# Dirac operators on Weil representations II $^{*}$ 

Pavle Pandžićć, ${ }^{1}$<br>${ }^{1}$ Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia

Received November 14, 2009; accepted March 24, 2010


#### Abstract

Let $G$ be a metaplectic double cover of the group $G$ of four-by-four real symplectic matrices. Let $\mathfrak{g}$ be the complexified Lie algebra of $G$. Denote by $W_{0}$ and $W_{1}$ the Harish-Chandra modules of the even and odd Weil representations of $G$, respectively. We find the Dirac cohomology of $W_{0}$ and $W_{1}$ with respect to a noncompact Levi subalgebra $\mathfrak{l}$ of a $\theta$-stable parabolic subalgebra of $\mathfrak{g}$. The results can be considered as counterexamples to certain generalizations of the main results of [9].


AMS subject classifications: 22E47
Key words: symplectic group, Weil representation, Dirac operator

## 1. Introduction

In this note we continue the work of [13] with treating a much more difficult case of Dirac cohomology with respect to a noncompact subalgebra $\mathfrak{l}$ of $\mathfrak{g}=\mathfrak{s p}(4, \mathbb{C})$. The modules we consider are the same as in [13]: the even and odd Weil representations of $\mathfrak{g}, W_{0}$ and $W_{1}$. These are also called Segal-Shale-Weil representations. See [17] or [2], Ch. VIII. For the approach we adopt see $[1,3,5]$ and $[15]$.

The subalgebra $\mathfrak{l}$ is a Levi subalgebra of a $\theta$-stable parabolic subalgebra $\mathfrak{q}=\mathfrak{l} \oplus \mathfrak{u}$ of $\mathfrak{g}$, and it is isomorphic to $\mathfrak{g l}(2, \mathbb{C})$, just as $\mathfrak{k}$, the complexified Lie algebra of the maximal compact subgroup $K$ of $G=\operatorname{Mp}(4, \mathbb{R})$. The obtained results are however in sharp contrast with those for $\mathfrak{k}$. None of the results of [9], that would apply if $\mathfrak{l}$ were contained in $\mathfrak{k}$, works here. For example, even though the modules we study decompose discretely under $\mathfrak{l}$, the square of the Dirac operator does not act semisimply. The Dirac cohomology is not the same as the $\mathfrak{u}$-homology or the $\overline{\mathfrak{u}}$ cohomology. The differentials for the $\mathfrak{u}$-homology and the $\overline{\mathfrak{u}}$-cohomology, $C$ and $C^{-}$, are not disjoint. Finally, Dirac cohomology cannot be calculated in stages with respect to the compact Cartan subalgebra $\mathfrak{t} \subset \mathfrak{l}$. See Section 6 for more details.

We will keep the notation of [13]. We refer to Introduction and Section 2 of [13] (and to other references) for the definitions of Dirac operators and Dirac cohomology and for their basic properties, as well as for facts about the structure of $\mathfrak{g}$.

[^0]
## 2. A Levi subalgebra of $\mathfrak{g}$

Let $\mathfrak{l} \subset \mathfrak{g}$ be the subalgebra spanned by $\mathfrak{t}$, and the short noncompact root vectors $v_{2}=z_{1} z_{2}$ and $v_{2}^{*}=2 \partial_{1} \partial_{2}$. It is clear from the commutation relations of $\mathfrak{g}$ that $\mathfrak{l}$ is a subalgebra isomorphic to $\mathfrak{g l}(2, \mathbb{C})$. Note that $h_{1}-h_{2}$ is central in $\mathfrak{l}$, while $h_{1}+h_{2}$ is in $[\mathfrak{l}, \mathfrak{l}]$ and satisfies $\left[h_{1}+h_{2}, v_{2}\right]=2 v_{2}$ and $\left[h_{1}+h_{2}, v_{2}^{*}\right]=-2 v_{2}^{*}$. Therefore, we change the basis of $\mathfrak{t}$ to $h_{1}$ and $\tilde{h}_{2}=-h_{2}$ to get the standard $\mathfrak{g l}(2)$-coordinates.

Moreover, $\mathfrak{l}$ is a noncompact Levi subalgebra of $\mathfrak{g}$ : a corresponding parabolic subalgebra $\mathfrak{q}=\mathfrak{l} \oplus \mathfrak{u}$ can be defined by setting $\mathfrak{u}$ to be the span of $v_{1}, u_{1}$ and $v_{3}^{*}$. (Note the change of the positive root system compared to [13], where $v_{3}$ was a positive root vector and not $v_{3}^{*}$.) In particular, Kostant's cubic Dirac operator $D(\mathfrak{g}, \mathfrak{l})$ is defined (but since $\mathfrak{l}$ is a symmetric subalgebra of $\mathfrak{g}$, the cubic term actually vanishes).

Recall the pictures representing bases of the irreducible ( $\mathfrak{g}, K$ )-submodules $W_{0}$ and $W_{1}$ of the Weil representation $W$ of $\mathfrak{g}$ given in equation (4.1) of [13]. It is clear that the rows of each picture are invariant and irreducible for $\mathfrak{l}$. Note that all these rows are lowest weight $\mathfrak{g l}(2, \mathbb{C})$-modules (we are fixing a choice of positive roots for $\mathfrak{l}$ such that $v_{2}=z_{1} z_{2}$ corresponds to the positive root). The lowest weights appearing in $W$ are

$$
\begin{equation*}
\left(n+\frac{1}{2},-\frac{1}{2}\right) ; \quad\left(\frac{1}{2},-n-\frac{1}{2}\right) \tag{1}
\end{equation*}
$$

for each positive integer $n$, with the corresponding lowest weight vectors $z_{1}^{n}$ and $z_{2}^{n}$, respectively, and

$$
\begin{equation*}
\left(\frac{1}{2},-\frac{1}{2}\right) \tag{2}
\end{equation*}
$$

with the corresponding weight vector 1 . These belong to $W_{0}$ if $n$ is even, and to $W_{1}$ if $n$ is odd. (The weight $\left(\frac{1}{2},-\frac{1}{2}\right)$ corresponds to $1 \in W_{0}$.)

Remark 1. If we denote by $\mathfrak{g}_{1}$ the subalgebra of $\mathfrak{g}$ spanned by $h_{1}+\tilde{h}_{2}$, and by $\mathfrak{g}_{2}$ the subalgebra of $\mathfrak{g}$ spanned by $h_{1}-\tilde{h}_{2}, v_{2}$ and $v_{2}^{*}$, then it is well known (and easy to check) that $\mathfrak{g}_{1} \times \mathfrak{g}_{2} \cong \mathfrak{o}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C})$ is a (complexified) compact dual pair in $\mathfrak{g}$. Therefore, our decomposition is a very special case of general results of Howe [5, 6].

## 3. Tensoring some $\mathfrak{g l}(2, \mathbb{C})$-modules

To calculate the Dirac cohomology of $W$ with respect to $D(\mathfrak{g}, \mathfrak{l})$, we first need to understand the $\mathfrak{l}$-module $W \otimes S$. Here $S=\bigwedge \mathfrak{u}$ is the spin module for $C(\mathfrak{u} \oplus \overline{\mathfrak{u}})$. Since $\bigwedge^{0} \mathfrak{u}$ and $\bigwedge^{3} \mathfrak{u}$ are one-dimensional, it is obvious how to tensor any module with them. So what we need to study are the tensor products of the lowest weight $\mathfrak{l}$-modules appearing in $W$ with three-dimensional $\mathfrak{l}$-modules $\bigwedge^{1} \mathfrak{u}$ and $\bigwedge^{2} \mathfrak{u}$. In this section we do the analysis of such tensor products for slightly more general modules.

Let $V_{(a, b)}^{\text {low }}$ be a lowest weight $\mathfrak{l}=\mathfrak{g l}(2, \mathbb{C})$-module with lowest weight $(a, b)$, on which $v_{2}$ acts freely (i.e., $v_{2}$ is an injective linear operator). Then $V_{(a, b)}^{\text {low }}$ is spanned by
the weight vectors $x_{(a, b)}, x_{(a+1, b-1)}, x_{(a+2, b-2)}, \ldots$, of respective weights $(a, b),(a+$ $1, b-1),(a+2, b-2), \ldots$, such that

$$
x_{(a+k, b-k)}=v_{2}^{k} x_{(a, b)}, \quad k \in \mathbb{Z}_{+}
$$

It follows by induction on $k$ that

$$
v_{2}^{*} x_{(a+k, b-k)}=2 k(a-b+k-1) x_{(a+k-1, b-k+1)} .
$$

We see that if $a-b \geq 1$, then $V_{(a, b)}^{\text {low }}$ is an irreducible $\mathfrak{l}$-module. In particular, the $\mathfrak{l}$-module $W$ is a direct sum of such modules, for $(a, b)$ as in (1) and (2).

If $a-b \leq 0$, then $V_{(a, b)}^{\text {low }}$ is reducible. Namely, the above formula implies that $v_{2}^{*} x_{b+1, a-1}=0$. It follows that $V_{(a, b)}^{\text {low }}$ contains $V_{(b+1, a-1)}^{\text {low }}$ as an irreducible submodule, and the quotient is equal to the finite-dimensional module $F(b, a)$ with highest weight $(b, a)$. We are mostly interested in the irreducible case, but as we shall see, the reducible $V_{(a, b)}^{\text {low }}$ will also appear along the way.

We now want to describe $V_{(a, b)}^{\text {low }} \otimes F(c, c-2)$, where $F(c, c-2)$ is a threedimensional $\mathfrak{l}$-module with highest weight $(c, c-2)$. The weights of $F(c, c-2)$ are $(c, c-2),(c-1, c-1)$ and $(c-2, c)$. We denote by $y_{(c, c-2)}, y_{(c-1, c-1)}$ and $y_{(c-2, c)}$ the corresponding weight vectors, normalized so that

$$
v_{2}^{*} y_{(c, c-2)}=y_{(c-1, c-1)}, \quad v_{2}^{*} y_{(c-1, c-1)}=y_{(c-2, c)} .
$$

It follows that

$$
v_{2} y_{(c-2, c)}=-4 y_{(c-1, c-1)}, \quad v_{2} y_{(c-1, c-1)}=-4 y_{(c, c-2)}
$$

A short calculation gives
Lemma 1. Assume that $a-b \geq 1$, so that $V_{(a, b)}^{\text {low }}$ is irreducible. Then the lowest weight vectors of $V_{(a, b)}^{\mathrm{low}} \otimes F(c, c-2)$ form a three-dimensional space spanned by the vectors

$$
\begin{aligned}
c_{1}= & x_{(a, b)} \otimes y_{(c-2, c)} ; \\
c_{2}= & x_{(a+1, b-1)} \otimes y_{(c-2, c)}-2(a-b) x_{(a, b)} \otimes y_{(c-1, c-1)} ; \\
c_{3}= & x_{(a+2, b-2)} \otimes y_{(c-2, c)}-4(a-b+1) x_{(a+1, b-1)} \otimes y_{(c-1, c-1)} \\
& +8(a-b)(a-b+1) x_{(a, b)} \otimes y_{(c, c-2)} .
\end{aligned}
$$

Their weights are $(a+c-2, b+c),(a+c-1, b+c-1)$ and $(a+c, b+c-2)$, respectively. Furthermore, the action of $v_{2}$ on $V_{(a, b)}^{\text {low }} \otimes F(c, c-2)$ is injective.

One now checks that for $a-b \geq 3$, vectors $v_{2}^{2} c_{1}, v_{2} c_{2}$ and $c_{3}$ are linearly independent. Combined with injectivity of $v_{2}$, this immediately implies

Corollary 1. If $a-b \geq 3$, then

$$
V_{(a, b)}^{\text {low }} \otimes F(c, c-2)=V_{(a+c-2, b+c)}^{\text {low }} \oplus V_{(a+c-1, b+c-1)}^{\text {low }} \oplus V_{(a+c, b+c-2)}^{\text {low }},
$$

where the lowest weight vectors of the three summands are $c_{1}, c_{2}$ and $c_{3}$.

Here is a picture of the weight vectors in this simplest case:

$$
\begin{array}{rlll} 
& c_{3} & v_{2} c_{3} & v_{2}^{2} c_{3}
\end{array} \quad \ldots .
$$

If $a-b=1$, then $v_{2}^{2} c_{1}=c_{3}$, while $v_{2} c_{2}$ is linearly independent of $c_{3}$. We introduce another vector of weight $(a+c, b+c-2)=(a+c, a+c-3)$,

$$
\begin{equation*}
\tilde{c}_{3}=x_{(a+1, a-2)} \otimes y_{(c-1, c-1)}-6 x_{(a, a-1)} \otimes y_{(c, c-2)} . \tag{3}
\end{equation*}
$$

The choice is such that $\tilde{c}_{3}$ is independent of $v_{2} c_{2}$ and $c_{3}$, and $v_{2}^{*} \tilde{c}_{3}=v_{2} c_{1}$. It follows:
Corollary 2. The module $V_{(a, a-1)}^{\text {low }} \otimes F(c, c-2)$ is a direct sum of a copy of $V_{(a+c-1, a+c-2)}^{\text {low }}$ and a module $\tilde{V}_{(a+c-1, a+c-2)}$. The lowest weight vector of $V_{(a+c-1, a+c-2)}^{\text {low }}$ is $c_{2}$. The Jordan-Hölder series of $\tilde{V}_{(a+c-1, a+c-2)}$ is

$$
\tilde{V}_{(a+c-1, a+c-2)} \supset V_{(a+c-2, a+c-1)}^{\text {low }} \supset V_{(a+c, a+c-3)}^{\text {low }} \supset 0
$$

with subquotients $V_{(a+c, a+c-3)}^{\text {low }}, F(a+c-1, a+c-2)$ and $V_{(a+c, a+c-3)}^{\text {low }}$, respectively. The lowest weight vectors for these subquotients are the image of $\tilde{c}_{3}$, the image of $c_{1}$ and $c_{3}$, respectively.

Finally, if $a-b=2$, then $v_{2} c_{1}=c_{2}$, while $v_{2} c_{2}$ and $c_{3}$ are linearly independent. We introduce another vector of weight $(a+c-1, b+c-1)=(a+c-1, a+c-3)$,

$$
\tilde{c}_{2}=x_{(a, a-2)} \otimes y_{(c-1, c-1)}
$$

Then $v_{2} c_{2}, v_{2} \tilde{c}_{2}$ and $c_{3}$ are independent, while $v_{2}^{*} \tilde{c}_{2}=c_{1}$. It follows:
Corollary 3. The module $V_{(a, a-2)}^{\text {low }} \otimes F(c, c-2)$ is a direct sum of a copy of $V_{(a+c, a+c-4)}^{\text {low }}$ and a module $\tilde{V}_{(a+c-1, a+c-3)}$. The lowest weight vector of $V_{(a+c, a+c-4)}^{\mathrm{low}}$ is $c_{3}$. The Jordan-Hölder series of $\tilde{V}_{(a+c-1, a+c-3)}$ is

$$
\tilde{V}_{(a+c-1, a+c-3)} \supset V_{(a+c-2, a+c-2)}^{\text {low }} \supset V_{(a+c-1, a+c-3)}^{\text {low }} \supset 0,
$$

with subquotients $V_{(a+c-1, a+c-3)}^{\text {low }}, F(a+c-2, a+c-2)$ and $V_{(a+c-1, a+c-3)}^{\text {low }}$, respectively. The lowest weight vectors for these subquotients are the image of $\tilde{c}_{2}$, the image of $c_{1}$ and $c_{2}$, respectively.

## 4. Describing the $\mathfrak{l}$-module $W \otimes S$

We now apply the results of Section 3 to $W \otimes S$. As we know, $W$ is a direct sum of the irreducible $\mathfrak{l}$-modules $V_{(a, b)}^{\text {low }}$ for $(a, b)$ as in (1) and (2). The corresponding basis as in Section 3 is

$$
\begin{equation*}
x_{a+k, b-k}=z_{1}^{n+k} z_{2}^{k}, \quad k \geq 0 \tag{4}
\end{equation*}
$$

if $(a, b)=\left(n+\frac{1}{2},-\frac{1}{2}\right)$ for some integer $n \geq 0$ and

$$
\begin{equation*}
x_{a+k, b-k}=z_{1}^{k} z_{2}^{n+k}, \quad k \geq 0 \tag{5}
\end{equation*}
$$

if $(a, b)=\left(\frac{1}{2},-n-\frac{1}{2}\right)$ for some integer $n>0$, respectively.
We now describe the spin module $S=\bigwedge \mathfrak{u}$ in more detail. Using the formula (5.7) from [13] for $\alpha: \mathfrak{l} \rightarrow C(\mathfrak{u} \oplus \overline{\mathfrak{u}})$, one gets

$$
\begin{aligned}
& \alpha\left(h_{1}\right)=-t_{1}^{*} t_{1}-\frac{1}{2} t_{2}^{*} t_{2}+\frac{3}{2} ; \\
& \alpha\left(\tilde{h}_{2}\right)=-\frac{1}{2} t_{2}^{*} t_{2}-t_{3}^{*} t_{3}+\frac{3}{2} ; \\
& \alpha\left(v_{2}\right)=\frac{1}{2} t_{2}^{*} t_{1}+t_{3}^{*} t_{2} ; \\
& \alpha\left(v_{2}^{*}\right)=-2 t_{1}^{*} t_{2}-t_{2}^{*} t_{3} .
\end{aligned}
$$

From this, it is easily calculated that the irreducible $\mathfrak{l}$-submodules of $S$ are

$$
\begin{align*}
\bigwedge^{0} \mathfrak{u} & =F\left(-\frac{3}{2},-\frac{3}{2}\right) ; & \bigwedge^{1} \mathfrak{u} & =F\left(\frac{1}{2},-\frac{3}{2}\right)  \tag{6}\\
\bigwedge^{2} \mathfrak{u} & =F\left(\frac{3}{2},-\frac{1}{2}\right) ; & \bigwedge^{3} \mathfrak{u} & =F\left(\frac{3}{2}, \frac{3}{2}\right)
\end{align*}
$$

Moreover, the spin action of $v_{2}$ and $v_{2}^{*}$ on $\bigwedge^{1} \mathfrak{u}$ and $\bigwedge^{2} \mathfrak{u}$ is given on the weight vectors $t_{i}$ and $t_{i} \wedge t_{j}$ by

$$
\begin{array}{ll}
v_{2}: & t_{3} \mapsto-2 t_{2}, \quad t_{2} \mapsto-t_{1}, \quad t_{1} \mapsto 0 \\
& t_{2} \wedge t_{3} \mapsto-t_{1} \wedge t_{3}, \quad t_{1} \wedge t_{3} \mapsto-2 t_{1} \wedge t_{2}, \quad t_{1} \wedge t_{2} \mapsto 0 \\
v_{2}^{*}: & t_{1} \mapsto 4 t_{2}, \quad t_{2} \mapsto 2 t_{3}, \quad t_{3} \mapsto 0 \\
& t_{1} \wedge t_{2} \mapsto 2 t_{1} \wedge t_{3}, \quad t_{1} \wedge t_{3} \mapsto 4 t_{2} \wedge t_{3}, \quad t_{2} \wedge t_{3} \mapsto 0
\end{array}
$$

So we can pick a basis for $\bigwedge^{1} \mathfrak{u}=F(c, c-2)=F\left(\frac{1}{2},-\frac{3}{2}\right)$ normalized as in Section 3 by setting

$$
\begin{equation*}
y_{c, c-2}=t_{1}, \quad y_{c-1, c-1}=4 t_{2}, \quad y_{c-2, c}=8 t_{3} \tag{7}
\end{equation*}
$$

and for $\bigwedge^{1} \mathfrak{u}=F(c, c-2)=F\left(\frac{3}{2},-\frac{1}{2}\right)$ by setting

$$
\begin{equation*}
y_{c, c-2}=t_{1} \wedge t_{2}, \quad y_{c-1, c-1}=2 t_{1} \wedge t_{3}, \quad y_{c-2, c}=8 t_{2} \wedge t_{3} \tag{8}
\end{equation*}
$$

It is now not difficult to describe the complete decomposition of $W \otimes S$ as an $\mathfrak{l}$-module. There are a lot of irreducible direct summands of the form $V_{(k, m)}^{\text {low }}$ for various integers $k$ and $m$, most of them with multiplicity 2 . To list them all, one would first tensor the $V_{(a, b)}^{\text {low }} \subset W$ with one-dimensional modules $\Lambda^{0} \mathfrak{u}$ and $\Lambda^{3} \mathfrak{u}$. In this way we get

$$
V_{(n-1,-2)}^{\text {low }} ; \quad V_{(n+2,1)}^{\text {low }}, \quad n \geq 0
$$

for $(a, b)=\left(n+\frac{1}{2},-\frac{1}{2}\right)$, and

$$
V_{(-1,-n-2)}^{\text {low }} ; \quad V_{(2,-n+1)}^{\text {low }}, \quad n \geq 1
$$

for $(a, b)=\left(\frac{1}{2},-n-\frac{1}{2}\right)$.
Further components come from tensoring $V_{(a, b)}^{\text {low }} \subset W, a-b \geq 3$, with $\wedge^{1} \mathfrak{u}$, which gives

$$
V_{(n-1,0)}^{\text {low }} ; \quad V_{(n,-1)}^{\text {low }} ; \quad V_{(n+1,-2)}^{\text {low }} ; \quad V_{(-1,-n)}^{\text {low }} ; \quad V_{(0,-n-1)}^{\text {low }} ; \quad V_{(1,-n-2)}^{\text {low }}
$$

for $n \geq 2$. Tensoring the same $V_{(a, b)}^{\text {low }}$ with $\Lambda^{2} \mathfrak{u}$ gives

$$
V_{(n, 1)}^{\text {low }} ; \quad V_{(n+1,0)}^{\text {low }} ; \quad V_{(n+2,-1)}^{\text {low }} ; \quad V_{(0,-n+1)}^{\text {low }} ; \quad V_{(1,-n)}^{\text {low }} ; \quad V_{(2,-n-1)}^{\text {low }}
$$

for $n \geq 2$. These are all described in Corollary 1.
We next tensor the $V_{(a, b)}^{\text {low }} \subset W$ with $a-b=1$, and that is only $V_{\left(\frac{1}{2},-\frac{1}{2}\right)}^{\text {low }}$, with $\Lambda^{1} \mathfrak{u}$ and $\Lambda^{2} \mathfrak{u}$, which gives

$$
V_{(0,-1)}^{\text {low }} ; \quad \tilde{V}_{(0,-1)} ; \quad V_{(1,0)}^{\text {low }} ; \quad \tilde{V}_{(1,0)},
$$

as described in Corollary 2. Finally, we tensor $V_{(a, b)}^{\text {low }} \subset W$ with $a-b=2$, and these are $V_{\left(\frac{3}{2},-\frac{1}{2}\right)}^{\text {low }}$ and $V_{\left(\frac{1}{2}, \frac{3}{2}\right)}^{\text {low }}$, with $\Lambda^{1} \mathfrak{u}$ to get

$$
V_{(2,-2)}^{\text {low }} ; \quad \tilde{V}_{(1,-1)} ; \quad V_{(1,-3)}^{\text {low }} ; \quad \tilde{V}_{(0,-2)},
$$

and with $\wedge^{2} \mathfrak{u}$ to get

$$
V_{(3,-1)}^{\text {low }} ; \quad \tilde{V}_{(2,0)} ; \quad V_{(2,-2)}^{\text {low }} ; \quad \tilde{V}_{(1,-1)},
$$

as described in Corollary 3. All this can be summarized as follows:
Proposition 1. The l-module $W \otimes S$ decomposes into a direct sum of the following modules:

1. the irreducible lowest weight module $V_{(2,-2)}^{\mathrm{low}}$ with multiplicity four;
2. the irreducible lowest weight modules $V_{(k, m)}^{\mathrm{low}}$ for $(k, m)$ of the form

$$
\begin{aligned}
& (n, 0) \text { or }(0,-n) \text { for } n \geq 1 ; \quad(n, 1),(n,-1)(1,-n) \text { or }(-1,-n) \text { for } n \geq 2 \text {; } \\
& (n,-2) \text { or }(2,-n) \text { for } n \geq 3,
\end{aligned}
$$

each of them with multiplicity two;
3. the indecomposable but reducible modules

$$
\tilde{V}_{(1,0)}, \quad \tilde{V}_{(0,-1)}, \quad \tilde{V}_{(2,0)}, \quad \text { and } \quad \tilde{V}_{(0,-2)}
$$

with multiplicity one, and $\tilde{V}_{(1,-1)}$ with multiplicity two.
The results from this and the previous section in fact contain more information, including all the irreducible subquotients of the indecomposable reducible modules that appear, as well as the lowest weight generators for all the modules that appear as irreducible subquotients of $W \otimes S$. We will however see in the next section that only a few modules from the above long list have a chance to contribute to cohomology with respect to any of the operators $D(\mathfrak{g}, \mathfrak{l}), C(\mathfrak{g}, \mathfrak{l})$, or $C^{-}(\mathfrak{g}, \mathfrak{l})$. The condition is to belong to the generalized 0 -eigenspace of $D^{2}$. For these modules, we will write out (and use) all the available information.

## 5. Dirac cohomology of $W$ with respect to $D(\mathfrak{g}, \mathfrak{l})$

Before applying the results of Section 4 to find $H_{D}(W)$ with respect to $D=D(\mathfrak{g}, \mathfrak{l})$, let us examine which of the modules appearing in Section 4 contribute to the generalized 0-eigenspace for $D^{2}$. We will see that $D^{2}$ acts finitely on every indecomposable submodule of $W \otimes S$. Therefore, the following lemma shows that in calculating cohomology of $D$, and also $C=C(\mathfrak{g}, \mathfrak{l})$ and $C^{-}=C^{-}(\mathfrak{g}, \mathfrak{l})$, we can restrict our attention to the generalized 0 -eigenspace for $D^{2}$.

Lemma 2. Suppose $D^{2}$ acts finitely on an $\mathfrak{l}_{\Delta}$-invariant direct summand $X$ of $W \otimes S$ with only one eigenvalue, $\lambda \neq 0$. Then $X$ does not contribute to cohomology with respect to $D, C$ or $C^{-}$.

Proof. The statement is obvious for $D: \operatorname{Ker} D \cap X=0$, since 0 is not an eigenvalue for $D^{2}$ on $X$. To prove the statement for $C$, note that any $x \in X$ is annihilated by

$$
\left(D^{2}-\lambda\right)^{n}=(-\lambda)^{n}+\sum_{k=1}^{n}(-\lambda)^{n-k} D^{2 k}
$$

for some $n$. Furthermore, by [9], Remark 2.2, $C^{2}=\left(C^{-}\right)^{2}=0$. It follows that

$$
D^{2 k}=\left(\left(C+C^{-}\right)^{2}\right)^{k}=\left(C C^{-}+C^{-} C\right)^{k}=\left(C C^{-}\right)^{k}+\left(C^{-} C\right)^{k} .
$$

Consequently, if $C x=0$, it follows that

$$
(-\lambda)^{n} x=-\sum_{k=1}^{n}(-\lambda)^{n-k}\left(C C^{-}\right)^{k} x
$$

so $x$ is in the image of $C$ and $C$ has no cohomology on $X$. Analogously, $C^{-}$has no cohomology on $X$.

Note that with our choice of invariant form on $\mathfrak{g}$, we have

$$
D^{2}=\operatorname{Cas}_{\mathfrak{g}} \otimes 1-\mathrm{Cas}_{\mathrm{I}_{\Delta}}-9
$$

$\operatorname{Cas}_{\mathfrak{g}}=-2 h_{1}^{2}-2 \tilde{h}_{2}^{2}+8 h_{1}-4 \tilde{h}_{2}+2 u_{1} u_{1}^{*}+2 \sum_{i} v_{i} v_{i}^{*}$ is easily seen to act on $W$ as 5 . Namely,

$$
\operatorname{Cas}_{\mathfrak{g}} 1=-2\left(\frac{1}{2}\right)^{2}-2\left(-\frac{1}{2}\right)^{2}+8 \frac{1}{2}-4\left(-\frac{1}{2}\right)=5
$$

Furthermore, $\mathrm{Cas}_{l_{\Delta}}$ is a diagonal version of $\mathrm{Cas}_{\mathfrak{l}}=-2 h_{1}^{2}-2 \tilde{h}_{2}^{2}+2 h_{1}-2 \tilde{h}_{2}+2 v_{2} v_{2}^{*}$. So

$$
D^{2}=-\operatorname{Cas}_{\mathrm{l}_{\Delta}}-4=\Delta\left(2 h_{1}^{2}+2 \tilde{h}_{2}^{2}-2 h_{1}+2 \tilde{h}_{2}-4-2 v_{2} v_{2}^{*}\right) .
$$

We are interested in subrepresentations of $W \otimes S$ on which $D^{2}$ acts nilpotently. We saw in Section 4 that $W \otimes S$ is a direct sum of submodules which are all either irreducible of the form $V_{(k, m)}^{\text {low }}$ for some $(k, m) \in \mathbb{Z}^{2}$, or of the form $\tilde{V}_{(k, k-1)}$ or $\tilde{V}_{(k, k-2)}$ for some $k \in \mathbb{Z}$. On any $V_{(k, m)}^{\text {low }},-\operatorname{Cas}_{\mathfrak{l}}-4$ can be calculated on the lowest weight vector, where it is equal to

$$
\begin{equation*}
\alpha_{k, m}=2 k^{2}+2 m^{2}-2 k+2 m-4=\frac{1}{2}\left((2 k-1)^{2}+(2 m+1)^{2}-10\right) . \tag{9}
\end{equation*}
$$

It follows that for integer values of $k$ and $m, \alpha_{k, m}$ is zero precisely for

$$
\begin{equation*}
(k, m) \in\{(2,0),(2,-1),(-1,0),(-1,-1),(1,1),(1,-2),(0,1),(0,-2)\} \tag{10}
\end{equation*}
$$

If $V_{(k, m)}^{\text {low }}$ appear as a direct summand in $W \otimes S$, then, by Proposition $1, k$ and $m$ must be integers with $k>m$. Therefore the following lemma holds.

Lemma 3. For any $V_{(k, m)}^{\mathrm{low}}$ appearing as a direct summand in $W \otimes S$, the action of $D^{2}$ is the scalar $\alpha_{k, m}$ defined by (9). This scalar is zero precisely when ( $k, m$ ) equals $(2,0),(2,-1),(1,-2)$, or $(0,-2)$.

Now examining the list given in Proposition 1 gives
Corollary 4. The irreducible direct summands $V_{(k, m)}^{\text {low }}$ of $W \otimes S$ in the generalized 0 -eigenspace of $D^{2}$ are:

1. $V_{(2,-1)}^{\text {low }}$, appearing in $V_{\left(\frac{1}{2},-\frac{5}{2}\right)}^{\text {low }} \otimes F\left(\frac{3}{2}, \frac{3}{2}\right) \subset W_{0} \otimes S$, generated by $z_{2}^{2} \otimes t_{1} \wedge t_{2} \wedge t_{3}$, and in $V_{\left(\frac{5}{2},-\frac{1}{2}\right)}^{\mathrm{low}} \otimes F\left(\frac{1}{2},-\frac{3}{2}\right) \subset W_{0} \otimes S$, generated by $c_{2}$.
2. $V_{(1,-2)}^{\mathrm{low}}$, appearing in $V_{\left(\frac{5}{2},-\frac{1}{2}\right)}^{\mathrm{low}} \otimes F\left(-\frac{3}{2},-\frac{3}{2}\right) \subset W_{0} \otimes S$, generated by $z_{1}^{2} \otimes 1$, and in $V_{\left(\frac{1}{2},-\frac{5}{2}\right)}^{\text {low }} \otimes F\left(\frac{3}{2},-\frac{1}{2}\right) \subset W_{0} \otimes S$, generated by $c_{2}$.
3. $V_{(2,0)}^{\text {low }}$, appearing in $V_{\left(\frac{1}{2},-\frac{3}{2}\right)}^{\text {low }} \otimes F\left(\frac{3}{2}, \frac{3}{2}\right) \subset W_{1} \otimes S$, generated by $z_{2} \otimes t_{1} \wedge t_{2} \wedge t_{3}$, and in $V_{\left(\frac{7}{2},-\frac{1}{2}\right)}^{\text {low }} \otimes F\left(\frac{1}{2},-\frac{3}{2}\right) \subset W_{1} \otimes S$, generated by $c_{1}$.
4. $V_{(0,-2)}^{\text {low }}$, appearing in $V_{\left(\frac{3}{2},-\frac{1}{2}\right)}^{\text {low }} \otimes F\left(-\frac{3}{2},-\frac{3}{2}\right) \subset W_{1} \otimes S$, generated by $z_{1} \otimes 1$, and in $V_{\left(\frac{1}{2},-\frac{7}{2}\right)}^{\text {low }} \otimes F\left(\frac{3}{2},-\frac{1}{2}\right) \subset W_{1} \otimes S$, generated by $c_{1}$.

On the module $\tilde{V}_{(a+c-1, a+c-2)}$ of Corollary 2 , the action of $D^{2}$ is not by a scalar, or even semisimple. Namely, since the generator $\tilde{c}_{3}$ of (3) is of weight ( $a+c, a+c-3$ ), and since

$$
v_{2} v_{2}^{*} \tilde{c}_{3}=v_{2}^{2} c_{1}=c_{3}
$$

we see that

$$
D^{2} \tilde{c}_{3}=\alpha_{a+c, a+c-3} \tilde{c}_{3}-2 c_{3} .
$$

On the other hand, on $V_{(a+c-2, a+c-1)}^{\text {low }} \subset \tilde{V}_{(a+c-1, a+c-2)}, D^{2}$ is the scalar $\alpha_{a+c-2, a+c-1}$ which is easily seen to be the same as $\alpha_{a+c, a+c-3}$.

Similarly, the action of $D^{2}$ on the module $\tilde{V}_{(a+c-1, a+c-3)}$ of Corollary 3 is given by the scalar $\alpha_{a+c-2, a+c-2}$ on $V_{(a+c-2, a+c-2)}^{\text {low }} \subset \tilde{V}_{(a+c-1, a+c-2)}$, while

$$
D^{2} \tilde{c}_{2}=\alpha_{a+c-1, a+c-3} \tilde{c}_{2}-2 c_{2} .
$$

Since one can check that $\alpha_{a+c-2, a+c-2}=\alpha_{a+c-1, a+c-3}$, we get
Lemma 4. The operator $D^{2}$ acts finitely on the modules $\tilde{V}_{(a+c-1, a+c-2)}$ of Corollary 2, and on the modules $\tilde{V}_{(a+c-1, a+c-3)}$ of Corollary 3. The only eigenvalue of $D^{2}$ on $\tilde{V}_{(a+c-1, a+c-2)}$ is $\alpha_{(a+c, a+c-3)}$, and the only eigenvalue of $D^{2}$ on $\tilde{V}_{(a+c-1, a+c-3)}$ is $\alpha_{(a+c-1, a+c-3)}$. These numbers are defined in (9).

Using (10), it now follows that the relevant $\tilde{V}_{(a+c-1, a+c-2)}$ are those with $(a+$ $c, a+c-3)$ equal to $(2,-1)$ or $(1,-2)$, i.e., $\tilde{V}_{(1,0)}$ and $\tilde{V}_{(0,-1)}$, while the relevant $\tilde{V}_{(a+c-1, a+c-3)}$ are $\tilde{V}_{(2,0)}$ and $\tilde{V}_{(0,-2)}$. These are precisely the indecomposable but reducible modules from Proposition 1 that appears with multiplicity one. The only such module appearing with multiplicity two, $\tilde{V}_{(1,-1)}$, does not contribute to cohomology. So we have

Corollary 5. The indecomposable direct summands $\tilde{V}_{k, m}$ of $W \otimes S$ in the generalized 0 -eigenspace of $D^{2}$ are:

1. $\tilde{V}_{(1,0)}$, appearing in $V_{\left(\frac{1}{2},-\frac{1}{2}\right)}^{\text {low }} \otimes F\left(\frac{3}{2},-\frac{1}{2}\right) \subset W_{0} \otimes S$. Its irreducible subquotients are two copies of $V_{(2,-1)}^{\mathrm{low}}$, one generated by the image of $\tilde{c}_{3}$ and the other by $c_{3}$, and the two-dimensional module $F(1,0)$ generated by the image of $c_{1}$.
2. $\tilde{V}_{(0,-1)}$, appearing in $V_{\left(\frac{1}{2},-\frac{1}{2}\right)}^{\text {low }} \otimes F\left(\frac{1}{2},-\frac{3}{2}\right) \subset W_{0} \otimes S$. Its irreducible subquotients are two copies of $V_{(1,-2)}^{\mathrm{low}}$, one generated by the image of $\tilde{c}_{3}$ and the other by $c_{3}$, and the two-dimensional module $F(0,-1)$ generated by the image of $c_{1}$.
3. $\tilde{V}_{(2,0)}$, appearing in $V_{\left(\frac{3}{2},-\frac{1}{2}\right)}^{\text {low }} \otimes F\left(\frac{3}{2},-\frac{1}{2}\right) \subset W_{1} \otimes S$. Its irreducible subquotients are two copies of $V_{(2,0)}^{\text {low }}$, one generated by the image of $\tilde{c}_{2}$ and the other by $c_{2}$, and the one-dimensional module $F(1,1)$ generated by the image of $c_{1}$.
4. $\tilde{V}_{(0,-2)}$, appearing in $V_{\left(\frac{1}{2},-\frac{3}{2}\right)}^{\text {low }} \otimes F\left(\frac{1}{2},-\frac{3}{2}\right) \subset W_{1} \otimes S$. Its irreducible subquotients are two copies of $V_{(0,-2)}^{\mathrm{low})}$, one generated by the image of $\tilde{c}_{2}$ and the other by $c_{2}$, and the one-dimensional module $F(-1,-1)$ generated by the image of $c_{1}$.

Combining Corollary 4 and Corollary 5 , we see that the irreducible subquotients of the generalized zero-eigenspace of $D^{2}$ in $W \otimes S$ are:

1. $V_{(2,-1)}^{\text {low }}$, appearing twice as a direct summand as described in Corollary 4 (1), and twice as a subquotient of $\tilde{V}_{(1,0)}$ as described in Corollary 5 (1);
2. $V_{(1,-2)}^{\text {low }}$, appearing twice as a direct summand as described in Corollary 4 (2), and twice as a subquotient of $\tilde{V}_{(0,-1)}$ as described in Corollary 5 (2);
3. $V_{(2,0)}^{\text {low }}$, appearing twice as a direct summand as described in Corollary 4 (3), and twice as a subquotient of $\tilde{V}_{(2,0)}$ as described in Corollary 5 (3);
4. $V_{(0,-2)}^{\text {low }}$, appearing twice as a direct summand as described in Corollary 4 (4), and twice as a subquotient of $\tilde{V}_{(0,-2)}$ as described in Corollary 5 (4);
5. The remaining irreducible subquotients $F(1,0), F(0,-1), F(1,1)$ and $F(-1$, $-1)$, described in Corollary 5 (1)-(4).

Note that cases (1) and (2) correspond to the even Weil representation $W_{0}$, the cases (3) and (4) correspond to the odd Weil representation $W_{1}$, and in case (5),
$F(1,0)$ and $F(0,-1)$ correspond to $W_{0}$ while $F(1,1)$ and $F(-1,-1)$ correspond to $W_{1}$.

The easiest case to handle is case (5). Namely, each of these four finite-dimensional modules appears only once, and so it has to be killed by $C, C^{-}$and $D$, and it cannot be in the image of any of them. (Namely, none of these operators can act as a nonzero scalar, since the only possible eigenvalue for each of them is zero.) Hence each of the four finite-dimensional modules contributes to cohomology with respect to either of the three operators $C, C^{-}$or $D$. Their generators, each of the form $c_{1}$, are easy to read off in each case (see the statements of the theorems below).

For cases (1)-(4), we have to see the action of $C, C^{-}$and $D$ on the generators of the four isomorphic modules appearing in each of the cases, and then read off the cohomology with respect to $C, C^{-}$and $D$ from the obtained table.

For case (1), i.e., for the four copies of the module $V_{(2,-1)}^{\text {low }}$, using (4), (5), (7) and (4), we see that the generators are

$$
\begin{aligned}
& d_{1}=z_{2}^{2} \otimes t_{1} \wedge t_{2} \wedge t_{3} \\
& c_{2}=8 z_{1}^{3} z_{2} \otimes t_{3}-24 z_{1}^{2} \otimes t_{2} \\
& \tilde{c}_{3}=2 z_{1} z_{2} \otimes t_{1} \wedge t_{3}-6 \otimes t_{1} \wedge t_{2} \\
& c_{3}=8 z_{1}^{2} z_{2}^{2} \otimes t_{2} \wedge t_{3}-16 z_{1} z_{2} \otimes t_{1} \wedge t_{3}+16 \otimes t_{1} \wedge t_{2}
\end{aligned}
$$

Applying the operators

$$
C=\partial_{1}^{2} \otimes t_{1}-2 z_{2} \partial_{1} \otimes t_{2}+z_{2}^{2} \otimes t_{3} ; \quad C^{-}=z_{1}^{2} \otimes t_{1}^{*}+z_{1} \partial_{2} \otimes t_{2}^{*}+\partial_{2}^{2} \otimes t_{3}^{*}
$$

we get after a short calculation:

$$
\begin{array}{ll}
C d_{1}=0 ; & C^{-} d_{1}=\frac{1}{4} c_{3} \\
C c_{2}=-3 c_{3} ; & C^{-} c_{2}=0 \\
C \tilde{c}_{3}=-2 d_{1} ; & C^{-} \tilde{c}_{3}=\frac{1}{2} c_{2} \\
C c_{3}=C^{-} c_{3}=0
\end{array}
$$

We can now conclude that the four subquotients isomorphic to $V_{(2,-1)}^{\text {low }}$ contribute nothing to cohomology with respect to $C$ or $C^{-}$. Furthermore, we see that

$$
D: \quad \tilde{c}_{3} \mapsto-2 d_{1}+\frac{1}{2} c_{2} \mapsto-2 c_{3} \mapsto 0
$$

while

$$
D\left(c_{2}+12 d_{1}\right)=0,
$$

and $c_{2}+12 d_{1}$ is not in the image of $D$. So the contribution of the four subquotients isomorphic to $V_{(2,-1)}^{\text {low }}$ to cohomology with respect to $D$ is equal to a copy of $V_{(2,-1)}^{\text {low }}$ generated by $c_{2}+12 d_{1}$.

A very similar analysis applies to case (2). The generators of the four copies of $V_{(1,-2)}^{\text {low }}$ are

$$
\begin{aligned}
& d_{1}=z_{1}^{2} \otimes 1 \\
& c_{2}=8 z_{1} z_{2}^{3} \otimes t_{2} \wedge t_{3}-12 z_{2}^{2} \otimes t_{1} \wedge t_{3} \\
& \tilde{c}_{3}=4 z_{1} z_{2} \otimes t_{2}-6 \otimes t_{1} \\
& c_{3}=8 z_{1}^{2} z_{2}^{2} \otimes t_{3}-32 z_{1} z_{2} \otimes t_{2}+16 \otimes t_{1}
\end{aligned}
$$

The action of $C$ and $C^{-}$is as follows:

$$
\begin{array}{rlrl}
C d_{1} & =\frac{1}{8} c_{3} ; & & C^{-} d_{1}=0 \\
C c_{2} & =0 ; & & C^{-} c_{2}=3 c_{3} \\
C \tilde{c}_{3} & =-\frac{1}{2} c_{2} ; & & C^{-} \tilde{c}_{3}=-4 d_{1} \\
C c_{3} & =C^{-} c_{3}= &
\end{array}
$$

Hence the four subquotients isomorphic to $V_{(1,-2)}^{\text {low }}$ contribute nothing to cohomology with respect to $C$ or $C^{-}$. Since the action of $D$ is

$$
\begin{aligned}
& D: \quad \tilde{c}_{3} \mapsto-\frac{1}{2} c_{2}-4 d_{1} \mapsto-2 c_{3} \mapsto 0 \\
& D\left(c_{2}-24 d_{1}\right)=0
\end{aligned}
$$

we see that the contribution of the four subquotients isomorphic to $V_{(1,-2)}^{\text {low }}$ to cohomology with respect to $D$ is a copy of $V_{(1,-2)}^{\text {low }}$ generated by $c_{2}-24 d_{1}$. So far we have proved:

Theorem 1. The cohomology of $C$ on $W_{0} \otimes S$ is equal to $F(1,0) \oplus F(0,-1)$, where the two summands are generated by (the images of) $1 \otimes t_{2} \wedge t_{3}$ and $1 \otimes t_{3}$, respectively. The same is true for the cohomology of $C^{-}$on $W_{0} \otimes S$.

The cohomology of $D$ on $W_{0} \otimes S$ is

$$
F(1,0) \oplus F(0,-1) \oplus V_{(2,-1)}^{\text {low }} \oplus V_{(1,-2)}^{\text {low }}
$$

where the first two summands are the same as above, the third summand is generated by $2 z_{1}^{3} z_{2} \otimes t_{3}-6 z_{1}^{2} \otimes t_{2}+3 z_{2}^{2} \otimes t_{1} \wedge t_{2} \wedge t_{3}$, and the fourth summand is generated by $2 z_{1} z_{2}^{3} \otimes t_{2} \wedge t_{3}-3 z_{2}^{2} \otimes t_{1} \wedge t_{3}-6 z_{1}^{2} \otimes 1$.

The calculations are completely analogous for the odd Weil representation $W_{1}$. For case (3), the generators are

$$
\begin{aligned}
& d_{1}=z_{2} \otimes t_{1} \wedge t_{2} \wedge t_{3} \\
& c_{1}=8 z_{1}^{3} \otimes t_{3} \\
& \tilde{c}_{2}=2 z_{1} \otimes t_{1} \wedge t_{3} \\
& c_{2}=8 z_{1}^{2} z_{2} \otimes t_{2} \wedge t_{3}-8 z_{1} \otimes t_{1} \wedge t_{3}
\end{aligned}
$$

The action of $C$ and $C^{-}$on these generators is given by

$$
\begin{array}{ll}
C d_{1}=0, & C^{-} d_{1}=\frac{1}{4} c_{2} \\
C c_{1}=-6 c_{2}, & C^{-} c_{1}=0 \\
C \tilde{c}_{2}=4 d_{1}, & C^{-} \tilde{c}_{2}=\frac{1}{2} c_{1} \\
C c_{2}=C^{-} c_{2}=0
\end{array}
$$

For the case (4), the generators are

$$
\begin{aligned}
& d_{1}=z_{1} \otimes 1 \\
& c_{1}=8 z_{2}^{3} \otimes t_{2} \wedge t_{3} \\
& \tilde{c}_{2}=4 z_{2} \otimes t_{2} \\
& c_{2}=8 z_{1} z_{2}^{2} \otimes t_{3}-16 z_{2} \otimes t_{2}
\end{aligned}
$$

The action of $C$ and $C^{-}$on these generators is given by

$$
\begin{array}{rlrl}
C d_{1} & =\frac{1}{8} c_{2}, & & C^{-} d_{1}=0 \\
C c_{1} & =0, & & C^{-} c_{1}=6 c_{2} \\
C \tilde{c}_{2} & =-\frac{1}{2} c_{1}, & & C^{-} \tilde{c}_{2}=8 d_{1} \\
C c_{2} & =C^{-} c_{2}= &
\end{array}
$$

The final result is
Theorem 2. The cohomology of $C$ on $W_{1} \otimes S$ is equal to $F(1,1) \oplus F(-1,-1)$, where the two summands are generated by (the images of) $z_{1} \otimes t_{2} \wedge t_{3}$ and $z_{2} \otimes t_{3}$, respectively. The same is true for the cohomology of $C^{-}$on $W_{1} \otimes S$.

The cohomology of $D$ on $W_{1} \otimes S$ is

$$
F(1,1) \oplus F(-1,-1) \oplus V_{(2,0)}^{\mathrm{low}} \oplus V_{(0,-2)}^{\mathrm{low}}
$$

where the first two summands are the same as above, the third summand is generated by $z_{1}^{3} \otimes t_{3}+3 z_{2} \otimes t_{1} \wedge t_{2} \wedge t_{3}$, and the fourth summand is generated by $z_{2}^{3} \otimes t_{2} \wedge t_{3}-6 z_{1} \otimes 1$.

## 6. Concluding remarks

The results of this note provide counterexamples to generalization of several results proved in [9] for the case of a compact Levi subalgebra:

1. The Dirac cohomology is not equal to the $\overline{\mathfrak{u}}$-cohomology or the $\mathfrak{u}$-homology up to a modular twist. In fact, the Dirac cohomology is larger than the $\overline{\mathfrak{u}}$ cohomology or the $\mathfrak{u}$-homology, and the latter two are equal to each other.
2. The operators $C$ and $C^{-}$are not disjoint, i.e., it is possible that $C C^{-} x=0$ without $C^{-} x=0$ and also that $C^{-} C y=0$ without $C y=0$. Moreover, the
images of $C$ and $C^{-}$actually intersect. In particular, there can be no positive definite Hermitian form on $W_{0} \otimes S$ or on $W_{1} \otimes S$ so that $C$ and $C^{-}$are adjoint to each other with respect to this form.
3. Even though $W_{0}$ and $W_{1}$ are discretely decomposable under $\mathfrak{l}$, the operator $D(\mathfrak{g}, \mathfrak{l})^{2}$ is not semisimple.
4. Calculating Dirac cohomology in stages fails for $\mathfrak{t} \subset \mathfrak{l} \subset \mathfrak{g}$. Indeed, one sees right away that the Dirac cohomology with respect to $D(\mathfrak{l}, \mathfrak{t})$ of the $\mathfrak{l}$-module $H_{D}\left(\mathfrak{g}, \mathfrak{l} ; W_{0}\right)$ is of dimension 6 , so it cannot be equal to $H_{D}\left(\mathfrak{g}, \mathfrak{t} ; W_{0}\right)$ which was seen to be 4-dimensional in [13], Proposition 6.1.

Finally, let us note that the part of the Dirac cohomology which does not come from the cohomology with respect to $C$ or $C^{-}$seems to be related to the "bottom part" of the decomposition of the $\mathfrak{l}$-module $W$, with some shift.

## References

[1] J. Adams, Nilpotent cohomology of the oscillator representation, J. Reine Angew. Math. 449(1994), 1-7.
[2] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Second edition, American Math. Soc., Providence, 2000.
[3] P. Cartier, Quantum mechanical commutation relations and $\theta$-functions, Proc. Symp. Pure Math. 9, American Math. Soc., Providence, 1966.
[4] C. Chevalley, The algebraic theory of spinors, Columbia University Press, New York, 1954.
[5] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313(1989), 539-570.
[6] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, in: Israel Math. Conf. Proc., (I. Piatetski-Shapiro, ed.), Bar-Ilan University, 1995, 1-182.
[7] J.-S. Huang, P. Pandžı́ć, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15(2002), 185-202.
[8] J.-S. Huang, P. Pandžić, Dirac Operators in Representation Theory, Birkhäuser, Boston, 2006.
[9] J.-S. Huang, P. Pandžić, D. Renard, Dirac operators and Lie algebra cohomology, Represent. Theory 10(2006), 299-313.
[10] B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the $\rho$ decomposition $C(\mathfrak{g})=$ End $V_{\rho} \otimes C(P)$, and the $\mathfrak{g}$-module structure of $\bigwedge \mathfrak{g}$, Adv. Math. 125(1997), 275-350.
[11] B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100(1999), 447-501.
[12] B. Kostant, Dirac cohomology for the cubic Dirac operator, Progr. Math. 210(2003), 69-93.
[13] P. PandžÍć, Dirac operators and unitarizability of Harish-Chandra modules, Math. Commun. 15(2010), 273-279.
[14] R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96(1972), 1-30.
[15] T. Tilgner, Graded generalizations of Weyl and Clifford algebras, J. Pure Appl. Algebra 10(1977), 163-168.
[16] D. A. Vogan, Dirac operators and unitary representations, Three talks at MIT Lie groups seminar, Fall 1997.
[17] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111(1964), 143-211.


[^0]:    *The research of the author is partially supported by a grant from the Ministry of Science, Education and Sports of the Republic of Croatia.
    ${ }^{\dagger}$ Corresponding author. Email address: pandzic@math.hr (P. Pandžić)

