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The number of D(−1)-quadruples
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Abstract. In this paper, we first show that for any fixed D(−1)-triple {1, b, c} with b < c,
there exist at most two d’s such that {1, b, c, d} is a D(−1)-quadruple with c < d. Using
this result, we further show that there exist at most 10356 D(−1)-quadruples.
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1. Introduction

Let n be a nonzero integer. A set of m distinct positive integers {a1, . . . , am} is
called a Diophantine m-tuple with the property D(n), or simply a D(n)-m-tuple, if
aiaj + n is a perfect square for each i, j with 1 ≤ i < j ≤ m. The cases of n = ±1
and n = 4 are topics of active research.

A folklore conjecture says that there does not exist a D(1)-quintuple. The first
result supporting this conjecture is due to Baker and Davenport ([2]), which asserts
that if {1, 3, 8, d} is a D(1)-quadruple, then d = 120. This result has been generalized
to those concerning several kinds of parametrized D(1)-quadruples (cf. [6, 16, 9, 26,
4, 28, 29]). Dujella ([11]) in general showed that there does not exist a D(1)-sextuple
and that there exist only finitely many D(1)-quintuples. In [12], he further bounded
the number of D(1)-quintuples explicitly. The second author improved the bound
using Okazaki’s gap principle (cf. [3, Lemma 2.2]) and the uniqueness of d in a
D(1)-quintuple {a, b, c, d, e} with a < b < c < d < e for a fixed a, b, c (cf. [27]).
Similar results on D(4)-tuples have been obtained mainly by the first author (cf.
[17, 24, 20, 21, 22, 23]).

In the case of n = −1, it is conjectured that there does not exist a D(−1)-
quadruple (cf. [7]). We are only a step away from the solution to this conjecture.
More precisely, if {a, b, c, d} is a D(−1)-quadruple with a < b < c < d, then a = 1
(cf. [14]), and there exist only finitely many D(−1)-quadruples (cf. [13]). Moreover,
if {1, b, c, d} is a D(−1)-quadruple with b < c < d, then b ≥ 101 (cf. [8, 1, 18, 25, 30]).
Note that the validity of the conjecture on D(−1)-quadruples implies that there does
not exist a D(−4)-quadruple ([5, Remark 3]).
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For general n, Dujella ([10]) gave upper bounds for the size of sets with the
property D(n), which are logarithmic in |n|. Moreover, if |n| is prime, Dujella and
Luca ([15]) showed that the size of sets with the property D(n) is bounded by the
absolute constant 3 · 2168.

Our theorems in this paper are the following.

Theorem 1. Let {1, b, c} be a D(−1)-triple with b < c. Then, there exist at most
two d’s such that {1, b, c, d} is a D(−1)-quadruple with c < d.

Theorem 2. There exist at most 10356 D(−1)-quadruples.

Theorem 1 is proved by transforming the problem into a system of Pell equations
with right-hand sides equal to 1, to which one can apply the theorem in [3]. The
proof of Theorem 2 goes along the same lines as [12, Theorem 4], and it is completed
by using Theorem 1.

It is to be noted that Theorem 2 improves a result of the first author in [19],
which asserts that there exist at most 10902 D(−1)-quadruples. The improvement
comes from the use of Theorem 1.

2. Proof of Theorem 1

Let {1, b, c} be a D(−1)-triple with b < c and let b− 1 = r2, c− 1 = s2, bc− 1 = t2

with positive integers r, s, t. Suppose that {1, b, c, d} is a D(−1)-quadruple with
c < d. Then, there exist positive integers x, y, z such that

d− 1 = x2, bd− 1 = y2, cd− 1 = z2.

Eliminating d, we obtain the system of Diophantine equations

y2 − bx2 = b− 1, (1)
z2 − cx2 = c− 1, (2)

bz2 − cy2 = c− b. (3)

The positive solutions of each equation above can be expressed as follows:

y + x
√

b = (y0 + x0

√
b)(r +

√
b)2l, (4)

z + x
√

c = (z1 + x1
√

c)(s +
√

c)2m, (5)

z
√

b + y
√

c = (z2

√
b + y2

√
c)(t +

√
bc)2n (6)

with some integers l, m, n ≥ 0, where

0 < y0 < b, |x0| < r,

0 < z1 < c, |x1| < s,

0 < z2 < c, |y2| < t

(cf. [14, Lemma 1]). By [13, Theorem 1], we may assume that c ≤ b9. Then, [13,
Lemma 5] implies that

z1 = z2 = s, x1 = 0, y2 = ±r.
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By (4) and (6), we may write y = αl = βn, where

α0 = y0, α1 = (2b− 1)y0 + 2rbx0, αl+2 = 2(2b− 1)αl+1 − αl

and
β0 = ±r, β1 = ±r(2bc− 1) + 2stb, βn+2 = 2(2bc− 1)βn+1 − βn.

Hence, αl ≡ (−1)ly0 (mod 2b) and βn ≡ ±(−1)nr (mod 2b), which yield y0 ≡
±(−1)l+nr (mod 2b). Since 0 < y0 < b, we obtain y0 = r and x0 = 0. By (4) and
(5), we may write x = ul = vm, where

u0 = 0, u1 = 2r2, ul+2 = 2(2r2 + 1)ul+1 − ul

and
v0 = 0, v1 = 2s2, vm+2 = 2(2s2 + 1)vm+1 − vm.

It follows that x ≡ 0 (mod 2M2), where M = lcm(r, s). By (1) and (2), we may
write y = ry′ and z = sz′ for some integers y′, z′. Putting M1 = M/r, M2 = M/s
and x′ = x/M , we obtain the system of Pell equations

(y′)2 − bM2
1 (x′)2 = 1, (7)

(z′)2 − cM2
2 (x′)2 = 1. (8)

The theorem of [3] says that the system of Pell equations (7) and (8) has at most
two positive solutions. This completes the proof of Theorem 1.

3. Proof of Theorem 2

As seen in Introduction, it suffices to bound the number of D(−1)-quadruples
{1, b, c, d} with b < c < d and b ≥ 101. By [13, Theorem 1] we have b < c1/1.1 <

(10491)1/1.1 < 3 · 10446. Since
√

b− 1 is an integer bounded by
√

3 · 10446 < 2 · 10223,
the number of D(−1) pairs {1, b} is bounded by 2 · 10223. For a fixed pair {1, b} the
integer c such that {1, b, c} (b < c) is a D(−1)-triple belongs to the union of finitely
many binary recurrent sequences, and the number of the sequences is less than or
equal to the number of solutions of the congruence t20 ≡ −1 (mod b) with 0 < t0 < b
(cf. [14, Lemma 1]). The number of solutions of the congruence is less than or equal
to 2ω(b), where ω(b) denotes the number of distinct prime factors of b (cf. [31, g, §4,
ch. V]). If b ≤ 10124, then the number of sequences is bounded by 10124. Assume
that b > 10124. We know by (8) in [12] that

log b >
1
2
ω(b) log ω(b). (9)

If 2ω(b) ≥ b0.29, then (9) implies that 2ω(b) > ω(b)0.145ω(b), which yields ω(b) ≤ 119.
We then see from 2ω(b) ≥ b0.29 that b < 10124, a contradiction. Thus we have
2ω(b) < b0.29 < 3 ·10129. Hence, the number of the sequences is bounded by 3 ·10129.
Moreover, our sequences grow exponentially; in fact, we have

(b− 1)(4b− 3)m−1 < tm =
√

bc− 1 < 5 · 10468.
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Since b ≥ 101, we obtain m ≤ 180. Hence, the number of c’s that extend our D(−1)-
pair {1, b} is bounded by 3 · 10129 · 180 < 6 · 10131. It follows from Theorem 1 that
the number of D(−1)-quadruples is bounded by

2 · 10223 · 6 · 10131 · 2 < 10356.
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