(x + 1)− eψq(x)ψ′q(x) = h(x + 1)− h(x),

where h(x) = eψq(x)ψ′q(x). Then h′(x) = eψq(x)((ψ′q(x))2 + ψ′′q (x)), so by Lemma
3 we conclude that h′(x) > 0 so the function h is strictly increasing. It means
s′(x) > 0 for x ∈ (0,∞) and this yields that s and θ are strictly increasing functions
on (0,∞).

In the following, we denote ψn(x) = ψ(n)(x) for n ≥ 1.

Theorem 4. Let p, q > 1 such that
1
p

+
1
q

= 1. Let x, y > 0.

a) If n = 1, 3, 5, . . . the following inequality holds

(ψn(x))
1
p · (ψn(x))

1
q ≥ ψn

(x

p
+

y

q

)
.

b) If n = 2, 4, 6 . . . the following inequality holds

(ψn(x))
1
p · (ψn(x))

1
q ≤ ψn

(x

p
+

y

q

)
.

Proof. a) The polygamma function has the following integral representation (see
[1])

ψn(x) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−xtdt, x > 0.

Thus, ψn(x) =
∫∞
0

tn

1−e−t e
−xtdt, for all x > 0 and n any odd positive integer number.

By Holder’s inequality
∣∣∣
∫ ∞

0

f(t)g(t)dt
∣∣∣ ≤

( ∫ ∞

0

|f(t)|p
) 1

p

dt ·
( ∫ ∞

0

|g(t)|q
) 1

q

dt

applied to functions f(t) = t
n
p ·e−

xt
p

(1−e−t)
1
p

and g(t) = t
n
q ·e−

xt
q

(1−e−t)
1
q

we obtain

ψn

(x

p
+

y

q

)
=

∫ ∞

0

tn

1− e−t
e

(
x
p + y

q

)
t
dt

=
∫ ∞

0

( t
n
p

(1− e−t)
1
p

· e− xt
p

)
·
( t

n
q

(1− e−t)
1
q

· e− yt
q

)
dt

≤
( ∫ ∞

0

tn

1− e−t
· e−xtdt

) 1
p ·

(∫ ∞

0

tn

1− e−t
· e−ytdt

) 1
q

= (ψn(x))
1
p · (ψn(y))

1
q ,
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as claimed.
b) Similarly to case a).

For example, Theorem 4 for q = 2, p = 2 gives

ψn

(x + y

2

)
≤

√
ψn(x) · ψn(y).

In [17] it has been shown that the function

f(x) =

(
x
e

)x

Γ
(
x + 1

2

)

is logarithmically completely monotonic on (0,∞). We extend this result as follows.

Theorem 5. The function f(x) = (x+1)x

exΓ(x+1) is logarithmically completely monotonic
on (−1,∞).

Proof. Using the integral representation

ln Γ(x + 1) = x ln(x + 1)− x +
∫ ∞

0

e−t

t

(1
t
− 1

et − 1

)
(1− e−xt)dt

we obtain ln f(x) =
∫∞
0

e−t

t

(
1
t − 1

et−1

)
(e−xt − 1)dt. The function h(y) = e−y − 1 is

completely monotonic on R. Since
1
t
− 1

et − 1
> 0 for all t > 0, we conclude that f

is logarithmically completely monotonic on (−1,∞).

We mention that some results related to completely monotonicity have been given
in [8]

2.3. Riemann zeta function and gamma function

In this section we will introduce the function ζp and we will prove some relations.

Definition 1. We define the function ζp as

ζp(s) =
1

Γp(s)

∫ p

0

ts−1

(
1 + t

p

)p

− 1
dt. (18)

Note that when p −→∞ we obtain a ζ function.
For the proof of the following Lemma see for example equation (1.4) in [13].

Lemma 4 (A generalization of Schwarz inequality). Let f, g be two nonnegative
functions of a real variable and m,n real numbers such that integrals in (19) exist.
Then ∫ b

a

g(t)(f(t))mdt ·
∫ b

a

g(t)(f(t))ndt ≥
( ∫ b

a

g(t)(f(t))
m+n

2

)2

dt. (19)
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Theorem 6. The following inequality is valid

s + p + 1
s + p + 2

· ζp(s)
ζp(s + 1)

≥ s

s + 1
· ζp(s + 1)
ζp(s + 2)

. (20)

Proof. Applying Lemma 4 with g(t) =
1(

1 + p
t

)p

− 1
, f(t) = t.

∫ p

0

ts−1

(
1 + p

t

)p

− 1
dt ·

∫ p

0

ts+1

(
1 + p

t

)p

− 1
dt ≥

( ∫ p

0

ts(
1 + p

t

)p

− 1

)2

dt.

Further, using (18) we have

ζp(s)Γp(s)ζp(s + 2)Γp(s + 2) ≥ (ζp(s + 1))2(Γp(s + 1))2.

By using Γp(s + 1) =
ps

s + p + 1
Γp(s) the result follows.

Now when p tends to infinty, then we receive the results of [5].

Theorem 7. We denote by ζ(u) the Riemann zeta function. Then

Γ
(

u
p + v

q

)

Γ
1
p (u) · Γ 1

q (v)
≤ ζ

1
p (u) · ζ 1

q (u)

ζ
(

u
p + v

q

) ,

where
1
p

+
1
q

= 1 and
u

p
+

v

q
> 1.

Proof. For u > 1 the Riemann zeta function satisfies the integral relation

ζ(u) =
1

Γ(u)

∫ ∞

0

tu−1

et − 1
dt. (21)

Using Holder’s inequality for p > 1 we have
∣∣∣
∫ ∞

0

f(t) · g(t)dt
∣∣∣ ≤

( ∫ ∞

0

|f(t)|pdt
) 1

p
(∫ ∞

0

|g(t)|qdt
) 1

q

. (22)

Using equations (21), (22) with f(t) =
t

u−1
p

(et − 1)
1
p

and g(t) =
t

u−1
q

(et − 1)
1
q

we obtain

Γ
(u

p
+

v

q

)
· ζ

(u

p
+

v

q

)
≤ Γ

1
p (u) · Γ 1

q (v) · ζ 1
p (u) · ζ 1

q (v),

which completes the proof.

For example, Theorem 7 for p = q = 2 gives

Γ
(

u+v
2

)
√

Γ(u) · Γ(v)
≤

√
ζ(u) · ζ(v)

ζ
(

u+v
2

) .
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2.4. Laplace transform and ψ functions

In this section, by using the convolution theorem for the Laplace transform (see
[19]) we will show some monotonicity results related to ψ function. First we need
the following Definition and Theorem from [18].

Definition 2. A function g is called strongly completely monotonic on (0,∞) if

x 7→ (−1)nxn+1g(n)(x)

is nonnegative and decreasing on (0,∞) for n = 0, 1, 2, . . ..

Theorem 8. The function g is strongly completely monotonic if and only if

g(x) =
∫ ∞

0

p(t)e−xtdt,

where p(t) is nonnegative and increasing and the integral converges for all x > 0.

Now we give our results.

Theorem 9. The function θn(x) = |ψ(n+1)(x)| − n
x |ψ(n)(x)| is strongly completely

monotonic on (0,∞).

Proof. Using integral representation for ψ(n)(x) one has

θn(x) =
∫ ∞

0

e−xttn+1

1− e−t
dt− n

∫ ∞

0

e−xtdt

∫ ∞

0

tne−xt

1− e−t
dt.

By the convolution Theorem for the Laplace transforms we have

θn(x) =
∫ ∞

0

e−xttn+1

1− e−t
dt− n

∫ ∞

0

e−xt
[ ∫ t

0

sn

1− e−s
ds

]
dt.

Hence θn(x) =
∫∞
0

e−xtq(t)dt, where q(t) = tn+1

1−e−t − n
∫ t

0
sn

1−e−s ds. Then q′(t) =
tne−t(et−1−t)

(1−e−t)2 > 0, so q(t) > lim
t→0

q(t) = 0.

Theorem 10. Let f(x) = ψ′(x+1)+xψ′′(x+1) or equivalently f(x) =
∑∞

n=1
n−x
n+x .

The function f(x)
x is completely monotonic on (−1,∞).

Proof. Clearly f(x)
x = 1

xψ′(x + 1) + ψ′′(x + 1). Using integral representation of ψ′

and ψ′′ one obtains

f(x)
x

=
∫ ∞

0

e−xtdt

∫ ∞

0

te−te−xt

1− e−t
dt +

∫ ∞

0

e−xte−tt2

1− e−t
dt.

By the convolution Theorem for the Laplace Transforms we have

f(x)
x

=
∫ ∞

0

e−xt
[ ∫ t

0

se−s

1− e−s
ds

]
dt +

∫ ∞

0

e−xte−tt2

1− e−t
dt =

∫ ∞

0

e−xtq(t)dt,

where q(t) =
∫ t

0
se−s

1−e−s ds + e−tt2

1−e−t > 0.
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3. Inequalities for the Γp and ψp

In this section we treat several inequalities for Γp and ψp.

Theorem 11. Let n be a positive integer.

(1) If n is even, then ψ
(n)
p (x + y) ≥ ψ

(n)
p (x) + ψ

(n)
p (y).

(2) If n is odd, then ψ
(n)
p (x + y) ≤ ψ

(n)
p (x) + ψ

(n)
p (y).

Proof. From [14] we have

ψ(n)
p (x + y)− ψ(n)

p (x)− ψ(n)
p (y)

= (−1)n

p∑

k=0

( 1
(x + y + k)n+1

− 1
(x + k)n+1

− 1
(y + k)n+1

)
.

Since the function f(x) = 1
(x+k)n+1 is convex from f

(
x+y

2

)
≤ 1

2

(
f(x) + f(y)

)
, we

obtain that
2 · 2n+1

(x + y + k)n+1
≤ 1

(x + k)n+1
+

1
(y + k)n+1

. (23)

On the other hand, it is clear that

2 · 2n+1

(x + y + k)n+1
>

1
(x + y + k)n+1

. (24)

From (23) and (24) we have that 1
(x+y+k)n+1 − 1

(x+k)n+1 − 1
(y+k)n+1 < 0, which implies

the result.

Lemma 5 (Integral representation for Γp, ψp and ψ
(m)
p ). The following representa-

tions are valid:

Γp(x) =
px

x(1 + x
1 ) · . . . · (1 + x

p )
=

∫ p

0

(
1− t

p

)p

tx−1dt (25)

ψp(x) = ln p−
∫ ∞

0

e−xt(1− e−pt)
1− e−t

dt (26)

and

ψ(m)
p (x) = (−1)m+1 ·

∫ ∞

0

tm · e−xt

1− e−t
(1− e−pt)dt. (27)

Proof. For the proof of relation (25) see [15]. Next we prove (26). From (7) one
has

ψp(x) = ln p− 1
x
− 1

x + 1
− . . .− 1

x + p

= ln p−
∫ ∞

0

e−xtdt−
∫ ∞

0

e−(x+1)tdt− . . .−
∫ ∞

0

e−(x+p)tdt

= ln p−
∫ ∞

0

e−xt(1− e−pt)
1− e−t

dt.

By deriving m times expression (26) one obtains (27).
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Theorem 12. For positive integers m,n and x > 0 we have

ψ(m)
p (x) · ψ(n)

p (x) ≥
(
ψ

( m+n
2 )

p (x)
)2

,

where m+n
2 is an integer.

Proof. We choose integers m,n both even or odd, so m+n
2 is an integer. By (19)

with g(t) = e−xt

1−e−t · (1− e−pt), f(t) = t and a = 0, b = ∞ we obtain
∫ ∞

0

g(t)tmdt

∫ ∞

0

g(t)tndt ≥
( ∫ ∞

0

g(t) · tm+n
2

)2

dt,

that is,

ψ(m)
p (x) · ψ(n)

p (x) ≥
(
ψ

( m+n
2 )

p (x)
)2

,

which completes the proof.

Note that when m = n + 2 we have

ψ
(n)
p (x)

ψ
(n+1)
p (x)

≥ ψ
(n+1)
p (x)

ψ
(n+2)
p (x)

,

n = 1, 2, . . . and x > 0. Also when p −→∞ we obtain all results of [13].

Theorem 13. Let ai and bi (i = 1, 2, . . . , n) be real numbers such that 0 < a1 ≤
· · · ≤ an, 0 < b1 ≤ · · · ≤ bn and

∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, 2, . . . , n. Then the

function

x 7→
n∏

i=1

Γp(x + ai)
Γp(x + bi)

is completely monotonic on (0,∞).

Proof. Let h(x) =
∑n

i=1(log Γp(x + bi)− log Γp(x + ai)). Then for k ≥ 0 we have

(−1)k(h′(x))(k) =
n∑

i=1

(ψ(k)
p (x + bi)− ψ(k)

p (x + ai))

= (−1)k
n∑

i=1

(−1)k+1

p∑
n=0

k!
(x + bi + n)k+1

−(−1)k+1

p∑
n=0

k!
(x + ai + n)k+1

= (−1)2k+1k!
n∑

i=1

p∑
n=0

( 1
(x + bi + n)k+1

− 1
(x + ai + n)k+1

)
.

Since the function x 7→ 1
(x+n)k is decreasing and convex on R, from (17) we conclude

that
n∑

i=1

(
1

(x + bi + n)k+1
− 1

(x + ai + n)k+1

)
≤ 0
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and that implies that (−1)k(h′(x))(k) ≥ 0 for k ≥ 0. Hence h′ is completely mono-
tonic on (0,∞). By Lemma 2 we have that

exp(−h(x)) =
n∏

i=1

Γp(x + ai)
Γp(x + bi)

is also completely monotonic on (0,∞).
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