Strong convergence theorem for accretive mapping in Banach spaces*

Zhenhua He ${ }^{1, \dagger}$
${ }^{1}$ Department of Mathematics, Honghe University, Mengzi, Yunnan-661 100, P. R. China

Received October 17, 2008; accepted March 18, 2010

Abstract

Suppose K is a closed convex subset of a real reflexive Banach space E which has a uniformly Gâteaux differentiable norm and every nonempty closed convex bounded subset of E has the fixed point property for nonexpansive mappings. We prove a strong convergence theorem for an m-accretive mapping from K to E. The results in this paper are different from the corresponding results in [8] and they improve the corresponding results in $[6,14]$.

AMS subject classifications: $47 \mathrm{H} 06,47 \mathrm{H} 10,54 \mathrm{H} 25$
Key words: Strong convergence, accretive mapping, uniformly Gâteaux differentiable norm

1. Introduction and preliminaries

Let E be a real Banach space and E^{*} its dual space. Let J denote the normalized duality mapping from E into $2^{E^{*}}$ defined by $J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\right.$ $\left.\|f\|^{2}\right\}$, where $\langle\cdot, \cdot\rangle$ denotes a generalized duality pairing between E and E^{*}. It is well-known that if E^{*} is strictly convex, then J is sing-valued. In the sequel, we shall denote the single-valued normalized duality mapping by j.

Definition 1. $T: K \rightarrow K$ is said to be a nonexpansive mapping, if $\forall x, y \in K$, $\|T x-T y\| \leq\|x-y\|$. The set of fixed points for T is denoted by $F(T)=\{x \in K$: $T x=x\}$.
Definition 2. An operator A (possibly multivalued) with domain $D(A)$ and range $R(A)$ in E is called accretive mapping, if $\forall x_{i} \in D(A)$ and $y_{i} \in A x_{i}(i=1,2)$, there exists $j\left(x_{2}-x_{1}\right) \in J\left(x_{2}-x_{1}\right)$ such that $\left\langle y_{2}-y_{1}, j\left(x_{2}-x_{1}\right)\right\rangle \geq 0$. Especially, an accretive operator A is called m-accretive if $R(I+r A)=E$ for all $r>0$.

For each $r>0$, if A is m-accretive, then $J_{r}:=(I+r A)^{-1}$ is a nonexpansive single-valued mapping from $R(I+r A)$ to $D(A)$ and $F\left(J_{r}\right)=N(A)$, where $N(A)=$ $\{x \in D(A): A x=0\}$.

Iterative techniques for approximating zeros of accretive mappings have been studied by various authors (see, e.g., [3, 4, 6, 12, 14, 16], etc.), using a famous Mann iteration method, Ishikawa iteration method, and many other iteration methods such

[^0]as viscosity approximation method [3] and steepest descent approximation method [11].

Recently, T.H. Kim and H.K. Xu [6] and H.K. Xu [14] studied the sequence generated by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) J_{r_{n}} x_{n} \tag{1}
\end{equation*}
$$

where $x_{0} \in E, J_{r_{n}}=\left(I+r_{n} A\right)^{-1}, \alpha_{n} \in[0,1]$ and obtained the following Theorem 1 and Theorem 2, respectively:
Theorem 1 (see [6], Theorem 2). Assume that E is a uniformly smooth Banach space and A is an m-accretive operator in E such that $N(A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be defined by (1). Suppose $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy the conditions:
(i) $\alpha_{n} \rightarrow 0, \Sigma_{n=0}^{\infty} \alpha_{n}=\infty, \Sigma_{n=0}^{\infty}\left|\alpha_{n+1}-a_{n}\right|<\infty$,
(ii) $r_{n} \geq \varepsilon>0, \Sigma_{n=0}^{\infty}\left|1-\frac{r_{n-1}}{r_{n}}\right|<\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to a zero of A.
Theorem 2 (see, e.g. [14]). Suppose that E is a uniformly smooth Banach space. Suppose that A is an m-accretive operator in E such that $C=\overline{D(A)}$ is convex. Assume
(i) $\alpha_{n} \rightarrow 0, \Sigma_{n=1}^{\infty} \alpha_{n}=\infty, \Sigma_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$,
(ii) $r_{n} \geq \varepsilon>0, \Sigma_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to a point in $N(A)$.
Inspired and motivated by the iterative sequences (1), Qin and $\mathrm{Su}[8]$ gave the following iterative sequences:

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) J_{r_{n}} x_{n} \tag{2}\\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}
\end{array}\right.
$$

where $u \in K$ is an arbitrary (but fixed) element in K and sequences $\left\{\alpha_{n}\right\}$ in $(0,1)$, $\left\{\beta_{n}\right\}$ in $[0,1]$. Then they obtained a strong convergence theorem as following:

Theorem 3 (see, e.g. [8]). Assume that E is a uniformly smooth Banach space and A is an m-accretive operator in E such that $N(A) \neq \emptyset$. Given a point $u \in K$ and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ in [0,1], suppose that $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{r_{n}\right\}_{n=0}^{\infty}$ satisy the conditions:
(i) $\Sigma_{n=0}^{\infty} \alpha_{n}=\infty, \alpha_{n} \rightarrow 0$;
(ii) $r_{n} \geq \varepsilon$ for all n and $\beta_{n} \in[0, a)$, for some $a \in(0,1)$;
(iii) $\Sigma_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \Sigma_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \Sigma_{n=1}^{\infty}\left|r_{n}-r_{n-1}\right|<\infty$.

Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be the composite process defined by (2). Then $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to a zero of A.

Let
$\alpha_{n}=\left\{\begin{array}{ll}0, \text { if } n=2 k \\ \frac{1}{n}, \text { if } n=2 k-1,\end{array} \quad \beta_{n}=\left\{\begin{array}{ll}0, & \text { if } n=2 k \\ \frac{1}{2}+\frac{1}{n+1}, & \text { if } n=2 k-1,\end{array} \quad r_{n}= \begin{cases}\frac{1}{2}, & \text { if } n=2 k \\ \frac{1}{4}, & \text { if } n=2 k-1,\end{cases}\right.\right.$
where k is some positive integer. Obviously, the coefficient α_{n}, β_{n} and r_{n} do not satisfy condition (iii) of Theorem 3 and conditions (i-ii) of Theorem 1. Hence, if we can remove condition (iii) of Theorem 3, then the coefficient α_{n}, β_{n} and r_{n} have a more extensively applicable scope.

Using the technique in $[15,5]$, algorithm (2) is analyzed from a new perspective in this paper, then a strong convergence theorem is obtained in the framework of real reflexive Banach spaces E with uniformly Gâteaux differentiable norms and condition (iii) of Theorem 3 is substituted by a new condition which is $0<a \leq$ $\beta_{n} \leq b<1$ and $r_{n} \geq \varepsilon>0$ for all $n, \lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=0$. At the same time, our proof is more simpler than that of Theorem 3 and our theorem also improves and extends Theorem 1 and Theorem 2 to more general real Banach spaces with uniformly Gâteaux differentiable norms.

In what follows, we shall make use of the following Lemmas.
Lemma 1 (see [2]). Let E be a real normed linear space and J the normalized duality mapping on E; then for each $x, y \in E$ and $j(x+y) \in J(x+y)$, we have $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle$.

Lemma 2 (Suzuki, see [9]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\beta_{n}\right\}$ be a sequence in [0,1] with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}$ <1. Suppose $x_{n+1}=\beta_{n} y_{n}+\left(1-\beta_{n}\right) x_{n}$ for all integers $n \geq 0$ and $\limsup _{n \rightarrow \infty}\left(\| y_{n+1}-\right.$ $\left.y_{n}\|-\| x_{n+1}-x_{n} \|\right) \leq 0$, then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 3 (see [13]). Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the following relation:

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \sigma_{n}+\gamma_{n}, n \geq 0
$$

if (i) $\alpha_{n} \in[0,1], \sum \alpha_{n}=\infty$; (ii) $\limsup \sigma_{n} \leq 0$; (iii) $\gamma_{n} \geq 0, \sum \gamma_{n}<\infty$, then $a_{n} \rightarrow 0$, as $n \rightarrow \infty$.

Lemma 4 (see [7]). Let K be a nonempty closed convex subset of a reflexive Banach space E which has uniformly Gâteaux differentiable norms and $T: K \rightarrow K a$ nonexpansive mapping with $F(T) \neq \emptyset$. Suppose that every nonempty closed convex bounded subset of E has the fixed point property for nonexpansive mappings. Then there exists a continuous path $t \rightarrow z_{t}, 0<t<1$, satisfying $z_{t}=t u+(1-t) T z_{t}$, for arbitrary but fixed $u \in K$, which converges to a fixed point of T.

Lemma 5 (see $[1,8]$). For $\lambda>0$ and $\mu>0$ and $x \in E$,

$$
J_{\lambda} x=J_{\mu}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda} x\right) .
$$

2. Main results

Throughout this paper, suppose that
(a) E is a real reflexive Banach space E which has uniformly Gâteaux differentiable norms;
(b) K is a nonempty closed convex subset of E;
(c) every nonempty closed bounded convex subset of E has the fixed point property for nonexpansive mappings.

Theorem 4. Let $A: K \rightarrow E$ be an m-accretive mapping with $N(A) \neq \emptyset$. For given $u, x_{0} \in K$, let $\left\{x_{n}\right\}$ be generated by the algorithm (2). If $\alpha_{n} \in[0,1],\left\{\beta_{n}\right\}$, $\left\{r_{n}\right\}$ satisfy the following conditions:
(i) $\alpha_{n} \rightarrow 0, \Sigma_{n=0}^{\infty} \alpha_{n}=\infty$,
(ii) $0<a \leq \beta_{n} \leq b<1$; (iii) $\lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=0, r_{n} \geq \varepsilon>0$,
then $\left\{x_{n}\right\}$ converges strongly to a zero of A.

Proof. We know that $F\left(J_{r_{n}}\right)=N(A) \neq \emptyset$ and $J_{r_{n}}$ is nonexpansive. Let $p \in F\left(J_{r_{n}}\right)$, it follows from (2)

$$
\left\|y_{n}-p\right\| \leq\left\|x_{n}-p\right\|,\left\|x_{n+1}-p\right\| \leq \alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|
$$

which yields that $\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|,\|u-p\|\right\}$. Hence, $\left\{x_{n}\right\}$ is bounded and so is $\left\{y_{n}\right\}$.

Now, we shall show $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. For the purpose, let $\gamma_{n}=1-$ $\left(1-\alpha_{n}\right) \beta_{n}, \bar{y}_{n}=\frac{x_{n+1}-x_{n}+\gamma_{n} x_{n}}{\gamma_{n}}$, i.e. $\bar{y}_{n}=\frac{\alpha_{n} u+\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) J_{r_{n}} x_{n}}{\gamma_{n}}$, then

$$
\begin{align*}
\bar{y}_{n+1}-\bar{y}_{n}= & \left(\frac{\alpha_{n+1}}{\gamma_{n+1}}-\frac{\alpha_{n}}{\gamma_{n}}\right) u+\frac{\left(1-\alpha_{n+1}\right)\left(1-\beta_{n+1}\right) J_{r_{n+1}} x_{n+1}}{\gamma_{n+1}} \\
& -\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) J_{r_{n}} x_{n}}{\gamma_{n}} \\
= & \left(\frac{\alpha_{n+1}}{\gamma_{n+1}}-\frac{\alpha_{n}}{\gamma_{n}}\right) u+\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left(J_{r_{n+1}} x_{n+1}-J_{r_{n}} x_{n}\right)}{\gamma_{n}} \tag{3}\\
& +\left(\frac{\alpha_{n}\left(1-\left(1-\alpha_{n+1}\right) \beta_{n+1}\right)-\alpha_{n+1}\left(1-\beta_{n}\left(1-\alpha_{n}\right)\right)}{\gamma_{n+1} \gamma_{n}}\right) J_{r_{n+1}} x_{n+1} .
\end{align*}
$$

It follows from (3) and Lemma 5 that

$$
\begin{align*}
\left\|\bar{y}_{n+1}-\bar{y}_{n}\right\| \leq & \left|\frac{\alpha_{n+1}}{\gamma_{n+1}}-\frac{\alpha_{n}}{\gamma_{n}}\right|\|u\|+\frac{\left(1-\beta_{n}\right)\left\|J_{r_{n+1}} x_{n+1}-J_{r_{n}} x_{n}\right\|}{\gamma_{n}} \\
& +\frac{\alpha_{n}+\alpha_{n+1}}{\gamma_{n+1} \gamma_{n}}\left\|J_{r_{n+1}} x_{n+1}\right\| \\
\leq & \frac{\left\|J_{r_{n+1}} x_{n+1}-J_{r_{n+1}} x_{n}+J_{r_{n}}\left(\frac{r_{n}}{r_{n+1}} x_{n}+\left(1-\frac{r_{n}}{r_{n+1}}\right) J_{r_{n+1}} x_{n}\right)-J_{r_{n}} x_{n}\right\|}{\gamma_{n}} \\
& \times\left(1-\beta_{n}\right)+\frac{\alpha_{n}+\alpha_{n+1}}{\gamma_{n+1} \gamma_{n}}\left(\left\|J_{r_{n+1}} x_{n+1}\right\|+\|u\|\right) \\
\leq & \frac{\left(1-\beta_{n}\right)\left(\left\|x_{n+1}-x_{n}\right\|+\left|1-\frac{r_{n}}{r_{n+1}}\right| M_{0}\right)}{\gamma_{n}} \\
& +\frac{\alpha_{n}+\alpha_{n+1}}{\gamma_{n+1} \gamma_{n}}\left(\left\|J_{r_{n+1}} x_{n+1}\right\|+\|u\|\right) \tag{4}
\end{align*}
$$

where $\left\|J_{r_{n+1}} x_{n}-x_{n}\right\| \leq M_{0}$. By (i-iii) and boundedness of $\left\{x_{n}\right\}$, from (4) we get that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\left\|\bar{y}_{n+1}-\bar{y}_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right\} \leq 0 \tag{5}
\end{equation*}
$$

Based on Lemma 2 and (5), we have $\lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-x_{n}\right\|=0$, which implies $\lim _{n \rightarrow \infty} \| x_{n+1}$ $-x_{n} \|=0$. Since $\left\|x_{n+1}-y_{n}\right\|=\alpha_{n}\left\|u-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ and

$$
\begin{equation*}
\left\|x_{n}-J_{r_{n}} x_{n}\right\|=\frac{1}{1-\beta_{n}}\left\|x_{n}-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

Take a fixed number r such that $0<r<\varepsilon$, from Lemma 5 we obtain

$$
\left\|J_{r_{n}} x_{n}-J_{r} x_{n}\right\|=\left\|J_{r}\left(\frac{r}{r_{n}} x_{n}+\left(1-\frac{r}{r_{n}}\right) J_{r_{n}} x_{n}\right)-J_{r} x_{n}\right\| \leq\left\|x_{n}-J_{r_{n}} x_{n}\right\|
$$

which implies that

$$
\left\|x_{n}-J_{r} x_{n}\right\| \leq\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\left\|J_{r_{n}} x_{n}-J_{r} x_{n}\right\| \leq 2\left\|x_{n}-J_{r_{n}} x_{n}\right\| \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

Let z_{t} denote the fixed point of contraction mapping H_{t} given by

$$
H_{t} x=t u+(1-t) J_{r} x, x \in E, \quad \forall t \in(0,1)
$$

Then, using Lemma 1, we have

$$
\begin{aligned}
\left\|z_{t}-x_{n}\right\|^{2}= & \left\|t\left(u-x_{n}\right)+(1-t)\left(J_{r} z_{t}-x_{n}\right)\right\|^{2} \\
\leq & (1-t)^{2}\left\|J_{r} z_{t}-x_{n}\right\|^{2}+2 t\left\langle u-x_{n}, j\left(z_{t}-x_{n}\right)\right\rangle \\
\leq & (1-t)^{2}\left(\left\|J_{r} z_{t}-J_{r} x_{n}\right\|+\left\|J_{r} x_{n}-x_{n}\right\|\right)^{2} \\
& +2 t\left\langle u-z_{t}+z_{t}-x_{n}, j\left(z_{t}-x_{n}\right)\right\rangle \\
\leq & \left(1+t^{2}\right)\left\|z_{t}-x_{n}\right\|^{2}+\left\|J_{r} x_{n}-x_{n}\right\|\left(2\left\|z_{t}-x_{n}\right\|+\left\|J_{r} x_{n}-x_{n}\right\|\right) \\
& +2 t\left\langle u-z_{t}, j\left(z_{t}-x_{n}\right)\right\rangle
\end{aligned}
$$

hence,

$$
\left\langle u-z_{t}, j\left(x_{n}-z_{t}\right)\right\rangle \leq \frac{t}{2}\left\|z_{t}-x_{n}\right\|^{2}+\frac{\left\|J_{r} x_{n}-x_{n}\right\|}{2 t}\left(2\left\|z_{t}-x_{n}\right\|+\left\|J_{r} x_{n}-x_{n}\right\|\right)
$$

let $n \rightarrow \infty$ in the last inequality, then we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle u-z_{t}, j\left(x_{n}-z_{t}\right)\right\rangle \leq \frac{t}{2} M
$$

where $M>0$ is a constant such that $\left\|z_{t}-x_{n}\right\|^{2} \leq M$ for all $t \in(0,1)$ and $n \geq 0$. Now letting $t \rightarrow 0^{+}$, then we have that

$$
\limsup _{t \rightarrow 0^{+}} \limsup _{n \rightarrow \infty}\left\langle u-z_{t}, j\left(x_{n}-z_{t}\right)\right\rangle \leq 0
$$

Thus, for $\forall \varepsilon>0$, there exists a positive number δ^{\prime} such that for any $t \in\left(0, \delta^{\prime}\right)$,

$$
\limsup _{n \rightarrow \infty}\left\langle u-z_{t}, j\left(x_{n}-z_{t}\right)\right\rangle \leq \frac{\varepsilon}{2}
$$

On the other hand, by Lemma 4 we have $z_{t} \rightarrow p \in F\left(J_{r_{n}}\right)=N(A)$ as $t \rightarrow 0^{+}$. In addition, j is norm-to-weak* uniformly continuous on bounded subsets of E, so there exists $\delta^{\prime \prime}>0$ such that, for any $t \in\left(0, \delta^{\prime \prime}\right)$, we have

$$
\begin{aligned}
\left|\left\langle u-p, j\left(x_{n}-p\right)\right\rangle-\left\langle u-z_{t}, j\left(x_{n}-z_{t}\right)\right\rangle\right| \leq & \left|\left\langle u-p, j\left(x_{n}-p\right)\right\rangle-\left\langle u-p, j\left(x_{n}-z_{t}\right)\right\rangle\right| \\
& +\left|\left\langle u-p, j\left(x_{n}-z_{t}\right)\right\rangle-\left\langle u-z_{t}, j\left(x_{n}-z_{t}\right)\right\rangle\right| \\
\leq & \|u-p\|\left\|j\left(x_{n}-p\right)-j\left(x_{n}-z_{t}\right)\right\| \\
& +\left\|z_{t}-p\right\|\left\|x_{n}-z_{t}\right\| \\
< & \frac{\varepsilon}{2} .
\end{aligned}
$$

Taking $\delta=\min \left\{\delta^{\prime}, \delta^{\prime \prime}\right\}$, for $t \in(0, \delta)$, we have that

$$
\left\langle u-p, j\left(x_{n}-p\right)\right\rangle \leq\left\langle u-z_{t}, j\left(x_{n}-z_{t}\right)\right\rangle+\frac{\varepsilon}{2} .
$$

Hence,

$$
\limsup _{n \rightarrow \infty}\left\langle u-p, j\left(x_{n}-p\right)\right\rangle \leq \varepsilon, \text { where } \varepsilon>0 \text { is arbitrary }
$$

which yields that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-p, j\left(x_{n}-p\right)\right\rangle \leq 0 \tag{7}
\end{equation*}
$$

Now we prove that $\left\{x_{n}\right\}$ converges strongly to p. It follows from Lemma 1 and 2 that

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\alpha_{n}(u-p)+\left(1-\alpha_{n}\right)\left(y_{n}-p\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)\left\|y_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle u-p, j\left(x_{n+1}-p\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle u-p, j\left(x_{n+1}-p\right)\right\rangle \tag{8}
\end{align*}
$$

By condition (i) and Lemma 3, $\left\{x_{n}\right\}$ converges strongly to p. The proof is complete.

Remark 1. If E is uniformly smooth, then E is reflexive and has a uniformly Gâteaux differentiable norm with the property that every nonempty closed and bounded subset of E has the fixed point property for nonexpansive mappings (see Remark 3.5 of [16]). Thus, if E in Theorem 4 is a real uniformly smooth Banach space, then Theorem 4 is true, too.

Using the proof method of Theorem 4, we may improve Theorem 1 and Theorem 2 as follows:

Theorem 5. Let $A: K \rightarrow E$ be an m-accretive mapping with $N(A) \neq \emptyset . \operatorname{Let}\left\{x_{n}\right\}$ be defined by (1). Suppose $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy the conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\Sigma_{n=0}^{\infty} \alpha_{n}=\infty$,
(ii) $r_{n} \geq \varepsilon>0, \lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=0, r_{n}<r_{n+1}$.

Then $\left\{x_{n}\right\}$ converges strongly to a zero of A.
Proof. By using the proof method of Theorem 4, we can also obtain that $\left\{x_{n}\right\}$ is bounded. Now, we shall show $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. For the purpose, let $\gamma_{n}=$ $1-\delta, 0<\delta<\frac{1}{2}\left(1-\frac{r_{n}}{r_{n+1}}\right), \bar{y}_{n}=\frac{x_{n+1}-x_{n}+\gamma_{n} x_{n}}{\gamma_{n}}$, i.e. $\bar{y}_{n}=\frac{\alpha_{n} u+\left(1-\alpha_{n}\right) J_{r_{n}} x_{n}-\delta x_{n}}{1-\delta}$, then

$$
\begin{align*}
\bar{y}_{n+1}-\bar{y}_{n}= & \frac{\alpha_{n+1} u-\alpha_{n} u}{1-\delta}+\frac{\left(1-\alpha_{n+1}\right) J_{r_{n+1}} x_{n+1}}{1-\delta}-\frac{\left(1-\alpha_{n}\right) J_{r_{n}} x_{n}}{1-\delta} \\
& +\frac{\delta}{1-\delta}\left(x_{n}-x_{n+1}\right) \tag{9}\\
= & \frac{\left(\alpha_{n+1}-\alpha_{n}\right)\left(u-J_{r_{n}} x_{n}\right)+\left(1-\alpha_{n+1}\right)\left(J_{r_{n+1}} x_{n+1}-J_{r_{n}} x_{n}\right)+\delta x_{n}-\delta x_{n+1}}{1-\delta} .
\end{align*}
$$

It follows from (9) and Lemma 5 that

$$
\begin{aligned}
\left\|\bar{y}_{n+1}-\bar{y}_{n}\right\| \leq & \frac{\alpha_{n+1}+\alpha_{n}}{1-\delta}\left\|u-J_{r_{n}} x_{n}\right\|+\frac{\left\|J_{r_{n+1}} x_{n+1}-J_{r_{n}} x_{n}\right\|}{1-\delta}+\frac{\delta}{1-\delta}\left\|x_{n+1}-x_{n}\right\| \\
= & \frac{\alpha_{n+1}+\alpha_{n}}{1-\delta}\left\|u-J_{r_{n}} x_{n}\right\|+\frac{\delta}{1-\delta}\left\|x_{n+1}-x_{n}\right\| \\
& +\frac{\left\|J_{r_{n}}\left(\frac{r_{n}}{r_{n+1}} x_{n+1}+\left(1-\frac{r_{n}}{r_{n+1}}\right) J_{r_{n+1}} x_{n+1}\right)-J_{r_{n}} x_{n}\right\|}{1-\delta} \\
\leq & \frac{\alpha_{n+1}+\alpha_{n}}{1-\delta}\left\|u-J_{r_{n}} x_{n}\right\| \\
& +\frac{\left(\delta+\frac{r_{n}}{r_{n+1}}\right)\left\|x_{n+1}-x_{n}\right\|+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left\|J_{r_{n+1}} x_{n+1}-x_{n}\right\|}{1-\delta}
\end{aligned}
$$

which implies that

$$
\begin{align*}
\left\|\bar{y}_{n+1}-\bar{y}_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\alpha_{n+1}+\alpha_{n}}{1-\delta}\left\|u-J_{r_{n}} x_{n}\right\| \tag{10}\\
& +\frac{\left(1-\frac{r_{n}}{r_{n+1}}\right)\left\|J_{r_{n+1}} x_{n+1}-x_{n}\right\|}{1-\delta} .
\end{align*}
$$

By condition (i-ii) and boundedness of $\left\{x_{n}\right\}$, from (10) we get that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\left\|\bar{y}_{n+1}-\bar{y}_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right\} \leq 0 . \tag{11}
\end{equation*}
$$

Based on Lemma 2 and (11), we have $\lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-x_{n}\right\|=0$, which implies $\lim _{n \rightarrow \infty} \| x_{n+1}-$ $x_{n} \|=0$. Since $\left\|x_{n+1}-J_{r_{n}} x_{n}\right\|=\alpha_{n}\left\|u-J_{r_{n}} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
\left\|x_{n}-J_{r_{n}} x_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-J_{r_{n}} x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

The rest of the argument is similar to the corresponding part of Theorem 4 and so it is omitted. This completes the proof of Theorem 5 .

Remark 2. From Remark 1, if E is uniformly smooth, then Theorem 5 is true.

References

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff International Publishing, Leyden, 1976.
[2] S. S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30(1997), 4197-4208.
[3] R. Chen, Z. Zhu, Viscosity approximation method for accretive operator in Banach space, Nonlinear Anal. 69(2008), 1356-1363.
[4] C. E. Chidume, M. O. Osilike, Ishikawa iteration process for nonlinear lipschitz strongly accretive mappings, J. Math. Anal. Appl. 192(1995), 727-741.
[5] C. E. Chidume, C. O. Chidume, Iterative approximation of fixed points of nonexpansive mappings, J. Math. Anal. Appl. 318(2006), 288-295.
[6] T. H. Kim, H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61(2005), 51-60.
[7] C. H. Morales, J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128(2000), 3411-3419.
[8] X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329(2007), 415-424.
[9] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. 2005(2005), 103-123.
[10] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[11] Z. B. Xu, G. F.Roach, A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations, J. Math. Anal. Appl. 167(1992), 340-354.
[12] Y. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224(1998), 91-101.
[13] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London. Math. Soc. 2(2002), 240-256.
[14] H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314(2006), 631-643.
[15] Y. Yao, R. Chen, J.-C. Yao, Strong convergence and certain control conditions for modified Mann iteration, Nonlinear Anal. 68(2008), 1687-1693.
[16] H. Zegeye, N. Shahzad, Strong convergence theorems for a common zero of a finite family of m-accretive mappings, Nonlinear Anal. 66(2007), 1161-1169.

[^0]: *The present studies were supported by the Honghe University foundation (XSS07006).
 ${ }^{\dagger}$ Corresponding author. Email address: zhenhuahe@126.com (Z.He)

