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Abstract. Let G be a metaplectic double cover of the group G of four-by-four real sym-
plectic matrices. Let g be the complexified Lie algebra of G. Denote by W0 and W1 the
Harish-Chandra modules of the even and odd Weil representations of G, respectively. We
find the Dirac cohomology of W0 and W1 with respect to a noncompact Levi subalgebra l

of a θ-stable parabolic subalgebra of g. The results can be considered as counterexamples
to certain generalizations of the main results of [9].
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1. Introduction

In this note we continue the work of [13] with treating a much more difficult case of
Dirac cohomology with respect to a noncompact subalgebra l of g = sp(4,C). The
modules we consider are the same as in [13]: the even and odd Weil representations
of g, W0 and W1. These are also called Segal-Shale-Weil representations. See [17]
or [2], Ch. VIII. For the approach we adopt see [1, 3, 5] and [15].

The subalgebra l is a Levi subalgebra of a θ-stable parabolic subalgebra q = l⊕u
of g, and it is isomorphic to gl(2,C), just as k, the complexified Lie algebra of the
maximal compact subgroup K of G = Mp(4,R). The obtained results are however
in sharp contrast with those for k. None of the results of [9], that would apply
if l were contained in k, works here. For example, even though the modules we
study decompose discretely under l, the square of the Dirac operator does not act
semisimply. The Dirac cohomology is not the same as the u-homology or the ū-
cohomology. The differentials for the u-homology and the ū-cohomology, C and
C−, are not disjoint. Finally, Dirac cohomology cannot be calculated in stages with
respect to the compact Cartan subalgebra t ⊂ l. See Section 6 for more details.

We will keep the notation of [13]. We refer to Introduction and Section 2 of [13]
(and to other references) for the definitions of Dirac operators and Dirac cohomology
and for their basic properties, as well as for facts about the structure of g.

∗The research of the author is partially supported by a grant from the Ministry of Science, Educa-
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2. A Levi subalgebra of g

Let l ⊂ g be the subalgebra spanned by t, and the short noncompact root vectors
v2 = z1z2 and v∗2 = 2∂1∂2. It is clear from the commutation relations of g that l is
a subalgebra isomorphic to gl(2,C). Note that h1 − h2 is central in l, while h1 + h2

is in [l, l] and satisfies [h1 + h2, v2] = 2v2 and [h1 + h2, v
∗
2 ] = −2v∗2 . Therefore, we

change the basis of t to h1 and h̃2 = −h2 to get the standard gl(2)-coordinates.
Moreover, l is a noncompact Levi subalgebra of g: a corresponding parabolic

subalgebra q = l ⊕ u can be defined by setting u to be the span of v1, u1 and
v∗3 . (Note the change of the positive root system compared to [13], where v3 was
a positive root vector and not v∗3 .) In particular, Kostant’s cubic Dirac operator
D(g, l) is defined (but since l is a symmetric subalgebra of g, the cubic term actually
vanishes).

Recall the pictures representing bases of the irreducible (g,K)-submodules W0

and W1 of the Weil representation W of g given in equation (4.1) of [13]. It is clear
that the rows of each picture are invariant and irreducible for l. Note that all these
rows are lowest weight gl(2,C)-modules (we are fixing a choice of positive roots for l
such that v2 = z1z2 corresponds to the positive root). The lowest weights appearing
in W are

(n +
1
2
,−1

2
); (

1
2
,−n− 1

2
), (1)

for each positive integer n, with the corresponding lowest weight vectors zn
1 and zn

2 ,
respectively, and

(
1
2
,−1

2
), (2)

with the corresponding weight vector 1. These belong to W0 if n is even, and to W1

if n is odd. (The weight ( 1
2 ,− 1

2 ) corresponds to 1 ∈ W0.)

Remark 1. If we denote by g1 the subalgebra of g spanned by h1 + h̃2, and by g2

the subalgebra of g spanned by h1 − h̃2, v2 and v∗2 , then it is well known (and easy
to check) that g1× g2

∼= o(2,C)× sl(2,C) is a (complexified) compact dual pair in g.
Therefore, our decomposition is a very special case of general results of Howe [5, 6].

3. Tensoring some gl(2,C)-modules

To calculate the Dirac cohomology of W with respect to D(g, l), we first need to
understand the l-module W ⊗ S. Here S =

∧
u is the spin module for C(u ⊕ ū).

Since
∧0

u and
∧3

u are one-dimensional, it is obvious how to tensor any module
with them. So what we need to study are the tensor products of the lowest weight
l-modules appearing in W with three-dimensional l-modules

∧1
u and

∧2
u. In this

section we do the analysis of such tensor products for slightly more general modules.
Let V low

(a,b) be a lowest weight l = gl(2,C)-module with lowest weight (a, b), on
which v2 acts freely (i.e., v2 is an injective linear operator). Then V low

(a,b) is spanned by
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the weight vectors x(a,b), x(a+1,b−1), x(a+2,b−2), . . . , of respective weights (a, b), (a +
1, b− 1), (a + 2, b− 2), . . . , such that

x(a+k,b−k) = vk
2 x(a,b), k ∈ Z+.

It follows by induction on k that

v∗2 x(a+k,b−k) = 2k(a− b + k − 1)x(a+k−1,b−k+1).

We see that if a − b ≥ 1, then V low
(a,b) is an irreducible l-module. In particular, the

l-module W is a direct sum of such modules, for (a, b) as in (1) and (2).
If a − b ≤ 0, then V low

(a,b) is reducible. Namely, the above formula implies that
v∗2 xb+1,a−1 = 0. It follows that V low

(a,b) contains V low
(b+1,a−1) as an irreducible submod-

ule, and the quotient is equal to the finite-dimensional module F (b, a) with highest
weight (b, a). We are mostly interested in the irreducible case, but as we shall see,
the reducible V low

(a,b) will also appear along the way.
We now want to describe V low

(a,b) ⊗ F (c, c − 2), where F (c, c − 2) is a three-
dimensional l-module with highest weight (c, c − 2). The weights of F (c, c − 2)
are (c, c − 2), (c − 1, c − 1) and (c − 2, c). We denote by y(c,c−2), y(c−1,c−1) and
y(c−2,c) the corresponding weight vectors, normalized so that

v∗2 y(c,c−2) = y(c−1,c−1), v∗2 y(c−1,c−1) = y(c−2,c).

It follows that

v2 y(c−2,c) = −4y(c−1,c−1), v2 y(c−1,c−1) = −4y(c,c−2).

A short calculation gives

Lemma 1. Assume that a − b ≥ 1, so that V low
(a,b) is irreducible. Then the lowest

weight vectors of V low
(a,b) ⊗ F (c, c− 2) form a three-dimensional space spanned by the

vectors

c1 = x(a,b) ⊗ y(c−2,c);
c2 = x(a+1,b−1) ⊗ y(c−2,c) − 2(a− b)x(a,b) ⊗ y(c−1,c−1);
c3 = x(a+2,b−2) ⊗ y(c−2,c) − 4(a− b + 1)x(a+1,b−1) ⊗ y(c−1,c−1)

+8(a− b)(a− b + 1)x(a,b) ⊗ y(c,c−2).

Their weights are (a + c − 2, b + c), (a + c − 1, b + c − 1) and (a + c, b + c − 2),
respectively. Furthermore, the action of v2 on V low

(a,b) ⊗ F (c, c− 2) is injective.

One now checks that for a − b ≥ 3, vectors v2
2 c1, v2 c2 and c3 are linearly inde-

pendent. Combined with injectivity of v2, this immediately implies

Corollary 1. If a− b ≥ 3, then

V low
(a,b) ⊗ F (c, c− 2) = V low

(a+c−2,b+c) ⊕ V low
(a+c−1,b+c−1) ⊕ V low

(a+c,b+c−2),

where the lowest weight vectors of the three summands are c1, c2 and c3.
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Here is a picture of the weight vectors in this simplest case:

c3 v2 c3 v2
2 c3 . . .

c2 v2 c2 v2
2 c2 v3

2 c2 . . .
c1 v2 c1 v2

2 c1 v3
2 c1 v4

2 c1 . . .

If a − b = 1, then v2
2 c1 = c3, while v2 c2 is linearly independent of c3. We

introduce another vector of weight (a + c, b + c− 2) = (a + c, a + c− 3),

c̃3 = x(a+1,a−2) ⊗ y(c−1,c−1) − 6x(a,a−1) ⊗ y(c,c−2). (3)

The choice is such that c̃3 is independent of v2 c2 and c3, and v∗2 c̃3 = v2 c1. It follows:

Corollary 2. The module V low
(a,a−1) ⊗ F (c, c− 2) is a direct sum of a copy of

V low
(a+c−1,a+c−2) and a module Ṽ(a+c−1,a+c−2). The lowest weight vector of

V low
(a+c−1,a+c−2) is c2. The Jordan-Hölder series of Ṽ(a+c−1,a+c−2) is

Ṽ(a+c−1,a+c−2) ⊃ V low
(a+c−2,a+c−1) ⊃ V low

(a+c,a+c−3) ⊃ 0,

with subquotients V low
(a+c,a+c−3), F (a+ c− 1, a+ c− 2) and V low

(a+c,a+c−3), respectively.
The lowest weight vectors for these subquotients are the image of c̃3, the image of c1

and c3, respectively.

Finally, if a− b = 2, then v2 c1 = c2, while v2 c2 and c3 are linearly independent.
We introduce another vector of weight (a + c− 1, b + c− 1) = (a + c− 1, a + c− 3),

c̃2 = x(a,a−2) ⊗ y(c−1,c−1).

Then v2 c2, v2 c̃2 and c3 are independent, while v∗2 c̃2 = c1. It follows:

Corollary 3. The module V low
(a,a−2)⊗F (c, c−2) isadirect sum of a copy of V low

(a+c,a+c−4)

and a module Ṽ(a+c−1,a+c−3). The lowest weight vector of V low
(a+c,a+c−4) is c3. The

Jordan-Hölder series of Ṽ(a+c−1,a+c−3) is

Ṽ(a+c−1,a+c−3) ⊃ V low
(a+c−2,a+c−2) ⊃ V low

(a+c−1,a+c−3) ⊃ 0,

with subquotients V low
(a+c−1,a+c−3), F (a + c − 2, a + c − 2) and V low

(a+c−1,a+c−3), re-
spectively. The lowest weight vectors for these subquotients are the image of c̃2, the
image of c1 and c2, respectively.

4. Describing the l-module W ⊗ S

We now apply the results of Section 3 to W ⊗ S. As we know, W is a direct sum of
the irreducible l-modules V low

(a,b) for (a, b) as in (1) and (2). The corresponding basis
as in Section 3 is

xa+k,b−k = zn+k
1 zk

2 , k ≥ 0, (4)
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if (a, b) = (n + 1
2 ,− 1

2 ) for some integer n ≥ 0 and

xa+k,b−k = zk
1zn+k

2 , k ≥ 0, (5)

if (a, b) = ( 1
2 ,−n− 1

2 ) for some integer n > 0, respectively.
We now describe the spin module S =

∧·
u in more detail. Using the formula

(5.7) from [13] for α : l → C(u⊕ ū), one gets

α(h1) = −t∗1t1 − 1
2 t∗2t2 + 3

2 ;

α(h̃2) = − 1
2 t∗2t2 − t∗3t3 + 3

2 ;
α(v2) = 1

2 t∗2t1 + t∗3t2;
α(v∗2) = −2t∗1t2 − t∗2t3.

From this, it is easily calculated that the irreducible l-submodules of S are

∧0
u = F (−3

2
,−3

2
);

∧1
u = F ( 1

2 ,− 3
2 ); (6)

∧2
u = F (

3
2
,−1

2
);

∧3
u = F ( 3

2 , 3
2 ).

Moreover, the spin action of v2 and v∗2 on
∧1

u and
∧2

u is given on the weight
vectors ti and ti ∧ tj by

v2 : t3 7→ −2t2, t2 7→ −t1, t1 7→ 0;
t2 ∧ t3 7→ −t1 ∧ t3, t1 ∧ t3 7→ −2t1 ∧ t2, t1 ∧ t2 7→ 0;

v∗2 : t1 7→ 4t2, t2 7→ 2t3, t3 7→ 0;
t1 ∧ t2 7→ 2t1 ∧ t3, t1 ∧ t3 7→ 4t2 ∧ t3, t2 ∧ t3 7→ 0.

So we can pick a basis for
∧1

u = F (c, c− 2) = F ( 1
2 ,− 3

2 ) normalized as in Section 3
by setting

yc,c−2 = t1, yc−1,c−1 = 4t2, yc−2,c = 8t3, (7)

and for
∧1

u = F (c, c− 2) = F ( 3
2 ,− 1

2 ) by setting

yc,c−2 = t1 ∧ t2, yc−1,c−1 = 2t1 ∧ t3, yc−2,c = 8t2 ∧ t3, (8)

It is now not difficult to describe the complete decomposition of W ⊗ S as an
l-module. There are a lot of irreducible direct summands of the form V low

(k,m) for
various integers k and m, most of them with multiplicity 2. To list them all, one
would first tensor the V low

(a,b) ⊂ W with one-dimensional modules
∧0

u and
∧3

u. In
this way we get

V low
(n−1,−2); V low

(n+2,1), n ≥ 0

for (a, b) = (n + 1
2 ,− 1

2 ), and

V low
(−1,−n−2); V low

(2,−n+1), n ≥ 1
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for (a, b) = ( 1
2 ,−n− 1

2 ).
Further components come from tensoring V low

(a,b) ⊂ W , a−b ≥ 3, with
∧1

u, which
gives

V low
(n−1,0); V low

(n,−1); V low
(n+1,−2); V low

(−1,−n); V low
(0,−n−1); V low

(1,−n−2)

for n ≥ 2. Tensoring the same V low
(a,b) with

∧2
u gives

V low
(n,1); V low

(n+1,0); V low
(n+2,−1); V low

(0,−n+1); V low
(1,−n); V low

(2,−n−1)

for n ≥ 2. These are all described in Corollary 1.
We next tensor the V low

(a,b) ⊂ W with a − b = 1, and that is only V low
( 1
2 ,− 1

2 )
, with

∧1
u and

∧2
u, which gives

V low
(0,−1); Ṽ(0,−1); V low

(1,0); Ṽ(1,0),

as described in Corollary 2. Finally, we tensor V low
(a,b) ⊂ W with a− b = 2, and these

are V low
( 3
2 ,− 1

2 )
and V low

( 1
2 ,− 3

2 )
, with

∧1
u to get

V low
(2,−2); Ṽ(1,−1); V low

(1,−3); Ṽ(0,−2),

and with
∧2

u to get

V low
(3,−1); Ṽ(2,0); V low

(2,−2); Ṽ(1,−1),

as described in Corollary 3. All this can be summarized as follows:

Proposition 1. The l-module W ⊗S decomposes into a direct sum of the following
modules:

1. the irreducible lowest weight module V low
(2,−2) with multiplicity four;

2. the irreducible lowest weight modules V low
(k,m) for (k, m) of the form

(n, 0) or (0,−n) for n ≥ 1; (n, 1), (n,−1) (1,−n) or (−1,−n) for n ≥ 2;
(n,−2) or (2,−n) for n ≥ 3,

each of them with multiplicity two;

3. the indecomposable but reducible modules

Ṽ(1,0), Ṽ(0,−1), Ṽ(2,0), and Ṽ(0,−2)

with multiplicity one, and Ṽ(1,−1) with multiplicity two.

The results from this and the previous section in fact contain more information,
including all the irreducible subquotients of the indecomposable reducible modules
that appear, as well as the lowest weight generators for all the modules that appear as
irreducible subquotients of W ⊗S. We will however see in the next section that only
a few modules from the above long list have a chance to contribute to cohomology
with respect to any of the operators D(g, l), C(g, l), or C−(g, l). The condition is to
belong to the generalized 0-eigenspace of D2. For these modules, we will write out
(and use) all the available information.
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5. Dirac cohomology of W with respect to D(g, l)

Before applying the results of Section 4 to find HD(W ) with respect to D = D(g, l),
let us examine which of the modules appearing in Section 4 contribute to the gener-
alized 0-eigenspace for D2. We will see that D2 acts finitely on every indecomposable
submodule of W⊗S. Therefore, the following lemma shows that in calculating coho-
mology of D, and also C = C(g, l) and C− = C−(g, l), we can restrict our attention
to the generalized 0-eigenspace for D2.

Lemma 2. Suppose D2 acts finitely on an l∆-invariant direct summand X of W⊗S
with only one eigenvalue, λ 6= 0. Then X does not contribute to cohomology with
respect to D, C or C−.

Proof. The statement is obvious for D: Ker D∩X = 0, since 0 is not an eigenvalue
for D2 on X. To prove the statement for C, note that any x ∈ X is annihilated by

(D2 − λ)n = (−λ)n +
n∑

k=1

(−λ)n−kD2k

for some n. Furthermore, by [9], Remark 2.2, C2 = (C−)2 = 0. It follows that

D2k = ((C + C−)2)k = (CC− + C−C)k = (CC−)k + (C−C)k.

Consequently, if Cx = 0, it follows that

(−λ)nx = −
n∑

k=1

(−λ)n−k(CC−)kx,

so x is in the image of C and C has no cohomology on X. Analogously, C− has no
cohomology on X.

Note that with our choice of invariant form on g, we have

D2 = Casg⊗1− Casl∆ −9.

Casg = −2h2
1 − 2h̃2

2 + 8h1 − 4h̃2 + 2u1u
∗
1 + 2

∑
i viv

∗
i is easily seen to act on W as 5.

Namely,

Casg 1 = −2(
1
2
)2 − 2(−1

2
)2 + 8

1
2
− 4(−1

2
) = 5.

Furthermore, Casl∆ is a diagonal version of Casl = −2h2
1− 2h̃2

2 + 2h1− 2h̃2 + 2v2v
∗
2 .

So
D2 = −Casl∆ −4 = ∆(2h2

1 + 2h̃2
2 − 2h1 + 2h̃2 − 4− 2v2v

∗
2).

We are interested in subrepresentations of W ⊗ S on which D2 acts nilpotently.
We saw in Section 4 that W ⊗ S is a direct sum of submodules which are all either
irreducible of the form V low

(k,m) for some (k, m) ∈ Z2, or of the form Ṽ(k,k−1) or Ṽ(k,k−2)

for some k ∈ Z. On any V low
(k,m), −Casl−4 can be calculated on the lowest weight

vector, where it is equal to

αk,m = 2k2 + 2m2 − 2k + 2m− 4 =
1
2
((2k − 1)2 + (2m + 1)2 − 10). (9)
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It follows that for integer values of k and m, αk,m is zero precisely for

(k, m) ∈ {(2, 0), (2,−1), (−1, 0), (−1,−1), (1, 1), (1,−2), (0, 1), (0,−2)}. (10)

If V low
(k,m) appear as a direct summand in W ⊗ S, then, by Proposition 1, k and m

must be integers with k > m. Therefore the following lemma holds.

Lemma 3. For any V low
(k,m) appearing as a direct summand in W ⊗ S, the action of

D2 is the scalar αk,m defined by (9). This scalar is zero precisely when (k, m) equals
(2, 0), (2,−1), (1,−2), or (0,−2).

Now examining the list given in Proposition 1 gives

Corollary 4. The irreducible direct summands V low
(k,m) of W ⊗ S in the generalized

0-eigenspace of D2 are:

1. V low
(2,−1), appearing in V low

( 1
2 ,− 5

2 )
⊗F ( 3

2 , 3
2 ) ⊂ W0⊗S, generated by z2

2⊗ t1∧ t2∧ t3,

and in V low
( 5
2 ,− 1

2 )
⊗ F (1

2 ,− 3
2 ) ⊂ W0 ⊗ S, generated by c2.

2. V low
(1,−2), appearing in V low

( 5
2 ,− 1

2 )
⊗F (− 3

2 ,− 3
2 ) ⊂ W0⊗S, generated by z2

1 ⊗1, and

in V low
( 1
2 ,− 5

2 )
⊗ F ( 3

2 ,− 1
2 ) ⊂ W0 ⊗ S, generated by c2.

3. V low
(2,0), appearing in V low

( 1
2 ,− 3

2 )
⊗F ( 3

2 , 3
2 ) ⊂ W1⊗S, generated by z2⊗ t1 ∧ t2 ∧ t3,

and in V low
( 7
2 ,− 1

2 )
⊗ F (1

2 ,− 3
2 ) ⊂ W1 ⊗ S, generated by c1.

4. V low
(0,−2), appearing in V low

( 3
2 ,− 1

2 )
⊗F (− 3

2 ,− 3
2 ) ⊂ W1⊗S, generated by z1⊗1, and

in V low
( 1
2 ,− 7

2 )
⊗ F ( 3

2 ,− 1
2 ) ⊂ W1 ⊗ S, generated by c1.

On the module Ṽ(a+c−1,a+c−2) of Corollary 2, the action of D2 is not by a scalar,
or even semisimple. Namely, since the generator c̃3 of (3) is of weight (a+c, a+c−3),
and since

v2v
∗
2 c̃3 = v2

2c1 = c3,

we see that
D2c̃3 = αa+c,a+c−3c̃3 − 2c3.

On the other hand, on V low
(a+c−2,a+c−1) ⊂ Ṽ(a+c−1,a+c−2), D2 is the scalar αa+c−2,a+c−1

which is easily seen to be the same as αa+c,a+c−3.
Similarly, the action of D2 on the module Ṽ(a+c−1,a+c−3) of Corollary 3 is given

by the scalar αa+c−2,a+c−2 on V low
(a+c−2,a+c−2) ⊂ Ṽ(a+c−1,a+c−2), while

D2c̃2 = αa+c−1,a+c−3c̃2 − 2c2.

Since one can check that αa+c−2,a+c−2 = αa+c−1,a+c−3, we get

Lemma 4. The operator D2 acts finitely on the modules Ṽ(a+c−1,a+c−2) of Corollary
2, and on the modules Ṽ(a+c−1,a+c−3) of Corollary 3. The only eigenvalue of D2 on
Ṽ(a+c−1,a+c−2) is α(a+c,a+c−3), and the only eigenvalue of D2 on Ṽ(a+c−1,a+c−3) is
α(a+c−1,a+c−3). These numbers are defined in (9).
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Using (10), it now follows that the relevant Ṽ(a+c−1,a+c−2) are those with (a +
c, a + c − 3) equal to (2,−1) or (1,−2), i.e., Ṽ(1,0) and Ṽ(0,−1), while the relevant
Ṽ(a+c−1,a+c−3) are Ṽ(2,0) and Ṽ(0,−2). These are precisely the indecomposable but
reducible modules from Proposition 1 that appears with multiplicity one. The only
such module appearing with multiplicity two, Ṽ(1,−1), does not contribute to coho-
mology. So we have

Corollary 5. The indecomposable direct summands Ṽk,m of W⊗S in the generalized
0-eigenspace of D2 are:

1. Ṽ(1,0), appearing in V low
( 1
2 ,− 1

2 )
⊗F ( 3

2 ,− 1
2 ) ⊂ W0⊗S. Its irreducible subquotients

are two copies of V low
(2,−1), one generated by the image of c̃3 and the other by

c3, and the two-dimensional module F (1, 0) generated by the image of c1.

2. Ṽ(0,−1), appearing in V low
( 1
2 ,− 1

2 )
⊗F ( 1

2 ,− 3
2 ) ⊂ W0⊗S. Its irreducible subquotients

are two copies of V low
(1,−2), one generated by the image of c̃3 and the other by

c3, and the two-dimensional module F (0,−1) generated by the image of c1.

3. Ṽ(2,0), appearing in V low
( 3
2 ,− 1

2 )
⊗F ( 3

2 ,− 1
2 ) ⊂ W1⊗S. Its irreducible subquotients

are two copies of V low
(2,0), one generated by the image of c̃2 and the other by c2,

and the one-dimensional module F (1, 1) generated by the image of c1.

4. Ṽ(0,−2), appearing in V low
( 1
2 ,− 3

2 )
⊗F ( 1

2 ,− 3
2 ) ⊂ W1⊗S. Its irreducible subquotients

are two copies of V low
(0,−2), one generated by the image of c̃2 and the other by

c2, and the one-dimensional module F (−1,−1) generated by the image of c1.

Combining Corollary 4 and Corollary 5, we see that the irreducible subquotients
of the generalized zero-eigenspace of D2 in W ⊗ S are:

1. V low
(2,−1), appearing twice as a direct summand as described in Corollary 4 (1),

and twice as a subquotient of Ṽ(1,0) as described in Corollary 5 (1);

2. V low
(1,−2), appearing twice as a direct summand as described in Corollary 4 (2),

and twice as a subquotient of Ṽ(0,−1) as described in Corollary 5 (2);

3. V low
(2,0), appearing twice as a direct summand as described in Corollary 4 (3),

and twice as a subquotient of Ṽ(2,0) as described in Corollary 5 (3);

4. V low
(0,−2), appearing twice as a direct summand as described in Corollary 4 (4),

and twice as a subquotient of Ṽ(0,−2) as described in Corollary 5 (4);

5. The remaining irreducible subquotients F (1, 0), F (0,−1), F (1, 1) and F (−1,
−1), described in Corollary 5 (1)-(4).

Note that cases (1) and (2) correspond to the even Weil representation W0, the
cases (3) and (4) correspond to the odd Weil representation W1, and in case (5),
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F (1, 0) and F (0,−1) correspond to W0 while F (1, 1) and F (−1,−1) correspond to
W1.

The easiest case to handle is case (5). Namely, each of these four finite-dimensional
modules appears only once, and so it has to be killed by C, C− and D, and it can-
not be in the image of any of them. (Namely, none of these operators can act as a
nonzero scalar, since the only possible eigenvalue for each of them is zero.) Hence
each of the four finite-dimensional modules contributes to cohomology with respect
to either of the three operators C, C− or D. Their generators, each of the form c1,
are easy to read off in each case (see the statements of the theorems below).

For cases (1)-(4), we have to see the action of C, C− and D on the generators of
the four isomorphic modules appearing in each of the cases, and then read off the
cohomology with respect to C, C− and D from the obtained table.

For case (1), i.e., for the four copies of the module V low
(2,−1), using (4), (5), (7) and

(4), we see that the generators are

d1 = z2
2 ⊗ t1 ∧ t2 ∧ t3;

c2 = 8z3
1z2 ⊗ t3 − 24z2

1 ⊗ t2;
c̃3 = 2z1z2 ⊗ t1 ∧ t3 − 6⊗ t1 ∧ t2;
c3 = 8z2

1z2
2 ⊗ t2 ∧ t3 − 16z1z2 ⊗ t1 ∧ t3 + 16⊗ t1 ∧ t2.

Applying the operators

C = ∂2
1 ⊗ t1 − 2z2∂1 ⊗ t2 + z2

2 ⊗ t3; C− = z2
1 ⊗ t∗1 + z1∂2 ⊗ t∗2 + ∂2

2 ⊗ t∗3,

we get after a short calculation:

Cd1 = 0; C−d1 =
1
4
c3;

Cc2 = −3c3; C−c2 = 0;

Cc̃3 = −2d1; C−c̃3 =
1
2
c2;

Cc3 = C−c3 = 0.

We can now conclude that the four subquotients isomorphic to V low
(2,−1) contribute

nothing to cohomology with respect to C or C−. Furthermore, we see that

D : c̃3 7→ −2d1 +
1
2
c2 7→ −2c3 7→ 0,

while

D(c2 + 12d1) = 0,

and c2 + 12d1 is not in the image of D. So the contribution of the four subquotients
isomorphic to V low

(2,−1) to cohomology with respect to D is equal to a copy of V low
(2,−1)

generated by c2 + 12d1.
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A very similar analysis applies to case (2). The generators of the four copies of
V low

(1,−2) are

d1 = z2
1 ⊗ 1;

c2 = 8z1z
3
2 ⊗ t2 ∧ t3 − 12z2

2 ⊗ t1 ∧ t3;
c̃3 = 4z1z2 ⊗ t2 − 6⊗ t1;
c3 = 8z2

1z2
2 ⊗ t3 − 32z1z2 ⊗ t2 + 16⊗ t1.

The action of C and C− is as follows:

Cd1 =
1
8
c3; C−d1 = 0;

Cc2 = 0; C−c2 = 3c3;

Cc̃3 = −1
2
c2; C−c̃3 = −4d1;

Cc3 = C−c3 = 0.

Hence the four subquotients isomorphic to V low
(1,−2) contribute nothing to cohomology

with respect to C or C−. Since the action of D is

D : c̃3 7→ −1
2
c2 − 4d1 7→ −2c3 7→ 0;

D(c2 − 24d1) = 0,

we see that the contribution of the four subquotients isomorphic to V low
(1,−2) to coho-

mology with respect to D is a copy of V low
(1,−2) generated by c2−24d1. So far we have

proved:

Theorem 1. The cohomology of C on W0⊗S is equal to F (1, 0)⊕F (0,−1), where
the two summands are generated by (the images of) 1⊗t2∧t3 and 1⊗t3, respectively.
The same is true for the cohomology of C− on W0 ⊗ S.

The cohomology of D on W0 ⊗ S is

F (1, 0)⊕ F (0,−1)⊕ V low
(2,−1) ⊕ V low

(1,−2),

where the first two summands are the same as above, the third summand is generated
by 2z3

1z2⊗ t3− 6z2
1 ⊗ t2 + 3z2

2 ⊗ t1 ∧ t2 ∧ t3, and the fourth summand is generated by
2z1z

3
2 ⊗ t2 ∧ t3 − 3z2

2 ⊗ t1 ∧ t3 − 6z2
1 ⊗ 1.

The calculations are completely analogous for the odd Weil representation W1.
For case (3), the generators are

d1 = z2 ⊗ t1 ∧ t2 ∧ t3;
c1 = 8z3

1 ⊗ t3;
c̃2 = 2z1 ⊗ t1 ∧ t3;
c2 = 8z2

1z2 ⊗ t2 ∧ t3 − 8z1 ⊗ t1 ∧ t3.
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The action of C and C− on these generators is given by

Cd1 = 0, C−d1 =
1
4
c2;

Cc1 = −6c2, C−c1 = 0;

Cc̃2 = 4d1, C−c̃2 =
1
2
c1;

Cc2 = C−c2 = 0.

For the case (4), the generators are

d1 = z1 ⊗ 1;
c1 = 8z3

2 ⊗ t2 ∧ t3;
c̃2 = 4z2 ⊗ t2;
c2 = 8z1z

2
2 ⊗ t3 − 16z2 ⊗ t2.

The action of C and C− on these generators is given by

Cd1 =
1
8
c2, C−d1 = 0;

Cc1 = 0, C−c1 = 6c2;

Cc̃2 = −1
2
c1, C−c̃2 = 8d1;

Cc2 = C−c2 = 0.

The final result is

Theorem 2. The cohomology of C on W1 ⊗ S is equal to F (1, 1) ⊕ F (−1,−1),
where the two summands are generated by (the images of) z1 ⊗ t2 ∧ t3 and z2 ⊗ t3,
respectively. The same is true for the cohomology of C− on W1 ⊗ S.

The cohomology of D on W1 ⊗ S is

F (1, 1)⊕ F (−1,−1)⊕ V low
(2,0) ⊕ V low

(0,−2),

where the first two summands are the same as above, the third summand is generated
by z3

1⊗t3+3z2⊗t1∧t2∧t3, and the fourth summand is generated by z3
2⊗t2∧t3−6z1⊗1.

6. Concluding remarks

The results of this note provide counterexamples to generalization of several results
proved in [9] for the case of a compact Levi subalgebra:

1. The Dirac cohomology is not equal to the ū-cohomology or the u-homology
up to a modular twist. In fact, the Dirac cohomology is larger than the ū-
cohomology or the u-homology, and the latter two are equal to each other.

2. The operators C and C− are not disjoint, i.e., it is possible that CC−x = 0
without C−x = 0 and also that C−Cy = 0 without Cy = 0. Moreover, the
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images of C and C− actually intersect. In particular, there can be no positive
definite Hermitian form on W0⊗S or on W1⊗S so that C and C− are adjoint
to each other with respect to this form.

3. Even though W0 and W1 are discretely decomposable under l, the operator
D(g, l)2 is not semisimple.

4. Calculating Dirac cohomology in stages fails for t ⊂ l ⊂ g. Indeed, one sees
right away that the Dirac cohomology with respect to D(l, t) of the l-module
HD(g, l;W0) is of dimension 6, so it cannot be equal to HD(g, t; W0) which was
seen to be 4-dimensional in [13], Proposition 6.1.

Finally, let us note that the part of the Dirac cohomology which does not come
from the cohomology with respect to C or C− seems to be related to the “bottom
part” of the decomposition of the l-module W , with some shift.
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