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Dirac operators on Weil representations I∗
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Abstract. Let G be the metaplectic double cover of the group of four-by-four real sym-
plectic matrices. Let g be the complexified Lie algebra of G. Let W0 and W1 be the
Harish-Chandra modules of the even and odd Weil representations of G, respectively. We
find the Dirac cohomology of W0 and W1 with respect to the Dirac operator corresponding
to a maximal compact subalgebra of g, and then also with respect to the Kostant’s cubic
Dirac operator corresponding to a compact Cartan subalgebra of g. The results can be
considered as examples illustrating the main results of [11].

AMS subject classifications: 22E47

Key words: symplectic group, Weil representation, Dirac operator

1. Introduction

Dirac operators were introduced into representation theory of real reductive Lie
groups by Parthasarathy [16]. In this paper we consider their algebraic versions due
to Vogan [18] and Kostant [13]. The main goal is to illustrate the main results of
[11] by very concrete examples. In the sequel [15] we show further examples which
are counterexamples to certain generalizations of the results of [11] that one might
attempt. We believe that the results we obtain and the calculations we need to get
them are also interesting in their own right.

All our examples concern the two Weil representations of the metaplectic double
cover G = Mp(4,R) of the group of symplectic four by four real matrices Sp(4,R).
More precisely, we study the Harish-Chandra modules of these representations. Re-
call that Harish-Chandra modules are modules for the complexified Lie algebra g of
G, which also carry an action of the maximal compact subgroup K of G. In our case,
g is the symplectic Lie algebra sp(4,C), while K is a double cover of the unitary
group U(2).

Weil representations and their Harish-Chandra modules are well known and much
studied representations, with many important applications. They are also called
Segal-Shale-Weil representations. See [19] or [2], Ch. VIII. For the approach we
adopt, see [1, 3, 6] and [17].

We are concerned with actions of several Dirac operators on these representations:
first the “ordinary” Dirac operator corresponding to the complexified Lie algebra k
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of K, then the Kostant’s cubic Dirac operator corresponding to the compact Cartan
subalgebra, and finally, in [15], the Kostant’s cubic Dirac operator corresponding to
a certain noncompact Levi subalgebra.

Our results can be generalized in various directions. For example, [10] contains
a generalization of the results of Section 5 below. The argument in a more general
case is however less direct, and consequently the results are also not quite so explicit.

2. Definition and basic properties of Dirac cohomology

Let G be a connected reductive Lie group with Cartan involution Θ, such that
K = GΘ is a maximal compact subgroup of G. Let g0 = k0 ⊕ p0 and g = k ⊕ p be
the corresponding Cartan decompositions of the Lie algebra of G and its complex-
ification. We denote by B a fixed invariant nondegenerate symmetric bilinear form
on g0 and g. Then k and p are orthogonal with respect to B, and hence B restricts
nondegenerately to both k and p.

Let U(g) be the universal enveloping algebra of g, and let C(p) be the Clifford
algebra of p with respect to B. We use the conventions of [12] and [11]. In particular,
C(p) is the associative algebra with a unit generated by p, with relations

XY + Y X = 2B(X,Y ), X, Y ∈ p.

(Notice the opposite sign compared to [8] or [9]).
The Dirac operator corresponding to k ⊆ g is

D = D(g, k) =
∑

i

bi ⊗ di ∈ U(g)⊗ C(p), (1)

where bi is any basis of p and di is the dual basis with respect to B. It is easy to
see that D is independent of the choice of bi and K-invariant for the adjoint action
on both factors.

Let X be a (g,K)-module and let S be a spin module for C(p). Recall that S
is constructed as the exterior algebra of a maximal isotropic subspace U of p. The
elements of U act on S by wedging and the elements of the dual isotropic subspace
U∗ act by contractions. Finally, if p is odd-dimensional, there are two choices for
the action of the orthogonal of U ⊕ U∗. For more facts about Cliford algebras and
spinors, see [4], [12] or [9]. Then D acts on X ⊗ S and we define Dirac cohomology
of X as

HD(X) = Ker D/ Im D ∩KerD.

Then HD(X) is a module for the spin double cover K̃ of K. If X is unitary, then D
is skew symmetric with respect to a natural inner product on X ⊗ S, and therefore

HD(X) = KerD = Ker D2. (2)

By a result of Parthasarathy [16], D2 is given by

D2 = (Casg⊗1 + ‖ρg‖2)− (∆(Cask) + ‖ρk‖2). (3)
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Here Casg resp. Cask denote the Casimir elements of U(g) resp. U(k), ρg and ρk are
the half sums of positive roots for g resp. k, and ∆ denotes the diagonal embedding
of k into U(g)⊗ C(p). More precisely,

∆(X) = X ⊗ 1 + 1⊗ α(X),

where α : k → so(p) ∼= ∧2
p ↪→ C(p) is the action map followed by the skew

symmetrization map X ∧ Y 7→ 1
2 (XY − Y X).

To make use of (3), let h = t ⊕ a be a fundamental Cartan subalgebra of g. In
other words, t is a Cartan subalgebra of k while a is the centralizer of t in p. We
view t∗ as a subspace of h∗ by extending functionals on t to functionals on h which
act by zero on a. Then if X is unitary and has infinitesimal character Λ ∈ h∗, we
can use (2) and (3) to conclude that an irreducible K̃-submodule E(τ) of X ⊗ S
with highest weight τ ∈ t∗ ⊂ h∗ is contained in HD(X) if and only if

‖Λ‖2 = ‖τ + ρk‖2.
By the main result of [8], this is in fact equivalent to the seemingly stronger require-
ment that

Λ = w(τ + ρk)

for some w in the Weyl group of g.
Let us now assume that the pair (g, k) is Hermitian symmetric. Then p = p+⊕p−,

where p± are K-invariant abelian subalgebras of g. It follows that we can pick the
dual maximal isotropic subspaces of p to be p+ and p−, and the spin module S to
be

∧
p+. Let vi be a basis of p+ and let v∗i be the dual basis of p−. Then the Dirac

operator D can be written as the sum C + C−, where

C = C(g, k) =
∑

i

v∗i ⊗ vi and C− = C−(g, k) =
∑

i

vi ⊗ v∗i (4)

are K-invariant elements of U(g) ⊗ C(p), both squaring to zero. As shown in [11],
Section 2, X⊗S can be interpreted as the space of chains for the p+-homology of X,
or as the space of cochains for the p−-cohomology of X. Under these identifications,
C corresponds to the p−-cohomology differential, while C− corresponds to a multiple
of the p+-homology differential.

Moreover, by the results of Section 7 of [11], if X is unitary, then the Dirac
cohomology of X can be expressed as Ker C ∩KerC−, and it can be viewed as the
space of harmonic representatives for both the p−-cohomology and the p+-homology
of X. In particular, the Dirac cohomology, the p−-cohomology and the p+-homology
of X all coincide as vector spaces, and also as k-modules if one introduces appropriate
modular twists.

More generally, if q = l ⊕ u is a θ-stable parabolic subalgebra of g, such that
l ⊆ k and u ⊇ p+, then analogous results are true for the ū-cohomology of X, the
u-homology of X, and the Dirac cohomology of X with respect to Kostant’s cubic
Dirac operator D(g, l). Moreover, each of these three kinds of cohomology can be
calculated in stages, by first calculating cohomology with respect to the pair (g, k),
and then the cohomology with respect to the pair (k, l). See [11], Theorem 6.1,
Corollary 7.9 and Theorem 7.11.
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3. A description of the Lie algebra sp(4)

We use the construction of symplectic Lie algebras inside Weyl algebras, parallel to
the construction of orthogonal Lie algebras inside Clifford algebras. See [1, 3, 6] or
[17].

Let D(2) be the Weyl algebra of differential operators on C2 with polynomial
coefficients. We will identify g = sp(4,C) with the Lie subalgebra of D(2) spanned
by the following (total) degree two elements:

h1 = z1∂1 + 1
2 , h2 = z2∂2 + 1

2 ;
u1 = z1∂2, u∗1 = −2z2∂1;
v1 = z2

1 , v2 = z1z2, v3 = z2
2 ;

v∗1 = ∂2
1 , v∗2 = 2∂1∂2, v∗3 = ∂2

2 .

Note that the elements of D(2) of pure degree are obtained by symmetrization
from their symbols. This explains the presence of summands 1

2 in the definition of
h1 and h2.

Using the commutation rules of D(2) (all generators commute, except [∂i, zi] = 1),
it is easy to get the commutator table for the above basis of g:

h2 u1 u∗1 v1 v2 v3 v∗1 v∗2 v∗3

h1 0 u1 −u∗1 2v1 v2 0 −2v∗1 −v∗2 0
h2 −u1 u∗1 0 v2 2v3 0 −v∗2 −2v∗3
u1 −2h1 + 2h2 0 v1 2v2 −v∗2 −2v∗3 0
u∗1 −4v2 −2v3 0 0 4v∗1 2v∗2
v1 0 0 −4h1 −4u1 0
v2 0 u∗1 −2h1 − 2h2 −2u1

v3 0 2u∗1 −4h2

v∗1 0 0
v∗2 0

(These commutators can be easily calculated using Maple.)
Let us denote by k the copy of gl(2,C) spanned by h1, h2, u1 and u∗1, and by p

the subspace of g spanned by vi and v∗i (i = 1, 2, 3). Then g = k ⊕ p is the Cartan
decomposition corresponding to the group Sp(4,R). Moreover, k is the complexified
Lie algebra of the maximal compact subgroup K of G mentioned in the introduction.
The elements h1 and h2 span the Cartan subalgebra t for both g and k; in particular,
both g and k are of rank 2. Furthermore, h1 + h2 spans the center of k, vi span the
abelian subalgebra p+ of p and v∗i span the abelian subalgebra p− of p.

In terms of roots, we can identify t∗ with C2 using the basis ε1 = (1, 0), ε2 =
(0, 1) dual to the basis h1, h2 of t. This gives exactly standard coordinates for both
k = gl(2,C) and g = sp(4,C). Then u1 and v2 correspond to the short positive
roots ε1− ε2 resp. ε1 + ε2, while v1 and v3 correspond to the long positive roots 2ε1

resp. 2ε2. An element with a star always corresponds to the opposite root from the
corresponding element without a star.

The normalizations are picked so that u∗1 resp. v∗i are dual to u1 resp. vi with
respect to the (suitably normalized) Killing form.
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4. The Weil representation

With the above description of g, describing the ((g,K)-module of the) Weil repre-
sentation is natural and easy: just take the natural representation of D(2) on the
space W = P (C2) of polynomials in z1 and z2, and restrict the action to g. See
[1, 3, 6] or [17].

Let us check that the restriction of the action of g on W to k exponentiates to
the group K, the maximal compact subgroup of Mp(4,R).

It is clear that u1 sends zi
1z

j
2 to jzi+1

1 zj−1
2 , while u∗1 sends zi

1z
j
2 to izi−1

1 zj+1
2 . It

follows that the space of polynomials of a fixed degree is invariant and irreducible
for k. Moreover, the highest weight vectors are of the form zn

1 and since h1 acts on
zn
1 by the scalar n + 1

2 and h2 by the scalar 1
2 , the highest weights appearing are of

the form (n + 1
2 , 1

2 ). Here we are using the standard coordinates on t∗ described at
the end of the previous section. Since K is the double cover of U(2), any k-weight
with integral or half-integral coordinates is analytically integral for K. So indeed K
acts on W , and this action is locally finite.

The above calculation also shows that all the K-types lie on the line y = 1
2 in t∗,

and that the multiplicity of each K-type is one.
It is now also clear that W decomposes as the sum of two irreducible modules

for g, W0 resp. W1, consisting of polynomials of even resp. odd degree. Namely, the
action of each of the vi’s and v∗i ’s from p changes the degree of a polynomial by two.
Finally, we also see that both W0 and W1 are highest weight modules with respect
to the parabolic subalgebra q− = k⊕ p− of g.

All this can be summarized by the following two pictures representing the bases
of W0 and W1:

. . .
z6
1 . . .

z4
1 z5

1z2 . . .
z2
1 z3

1z2 z4
1z2

2 . . .
1 z1z2 z2

1z2
2 z3

1z3
2 . . .

z2
2 z1z

3
2 z2

1z4
2 . . .

z4
2 z1z

5
2 . . .

z6
2 . . .

. . .

. . .
z5
1 . . .

z3
1 z4

1z2 . . .
z1 z2

1z2 z3
1z2

2 . . .
z2 z1z

2
2 z2

1z3
2 . . .

z3
2 z1z

4
2 . . .

z5
2 . . .

. . .

(5)

The columns of each picture represent the K-types. The action of p+ is to the right
(raising the degree), while the action of p− is to the left (lowering the degree). We
leave it to the reader to plot the weights of each of the monomials in our standard
coordinates; the pictures are analogous but different from the ones above.

5. Dirac cohomology of W with respect to D(g, k)

We choose S =
∧

(p+) for the space of spinors for p. So vi act on S by exterior
multiplication, while v∗i are antiderivations defined on generators by

v∗i · vj = 2δij .
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In view of (1), we can write the Dirac operator for the pair (g, k) as

D = D(g, k) =
∑

v∗i ⊗ vi +
∑

vi ⊗ v∗i

= ∂2
1 ⊗ v1 + 2∂1∂2 ⊗ v2 + ∂2

2 ⊗ v3 + z2
1 ⊗ v∗1 + z1z2 ⊗ v∗2 + z2

2 ⊗ v∗3 .

Here the first three summands give the p−-cohomology operator C, while the
last three summands give the p+-homology operator C−.

By the results of [11] explained in Section 2,

HD(W ) = Ker D = Ker C ∩Ker C−.

So we need to look for solutions X of C(X) = C−(X) = 0. Clearly, we can assume
that X is homogeneous with respect to the second (spinor) factor.

If a solution has degree 0 with respect to the second variable, then it is of the form
P⊗1 for some polynomial P . This is automatically killed by C−, while C(P⊗1) = 0
gives

∂2
1P = 0; 2∂1∂2P = 0; ∂2

2P = 0.

This is satisfied if and only if deg P ≤ 1, and we get the solutions

1⊗ 1;
z1 ⊗ 1, z2 ⊗ 1.

If a solution has degree 1 with respect to the second variable, then it is of the
form X = P ⊗ v1 + Q⊗ v2 + R⊗ v3 for some polynomials P, Q and R. Writing out
C(X) = 0, we get

∂2
1Q− 2∂1∂2P = 0; (6)

∂2
1R− ∂2

2P = 0; (7)
2∂1∂2R− ∂2

2Q = 0, (8)

and writing out C−(X) = 0 we get

z2
1P + z1z2Q + z2

2R = 0. (9)

To solve this system of equations, let us first note that all the operators applied to
P , Q and R in the above equations are homogeneous with respect to each of the
variables. Consequently, we can assume P , Q and R are monomials.

Note that (7) can be satisfied either trivially, when ∂2
1R = ∂2

2P = 0, or nontriv-
ially, when both ∂2

1R and ∂2
2P are nonzero. If it is satisfied nontrivially, then we can

assume
P = pzi

1z
j+2
2 , R = rzi+2

1 zj
2,

where p, r ∈ C∗, i, j are nonnegative integers, and

p(j + 2)(j + 1) = r(i + 2)(i + 1).

In particular, p/r is a positive real number.



Dirac operators on Weil representations I 407

Substituting these expressions for P and R in (9) and simplifying, we see that

Q = −(p + r)zi+1
1 zj+1

2 .

Now (6) becomes −(p + r)(i + 1)i = 2pi(j + 2), that is

−ri(i + 1) = pi(2j + i + 5).

If i 6= 0, we get that p/r is a negative real number, a contradiction. Hence i = 0.
Similarly, (8) implies that j = 0. Since (7) now gives p = r, we see that we are
getting a unique solution (up to a scalar):

z2
2 ⊗ v1 − 2z1z2 ⊗ v2 + z2

1 ⊗ v3.

If (7) is satisfied trivially, then P = pzi
1z2 while R = rz1z

j
2, where p, r ∈ C and

i, j are nonnegative integers. Namely, by (9), P is divisible by z2, while R is divisible
by z1. Now (9) becomes

Q = −pzi+1
1 − rzj+1

2 .

So if we want a nonzero solution, p and r cannot both be 0. From (6), we get

pi(i + 3) = 0,

so either p = 0 or i = 0. Similarly, from (8) we see that either r = 0 or j = 0. If
p = 0, then r 6= 0, so j = 0. Taking r = 1, we get R = z1 and Q = −z2, i.e., we
obtain the solution

−z2 ⊗ v2 + z1 ⊗ v3.

If r = 0, then p 6= 0, so i = 0. Taking p = 1, we get P = z2 and Q = −z1, i.e., we
obtain the solution

z2 ⊗ v1 − z1 ⊗ v2.

If p 6= 0 and r 6= 0, then i and j are 0, so P = pz2, R = rz1, Q = −pz1 − rz2; this
solution is a linear combination of the above solutions.

A solution of degree 2 with respect to the second variable is of the form X =
P ⊗ v1v2 + Q⊗ v1v3 + R⊗ v2v3. Writing out C(X) = 0, we get

∂2
1R− 2∂1∂2Q + ∂2

2P = 0, (10)

and writing out C−(X) = 0 we get

z2
1P − z2

2R = 0; −z1z2P − z2
2Q = 0; z2

1Q + z1z2R = 0. (11)

From the first equation in (11), we conclude that P = z2
2P1 and R = z2

1P1 for
some polynomial P1. The second and third equation of (11) now both become
Q = −z1z2P1. Substituting into (10), we get

(∂2
1z2

1 + 2∂1∂2z1z2 + ∂2
2z2

2)P1 = 0.

This has no nonzero solutions, since the operator in parentheses acts on any mono-
mial zn

1 zk
2 by a positive scalar.
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A solution of degree 3 with respect to the second variable is of the form X =
P ⊗ v1v2v3. This is automatically killed by C, while C−(X) = 0 gives

z2
1P = 0; z1z2P = 0; z2

2P = 0.

So we see that there are no nonzero solutions of degree 3.
So we obtained that the Dirac cohomology of W0 is spanned by

1⊗ 1 and z2
2 ⊗ v1 − 2z1z2 ⊗ v2 + z2

1 ⊗ v3,

while the Dirac cohomology of W1 is spanned by

z1 ⊗ 1, z2 ⊗ 1, z2 ⊗ v1 − z1 ⊗ v2 and − z2 ⊗ v2 + z1 ⊗ v3.

It remains to determine the K̃-action on the Dirac cohomology. (Recall from
Section 2 that the spin double cover K̃ of K acts on the Dirac cohomology.) To
do this, we first describe the diagonally embedded copy k∆ of k. We will use the
following formula for α : k → C(p):

α(X) =
1
4

∑

i

([X, vi]v∗i + [X, v∗i ]vi). (12)

This can easily be proved from formula (3) in Section 2 of [11]. (See also [9], Chapter
2, but note that the sign is opposite there, because of different conventions.) It is
now clear from the commutation table in Section 3 that k∆ is spanned by

h1∆ = h1 ⊗ 1− 1⊗ (v∗1v1 +
1
2
v∗2v2) +

3
2
⊗ 1, (13)

h2∆ = h2 ⊗ 1− 1⊗ (
1
2
v∗2v2 + v∗3v3) +

3
2
⊗ 1,

u1∆ = −1
2
v∗2v1 − v∗3v2,

u∗1∆ = 2v∗1v2 + v∗2v3.

Acting by these elements on the solutions obtained above, and denoting by H0
D

resp. H1
D the even resp. odd Dirac cohomology (with respect to the spinor degree),

we obtain the following result.

Theorem 1. Dirac cohomology of the Weil representation consists of the following
modules for the spin double cover K̃ of K:

H0
D(g, k; W0) is the one-dimensional K̃-module with highest weight (−1,−1),

spanned by 1⊗ 1.
H1

D(g, k; W0) is the one-dimensional K̃-module with highest weight (1, 1), spanned
by z2

2 ⊗ v1 − 2z1z2 ⊗ v2 + z2
1 ⊗ v3.

H0
D(g, k; W1) is the two-dimensional K̃-module with highest weight (0,−1), spann-

ed by z1 ⊗ 1 (of weight (0,−1)) and z2 ⊗ 1 (of weight (−1, 0)).
H1

D(g, k; W1) is the two-dimensional K̃-module with highest weight (1, 0), spanned
by z2 ⊗ v1 − z1 ⊗ v2 (of weight (1, 0)) and −z2 ⊗ v2 + z1 ⊗ v3 (of weight (0, 1)).
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Remark 1. One could also obtain the Dirac cohomology of W by using the result
from [11] which says it is the same as p−-cohomology up to a ρ-shift, and then using
the results in [1] or [5] to determine the p−-cohomology. Our present approach is
however more direct and gives explicit (harmonic) representatives.

It is also possible to use the approach of [10] to get the K-types of HD(W ) in
a rather direct fashion. Finding the explicit vectors in HD(W ) ⊂ W ⊗ S as we did
above would however require additional work.

6. Dirac cohomology of W with respect to D(g, t)

By the results of [11], we know that we can get HD(g, t;W ) as the Dirac cohomology
of the k-module HD(g, k; W ) with respect to D(k, t). Since HD(g, k; W ) is finite-
dimensional, we can apply Kostant’s formula ([14], Theorem 5.1), which says

HD(k, t; V (µ)) =
⊕

w∈Wk

Cw(µ+ρk),

where V (µ) denotes the finite-dimensional k-module with highest weight µ, and Cλ

denotes the one-dimensional t-module of weight λ.
So we can start from the description of HD(g, k;W ) from Theorem 1. Then

we note that ρk = ( 1
2 ,− 1

2 ) and that Wk
∼= Z2, with the nontrivial element being

(x, y) 7→ (y, x). Now a short calculation gives the following result.

Proposition 1. HD(g, t;W0) is a direct sum of four one-dimensional spaces, of
respective weights (− 1

2 ,− 3
2 ), (− 3

2 ,− 1
2 ), ( 3

2 , 1
2 ) and ( 1

2 , 3
2 ).

HD(g, t;W1) is a direct sum of four one-dimensional spaces, of respective weights
( 1
2 ,− 3

2 ), (− 3
2 , 1

2 ), ( 3
2 ,− 1

2 ) and (− 1
2 , 3

2 ).

We now want to describe HD(W ) more explicitly by finding the harmonic rep-
resentatives in W ⊗ S, where S is the space of spinors for (g, t). We start from
the harmonic representatives for HD(g, k;W ) from Theorem 1. We tensor these
with the space of spinors for (k, t), Sk =

∧
(Cu1). Then we find KerD∆(k, t) =

KerC∆(k, t)∩Ker C−∆(k, t) on thus obtained space. For this we first calculate C∆(k, t)
and C−∆(k, t). Using the formula (13), we get

C∆(k, t) = −2z2∂1 ⊗ u1 + 2⊗ u1v
∗
1v2 + 1⊗ u1v

∗
2v3;

C−∆(k, t) = z1∂2 ⊗ u∗1 −
1
2
⊗ u∗1v

∗
2v1 − 1⊗ u∗1v

∗
3v2.

Now acting upon our candidates for harmonic representatives, we see that all
elements of HD(g, k;W0)⊗ Sk are killed by both C∆(k, t) and C−∆(k, t). That is, the
space of harmonic representatives for HD(g, t; W0) is spanned by

1⊗ 1, 1⊗ u1;
z2
2 ⊗ v1 − 2z1z2 ⊗ v2 + z2

1 ⊗ v3, z2
2 ⊗ u1v1 − 2z1z2 ⊗ u1v2 + z2

1 ⊗ u1v3.

In HD(g, k; W1)⊗ Sk, Ker C∆(k, t) ∩Ker C−∆(k, t) is spanned by the elements

z2 ⊗ 1, z1 ⊗ u1, −z2 ⊗ v2 + z1 ⊗ v3, z2 ⊗ u1v1 − z1 ⊗ u1v2;
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so these elements span the space of harmonic representatives for HD(g, t; W1).
We leave it to the reader to identify the weights of these eight elements. Of

course, these are the weights appearing in Proposition 1.
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