Thebault circles of the triangle in an isotropic plane

RUŽICA KOLAR–ŠUPER¹, ZDENKA KOLAR–BEGOVIĆ²,* AND VLADIMIR VOLENEC³

¹ Faculty of Teacher Education, University of Osijek, Lorenza Jägera 9, HR-31 000 Osijek, Croatia
² Department of Mathematics, University of Osijek, Try Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
³ Department of Mathematics, University of Zagreb, Bišničanska cesta 30, HR-10 000 Zagreb, Croatia

Received July 7, 2009; accepted April 5, 2010

Abstract. In this paper the existence of three circles, which touch the circumscribed circle and Euler circle of an allowable triangle in an isotropic plane, is proved. Some relations between these three circles and elements of a triangle are investigated. Formulae for their radii are also given.

AMS subject classifications: 51N25

Key words: isotropic plane, Thebault’s circles

In [6] V. Thébault considered the following figure in Euclidean geometry.

Let ABC be any triangle and A_m, B_m, C_m the midpoints of its sides BC, CA, AB. If the medians AA_m, BB_m, CC_m of that triangle meet its Euler circle $K_e = A_mB_mC_m$ (or the nine-point circle, i.e., the circle through the feet of the three altitudes, the midpoints of the three sides, and the midpoints of the segments from the three vertices to the orthocenter [2]) again at the points L, M, N, then there exist three circles D, E, F, which touch the circumscribed circle $K_o = ABC$ of the triangle ABC at the points A, B, C, and they touch the Euler circle K_e successively at the points L, M, N. Radii of these circles are d, e, f, respectively, where for example

$$d = \frac{R}{2} \left(1 - \frac{BC^2}{CA^2 + AB^2} \right) = \frac{2R \triangle \cot A}{CA^2 + AB^2},$$

while R denotes the radius of the circumscribed circle and \triangle the area of the triangle ABC. It is shown that the equation

$$\frac{1}{R - d} + \frac{1}{R - e} + \frac{1}{R - f} = \frac{4}{R}$$

holds.

Besides the circles D, E, F, there are three more circles D', E', F', which touch the circumscribed circle K_o at the points A, B, C, and they touch Euler circle K_e.

*Corresponding author. Email addresses: rkolar@ufos.hr (R. Kolar–Šuper), zkolar@mathos.hr (Z. Kolar-Begovic), volenev@math.hr (V. Volenev)

http://www.mathos.hr/mcc ©2010 Department of Mathematics, University of Osijek
at the feet A_h, B_h, C_h of the altitudes of the triangle ABC.

Figure 1. Thebault circles of the triangle in Euclidean plane

In this paper we shall investigate an analogous figure in an isotropic plane. Let $\mathbb{P}_2(\mathbb{R})$ be a real projective plane, f a real line in \mathbb{P}_2, and $\mathbb{A}_2 = \mathbb{P}_2 \setminus f$ the associated affine plane. The isotropic plane $\mathbb{I}_2(\mathbb{R})$ is a real affine plane \mathbb{A}_2 where the metric is introduced with a real line $f \subset \mathbb{P}_2$ and a real point F incidental with it. All straight lines through the point F are called isotropic lines. Isotropic circle in an isotropic plane is a conic which touches the absolute line f at the absolute point F.

Each allowable triangle in an isotropic plane can be set, by a suitable choice of coordinates, in the so-called standard position, i.e., that its circumscribed circle has the equation $y = x^2$, and its vertices are of the form $A = (a, a^2)$, $B = (b, b^2)$, $C = (c, c^2)$, where $a + b + c = 0$. With the labels $p = abc$, $q = bc + ca + ab$ it can be shown that the equality $a^2 = bc - q$ holds.

If A_h is the foot of the isotropic altitude through A, then A and A_h always lie on the same isotropic line, and a circle meets any isotropic line at only one proper point, it immediately follows that there are no analogous circles to the circles D', E', F' from the introduction.
In [3] it is shown that the median AA_m of the standard triangle ABC has the equation

$$y = \frac{3bc - q}{3a} x - \frac{2q}{3},$$

and in [1] it is obtained that Euler circle K_e of that triangle has the equation $y = -2x^2 - q$. The point

$$L = \left(-\frac{q}{3a}, -\frac{2q^2}{9a^2} - q \right)$$

obviously lies on the circle K_e, and because of

$$\frac{3bc - q}{3a} \left(\frac{q}{3a} \right) - \frac{2q}{3} = \frac{(3a^2 + 2q)(-q)}{9a^2} - \frac{2q}{3} = -\frac{2q^2}{9a^2} - q,$$

it also lies on the median AA_m.

Let us consider the circle D with the equation

$$(q + 3a^2)y = (3a^2 - 2q)x^2 + 6aqx - 3a^2q.$$ \hspace{2cm} (2)

From this equation and the equation $y = x^2$ of circumscribed circle K_o of the triangle ABC it follows that for the abscissas of their intersection the equation

$$(q + 3a^2)x^2 = (3a^2 - 2q)x^2 + 6aqx - 3a^2q$$

holds, i.e., the equation $3q(x^2 - 2ax + a^2) = 0$ with the double solution $x = a$, so the circles K_o and D touch each other at the point A.

From equation (2) and the equation $y = -2x^2 - q$ of the circle K_e there follows the equation

$$(q + 3a^2)(-2x^2 - q) = (3a^2 - 2q)x^2 + 6aqx - 3a^2q,$$

i.e., the equation $9a^2x^2 + 6aqx + q^2 = 0$ with the double solution $x = -\frac{q}{3a}$. It means the circles D and K_e touch each other at the point L. So, we have proved

Theorem 1. If medians of the allowable triangle ABC in an isotropic plane meet its Euler circle again (except midpoints of the sides BC, CA, AB) at the points L, M, N, then there are three circles D, E, F, which touch the circumscribed circle of the triangle ABC successively at the points A, B, C, and its Euler circle at the points L, M, N.

The circle with the equation of the form $2py = x^2 + ux + v$ has the radius ρ. Because of that, in the standard triangle ABC the circumscribed circle K_o with the equation $y = x^2$ has the radius $R = \frac{1}{2}$, and circle D with equation (2) has the radius

$$d = \frac{1}{2} \cdot \frac{q + 3a^2}{3a^2 - 2q} = \frac{q + 3a^2}{3a^2 - 2q} R.$$

From this it follows

$$R - d = \frac{3q}{2q - 3a^2} R.$$
and with analogous equalities for the radii \(d \) and \(f \) of the circles \(\mathcal{E} \) and \(\mathcal{F} \) we get

\[
\frac{1}{R - d} + \frac{1}{R - e} + \frac{1}{R - f} = \frac{1}{3qR} (6q - 3a^2 - 3b^2 - 3c^2) = \frac{12q}{3qR} = \frac{4}{R}.
\]

Now we have:

Theorem 2. For the radii \(d, e, f \) of the circles \(\mathcal{D}, \mathcal{E}, \mathcal{F} \) from Theorem 1 there follows the equality

\[
\frac{1}{R - d} + \frac{1}{R - e} + \frac{1}{R - f} = \frac{4}{R},
\]

where \(R \) is the radius of the circumscribed circle of the triangle \(ABC \).

In [5] it is shown that the power of the point \((x, y)\) with respect to the circle with the equation \(2\rho y = x^2 + ux + v \), has the value \(x^2 + ux + v - 2\rho y \). In [4] it is shown that the standard triangle \(ABC \) has the centroid \(G = (0, -\frac{q}{3}) \). The power \(\Pi \) of that centroid with respect to the circle \(\mathcal{D} \) with equation (2) is given by the formula

\[
(3a^2 - 2q)\Pi = -3a^2 q - (q + 3a^2) \cdot \left(-\frac{2q}{3} \right) = \frac{q}{3} (2q - 3a^2),
\]

so \(\Pi = \frac{-q}{4} \). The point \(G \) also has the same power with respect to the circles \(\mathcal{E} \) and \(\mathcal{F} \). The point whose powers with respect to the three circles are all equal is called the potential center for these three circles. So we get:

Theorem 3. The centroid of the triangle \(ABC \) is the potential center for the circles \(\mathcal{D}, \mathcal{E}, \mathcal{F} \) from Theorem 1.

The points \(M \) and \(N \) given by the equalities

\[
M = \left(-\frac{q}{3b}, -\frac{2q^2}{9b^2} - q \right), \quad N = \left(-\frac{q}{3c}, -\frac{2q^2}{9c^2} - q \right)
\]

are analogous to the point \(L \) from (1). The points \(L, M, N \) lie on the medians \(AG, BG, CG \) of the triangle \(ABC \), i.e., the triangles \(ABC \) and \(LMN \) are homologic, and the center of this homology is the centroid \(G \) of the triangle \(ABC \). What is the axis of this homology?

The line

\[
L \ldots y = -\frac{2aq}{3bc} x - q + \frac{2q^2}{9bc}
\]

passes through the points \(M \) and \(N \) since, for example, for the first of them we get

\[
-\frac{2aq}{3bc} \left(-\frac{q}{3b} \right) - q + \frac{2q^2}{9bc} = \frac{2q^2}{9b^2c} (a + b) - q = -\frac{2q^2}{9b^2} - q.
\]

Because of that \(L \) is the line \(MN \). In [4] it is shown that the line \(BC \) has the equation \(y = -ax - bc \). If we set \(-ax = y + bc\) in (3), then for ordinate \(y \) of the intersection \(D = BC \cap MN \) we get the equation

\[
y = \frac{2q}{3bc} (y + bc) - q + \frac{2q^2}{9bc},
\]
i.e.,
\[
\frac{1}{3bc} (3bc - 2q)y = -\frac{q}{3} + \frac{2q^2}{9bc} = \frac{q}{9bc} (2q - 3bc),
\]
whence \(y = -\frac{q}{3}\). The corresponding sides of the triangle \(ABC\) and its orthic triangle \(A_hB_hC_h\) intersect at three points which lie on the same line. This line is called, by analogy with the Euclidean case, an orthic line of the observed triangle. In [4] it is shown that the orthic line \(\mathcal{H}\) of the standard triangle \(ABC\) has the equation \(y = -\frac{q}{3}\). So the point \(D\) lies on that orthic line, and the same thing is valid for the points \(E = CA \cap NL\) and \(F = AB \cap LM\). So we have proved the statement.

Theorem 4. With the labels from Theorem 1, the axis of homology of the triangles \(ABC\) and \(LMN\) is the orthic line of the triangle \(ABC\).

![Thebault circles of the triangle in an isotropic plane](image)
Acknowledgement

The authors are grateful to the referees for very useful suggestions.

References

