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hydrogen atom equation

Resat Yilmazer1,∗

1 Department of Mathematics, Firat University, Elazig-23 119, Turkey

Received November 18, 2009; accepted April 23, 2010

Abstract. By means of fractional calculus techniques, we find explicit solutions of the
modified hydrogen atom equations. We use the N -fractional calculus operator Nµ method
to derive the solutions of these equations.
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1. Introduction, definitions and preliminaries

Let

q (r) =
` (` + 1)

r2
−n

r
, (0 < r < ∞) ,

where ` is a positive integer or zero and n > 0. Then

d2y

dr2
+

[
E +

n

r
−` (` + 1)

r2

]
y = 0. (1)

In quantum mechanics the study of energy levels of the hydrogen atom leads to
this equation [1]. For the problem having analogous singularity, some questions of
spectral analysis are given in [7].

The differintegration operators and their generalizations [5, 6, 9, 10] have been
used to solve some classes of differential equations and fractional differential equa-
tions.

Two of the most commonly encountered tools in the theory and applications of
fractional calculus are provided by the Riemann-Liouville operator Rυ

z (υ ∈ C) and
the Weyl operator W υ

z (υ ∈ C) , which are defined by [2, 3, 8, 11, 12]

Rυ
z f (z) =

{
1

Γ(υ)

∫ z

0
(z − t)υ−1f(t)dt : Re(υ) > 0,

dn

dzn Rυ+n
z f(z) : − n < Re(υ) ≤ 0; n ∈ N,

(2)

and
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W υ
z f (z) =

{
1

Γ(υ)

∫∞
z

(t− z)υ−1f(t)dt : Re(υ) > 0,

dn

dzn W υ+n
z f (z) : −n < Re(υ) ≤ 0; n ∈ N,

(3)

provided that the defining integrals in (2) and (3) exist, N being the set of positive
integers.

Definition 1 (See [5, 4, 13]). Let

D =
{
D−, D+

}
, C =

{
C−, C+

}
,

C− be a curve along the cut joining two points z and −∞+ iIm(z) , C+ be a curve
along the cut joining two points z and ∞ + iIm(z) , D− be a domain surrounded
by C−, and D+ a domain surrounded by C+. (Here D contains the points over the
curve C).

Moreover, let f = f (z) be a regular function in D (z ∈ D) ,

fµ (z) = (f (z))µ

=
Γ (µ + 1)

2πi

∫

C

f (t) dt

(t− z)µ+1 ,
(
µ ∈ R \ Z−;Z− = {−1,−2, ...})

and

f−n (z) = lim
µ→−n

fµ (z) ,
(
n ∈ Z+

)
,

where t 6= z,

−π ≤ arg (t− z) ≤ π for C−

and

0 ≤ arg (t− z) ≤ 2π for C+,

then fµ (z) (µ > 0) is said to be the fractional derivative of f (z) of order µ and
fµ (z) (µ < 0) is said to be the fractional integral of (z) of order −µ, provided (in
each case) that |fµ (z)| < ∞ (µ ∈ R) .

Finally, let the fractional calculus operator (Nishimoto’s operator) Nµ be defined
by (cf. [5])

Nµ =

(
Γ (µ + 1)

2πi

∫

C

dt

(t− z)µ+1

)
,

(
µ /∈ Z−)

with

N−n = lim
µ→−n

Nµ,
(
n ∈ Z+

)
.

We find it worthwhile to recall here the following useful lemmas and properties
associated with the fractional differintegration defined above (cf.e.g. [5, 4]).
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Lemma 1 (Linearity property). If the functions f (z) and g (z) are single-valued
and analytic in some domain Ω ⊆ C, then

(h1f (z) + h2g (z))µ = h1fµ (z) + h2gµ (z) , (µ ∈ R; z ∈ Ω) (4)

for any constants h1 and h2.

Lemma 2 (Index law). If the function f (z) is single-valued and analytic in some
domain Ω ⊆ C, then

(fγ (z))µ = fγ+µ (z) = (fµ (z))γ , (fγ (z) 6= 0; fµ (z) 6= 0; γ, µ ∈ R; z ∈ Ω) . (5)

Lemma 3 (Generalized Leibniz rule). If the functions f (z) and g (z) are single-
valued and analytic in some domain Ω ⊆ C, then

(f (z) .g (z))µ =
∞∑

n=0

(
µ

n

)
fµ−n (z) .gn (z) , (µ ∈ R; z ∈ Ω) , (6)

where gn (z) is the ordinary derivative of g (z) of order n (n ∈ N0 := N ∪ {0}) , it
being tacitly assumed (for simplicity) that g (z) is a polynomial part (if any) of the
product f (z) g (z) .

Property 1. For a constant λ,
(
eλz

)
µ

= λµeλz, (λ 6= 0; µ ∈ R; z ∈ C) . (7)

Property 2. For a constant λ,
(
e−λz

)
µ

= e−iπµλµe−λz, (λ 6= 0; µ ∈ R; z ∈ C) . (8)

Property 3. For a constant λ,

(
zλ

)
µ

= e−iπµ Γ (µ− λ)
Γ (−λ)

zλ−µ,

(
µ ∈ R; z ∈ C;

∣∣∣∣
Γ (µ− λ)
Γ (−λ)

∣∣∣∣ < ∞
)

. (9)

2. The Nµ method applied to a modified hydrogen atom equa-
tion

Theorem 1. Let y ∈ {y : 0 6= |yµ| < ∞;µ ∈ R} and f ∈ {f : 0 6= |fµ| < ∞; µ ∈ R} .
Then the non-homogeneous modified hydrogen atom equation (putting E = k2 (k the
corresponding wave number), m = ` + (1/2) in (1)):

L [y, r,m, n] = y2 + y

[
k2 +

n

r
+

(1/4)−m2

r2

]
= f, (r 6= 0) (10)

has particular solutions of the forms:

y = rm+ 1
2 e−ikr

{[(
fr

1
2−meikr

)
−m− in

2k− 1
2

e−2ikrrm− in
2k− 1

2

]

−1

× e2ikrr−m+ in
2k− 1

2

}
m+ in

2k− 1
2

≡ yI (11)
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y = rm+ 1
2 eikr

{[(
fr

1
2−me−ikr

)
−m+ in

2k− 1
2

e2ikrrm+ in
2k− 1

2

]

−1

× e−2ikrr−m− in
2k− 1

2

}
m− in

2k− 1
2

≡ yII , (12)

y = r−m+ 1
2 e−ikr

{[(
fr

1
2+meikr

)
m− in

2k− 1
2

e−2ikrr−m− in
2k− 1

2

]

−1

× e2ikrrm+ in
2k− 1

2

}
−m+ in

2k− 1
2

≡ yIII , (13)

y = r−m+ 1
2 eikr

{[(
fr

1
2+me−ikr

)
m+ in

2k− 1
2

e2ikrr−m+ in
2k− 1

2

]

−1

× e−2ikrrm− in
2k− 1

2

}
−m− in

2k− 1
2

≡ yIV . (14)

Here y2 = d2y/dr2, y = y (z) (z ∈ C) , f = f (z) (an arbitrary given function) and
m,n are given constants.

Remark 1. The cases m = 0 of (13) and (14) overlap with those in (11) and (12) ,
respectively.

Proof.

y = rνφ with φ = φ (r) (r 6= 0) ; (15)

hence

y1 = νrν−1φ + rνφ1 (16)

and

y2 = ν (ν − 1) rν−2φ + 2νrν−1φ1 + rνφ2. (17)

Substituting the relations (15) , (16) and (17) into (10), we have

ν (ν − 1) rν−2φ + 2νrν−1φ1 + rνφ2 + rνφ

[
k2 +

n

r
+

(1/4)−m2

r2

]
= f. (18)

With some rearrangement of the terms in (18) , we have

φ2r + 2νφ1 + φ

[(
ν2 − ν +

1
4
−m2

)
r−1 + k2r + n

]
= fr1−ν . (19)
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Here we choose ν such that

ν2 − ν +
1
4
−m2 = 0,

that is

ν =
1
2
±m. (20)

(I): Let ν = m + (1/2) . From (15) and (19) we have

y = rm+(1/2)φ (21)

and

φ2r + φ1 (2m + 1) + φ
(
n + k2r

)
= fr(1/2)−m, (22)

respectively.
Next, set

φ = eηrψ with ψ = ψ (r) , (23)

then equation (22) may be written in the form:

(eηrψ)2 r + (eηrψ)1 (2m + 1) + eηrψ
(
n + k2r

)
= fr(1/2)−m. (24)

At this point, calculating the derivatives

(eηrψ)1 = eηr (ηψ + ψ1) (25)

and

(eηrψ)2 = eηr
(
η2ψ + 2ηψ1 + ψ2

)
, (26)

and substituting from (23) , (25) and (26) in (24) , we can express (24) as

ψ2r + ψ1 (2ηr + 2m + 1) + ψ
[(

η2 + k2
)
r + (2m + 1) η + n

]
= fr(1/2)−me−ηr. (27)

Choose η such that

η2 + k2 = 0, (28)

that is,

η = ±ki. (29)

(I) (i): In the case when η = −ki, we have

φ = e−ikrψ (30)

and

ψ2r + ψ1 (−2ikr + 2m + 1) + ψ [−ik (2m + 1) + n] = fr(1/2)−meikr (31)
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from (23) and (27) , respectively.
Applying the operator Nµ to both members of (31) , we then obtain

(ψ2r)µ+[ψ1 (−2ikr + 2m + 1)]µ+{ψ [−ik (2m + 1) + n]}µ =
(
fr(1/2)−meikr

)
µ

.(32)

Using (4), (5), (6) we have

(ψ2r)µ = ψ2+µr + ψ1+µµ (33)

and

[ψ1 (−2ikr + 2m + 1)]µ = ψ1+µ (−2ikr + 2m + 1)− ψµ2ikµ. (34)

Making use of the relations (33) and (34), we may write (32) in the following
form:

ψ2+µr + ψ1+µ (−2ikr + 2m + 1 + µ) + ψµ [n− ik (2m + 1 + 2µ)]

=
(
fr(1/2)−meikr

)
µ

. (35)

Choose µ such that

µ = −m− in

2k
− 1

2
, (36)

we have then

ψ2−m− in
2k− 1

2
r + ψ1−m− in

2k− 1
2

[
−i

(
2kr +

n

2k

)
+ m +

1
2

]

=
(
fr(1/2)−meikr

)
−m− in

2k− 1
2

(37)

from (35).
Next, writing

ψ1−m− in
2k− 1

2
= u = u (r) , (38)

we obtain

u1 + u

[
−2ik +

(
m +

1
2
− in

2k

)
r−1

]
=

(
fr(1/2)−meikr

)
−m− in

2k− 1
2

r−1 (39)

from (37) . This is an ordinary differential equation of the first order which has a
particular solution:

u =
[(

fr(1/2)−meikr
)
−m− in

2k− 1
2

e−2ikrr−1+m− in
2k + 1

2

]

−1

e2ikrr−m+ in
2k− 1

2 . (40)

Making use of the reverse process to obtain yI , we finally obtain solution (11) from
(40) , (38) , (30) and (21).
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Inversely, (40) satisfies (39) clearly; then

ψ = um+ in
2k− 1

2
, (41)

satisfies (37). Therefore, (11) satisfies (10) because we have (21) , (30) , (40) and
(41) .
(I) (ii): In the case when η = ik, we have

φ = eikrψ (42)

and

ψ2r + ψ1 (2ikr + 2m + 1) + ψ [ik (2m + 1) + n] = fr(1/2)−me−ikr (43)

from (23) and (27) , respectively.
Applying the operator Nµ to both members of (43) , we have

ψ2+µr + ψ1+µ (2ikr + 2m + 1 + µ) + ψµ [n + ik (2m + 1 + 2µ)]

=
(
fr(1/2)−me−ikr

)
µ

. (44)

Choosing µ such that

µ = −m +
in

2k
− 1

2
(45)

and replacing

ψ1−m+ in
2k− 1

2
= ω = ω (r) , (46)

we have then

ω1 + ω

[
2ik +

(
m +

1
2

+
in

2k

)
r−1

]
=

(
fr(1/2)−me−ikr

)
−m+ in

2k− 1
2

r−1 (47)

from (44) . A particular solution of equation (47) is given by

ω =
[(

fr(1/2)−me−ikr
)
−m+ in

2k− 1
2

e2ikrrm+ in
2k− 1

2

]

−1

e−2ikrr−m− in
2k− 1

2 . (48)

Therefore, we have (12) from (48) , (46) , (42) and (21) .
(II): Let ν = −m + (1/2) . In the same way as the procedure in (I) , replacing m by
−m in (I) (i) and (I) (ii), we have other solutions (13) and (14) different from (11)
and (12) , respectively, if m 6= 0.

3. The operator Nµ method to a homogeneous modified hy-
drogen atom equation

Theorem 2. If y ∈ o
℘, just like in Theorem 1, then the homogeneous modified

hydrogen atom equation:

L [y, r,m, n] = 0 (r 6= 0) , (49)
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has solutions of the forms:

y = hrm+ 1
2 e−ikr

(
e2ikrr−m+ in

2k− 1
2

)
m+(in/2k)−(1/2)

≡ y(I), (50)

y = hrm+ 1
2 eikr

(
e−2ikrr−m− in

2k− 1
2

)
m−(in/2k)−(1/2)

≡ y(II), (51)

y = hr−m+ 1
2 e−ikr

(
e2ikrrm+ in

2k− 1
2

)
−m+(in/2k)−(1/2)

≡ y(III), (52)

y = hr−m+ 1
2 eikr

(
e−2ikrrm− in

2k− 1
2

)
−m−(in/2k)−(1/2)

≡ y(IV ), (53)

for m 6= 0, where h is an arbitrary constant.

Remark 2. In the case when m = 0, (52) and (53) overlap with (50) and (51) ,
respectively.

Proof. When f = 0 in Section 2, we have

u1 + u

[
−2ik +

(
m +

1
2
− in

2k

)
r−1

]
= 0 (54)

and

ω1 + ω

[
2ik +

(
m +

1
2

+
in

2k

)
r−1

]
= 0 (55)

for η = −ik and η = ik, instead of (39) and (47) , respectively.
Therefore, we obtain (50) for (54) and (51) for (55) .
And, for ν = −m + (1/2) , replacing m by −m in (54) and (55) , we have (52)

and (53) , respectively.

Theorem 3. Let y ∈ o
℘ and f ∈ o

℘, just like in Theorem 1. Then the nonhomoge-
neous modified hydrogen atom equation (10) is satisfied by the fractional differinte-
grated functions (for example)

y = yI + y(I). (56)

Proof. It is clear by Theorems 1 and 2.

Example 1. In the case when m = − 1
2 , n = 0 and k = 1

3 , we have then

y2 +
1
9
y = 0 (57)

from (49) . Solutions of equation (57) are given as

y = y(I) = he−ir/3
(
e2ir/3

)
−1

= −3h

2
ieir/3 (58)

by (50) . The function shown by (58) satisfies (57) clearly.
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Example 2. In the case when m = − 1
2 , n = 0, k = 1

2 , and f = ir, we have

y2 +
1
4
y = ir (59)

and

y = yI = e−ir/2

{[(
irreir/2

)
0
e−irr−1

]
−1

eir

}

−1

= e−ir/2

{[
ire−ir/2

]
−1

eir

}

−1

= e−ir/2
{

2ieir/2 (ir + 2)
}
−1

= e−ir/2
(
4ireir/2

)

= 4ir (60)

from (10) and (11). The function shown by (60) satisfies (59) clearly.

4. Two further cases of a modified hydrogen atom equation

In the same way as in the preceding sections, we can solve the following nonhomo-
geneous modified hydrogen atom equation:

y2 + y

[
k2 +

n

r
+

(1/4) + m2

r2

]
= f (61)

and

y2 + y

[
−k2 +

n

r
+

(1/4) + m2

r2

]
= f, (62)

which are obtained by replacing m by im (−k2 instead of k2) in (10), that is,

y2 + y

[
k2 +

n

r
+

(1/4)− (im)2

r2

]
= f (63)

and

y2 + y

[
−k2 +

n

r
+

(1/4)− (im)2

r2

]
= f. (64)

i) Therefore, the solutions for (63) are given by replacing m by im in (11) , (12) ,
(13) and (14), as follows:

yI = rim+ 1
2 e−ikr

{[(
fr

1
2−imeikr

)
−i(m+ n

2k )− 1
2

e−2ikrri(m− n
2k )− 1

2

]

−1

× e2ikrr−i(m− n
2k )− 1

2

}
i(m+ n

2k )− 1
2

, (65)
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yII = rim+ 1
2 eikr

{[(
fr

1
2−ime−ikr

)
−i(m− n

2k )− 1
2

e2ikrri(m+ n
2k )− 1

2

]

−1

× e−2ikrr−i(m+ in
2k )− 1

2

}
i(m− n

2k )− 1
2

, (66)

yIII = r−im+ 1
2 e−ikr

{[(
fr

1
2+imeikr

)
i(m− n

2k )− 1
2

e−2ikrr−i(m+ n
2k )− 1

2

]

−1

× e2ikrri(m+ n
2k )− 1

2

}
−i(m− n

2k )− 1
2

, (67)

yIV = r−im+ 1
2 eikr

{[(
fr

1
2+ime−ikr

)
i(m+ n

2k )− 1
2

e2ikrr−i(m− in
2k )− 1

2

]

−1

× e−2ikrri(m− n
2k )− 1

2

}
−i(m+ n

2k )− 1
2

. (68)

ii) Similarly, the solutions for (64), substituting the relations (15) , (16) and (17)
into (64) , we have

φ2r + 2νφ1 + φ

[(
ν2 − ν +

1
4
− (im)2

)
r−1 − k2r + n

]
= fr1−ν . (69)

Here we choose ν such that

ν2 − ν +
1
4

+ m2 = 0,

that is

ν =
1
2
± im. (70)

Let ν = im + (1/2) . From (15) and (69) we have

y = rim+(1/2)φ (71)

and

φ2r + φ1 (2im + 1) + φ
(
n− k2r

)
= fr(1/2)−im (72)

Next, set (23). Then equation (72) may be written in the form:

(eηrψ)2 r + (eηrψ)1 (2im + 1) + eηrψ
(
n− k2r

)
= fr(1/2)−im (73)

Substituting the relations (23) , (25) and (26) into (73) , we have

ψ2r + ψ1 (2ηr + 2im + 1) + ψ
[(

η2 − k2
)
r + (2im + 1) η + n

]

= fr(1/2)−ime−ηr. (74)
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Choose η such that

η2 − k2 = 0,

that is,

η = ±k. (75)

ii.1) In the case when η = −k, we have

φ = e−krψ (76)

and

ψ2r + ψ1 (−2kr + 2im + 1) + ψ [−k (2im + 1) + n] = fr(1/2)−imekr (77)

from (23) and (74).
Applying the operator Nµ to both members of (77) , we then obtain

(ψ2r)µ + [ψ1 (−2kr + 2im + 1)]µ + {ψ [−k (2im + 1) + n]}µ

=
(
fr(1/2)−imekr

)
µ

. (78)

Using (4), (5), (6) we have

ψ2+µr + ψ1+µ (−2kr + 2im + 1 + µ) + ψµ [n− k (2im + 1 + 2µ)]

=
(
fr(1/2)−imekr

)
µ

. (79)

Choose µ such that

µ = −im +
n

2k
− 1

2
, (80)

we have then

ψ2−im+ n
2k− 1

2
r + ψ1−im+ n

2k− 1
2

[
−2kr + im +

n

2k
+

1
2

]

=
(
fr(1/2)−imekr

)
−im+ n

2k− 1
2

(81)

from (79) .
Next, writing

ψ1−im+ n
2k− 1

2
= u = u (r) , (82)

we obtain

u1 + u

[
−2k +

(
im +

n

2k
+

1
2

)
r−1

]
=

(
fr(1/2)−imekr

)
−im+ n

2k− 1
2

r−1 (83)
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from (81) . This is an ordinary differential equation of the first order which has a
particular solution:

u =
[(

fr(1/2)−imekr
)
−im+ n

2k− 1
2

e−2krrim+ n
2k− 1

2

]

−1

e2krr−im− n
2k− 1

2 . (84)

We finally obtain the solution

yI = rim+ 1
2 e−kr

{[(
fr

1
2−imekr

)
−im+ n

2k− 1
2

e−2krrim+ n
2k− 1

2

]

−1

× e2krr−im− n
2k− 1

2

}
im− n

2k− 1
2

(85)

from (84) , (82) , (76) and (71).
ii.2) Similarly, in the case when η = k, we obtain

yII = rim+ 1
2 ekr

{[(
fr

1
2−ime−kr

)
−im− n

2k− 1
2

e2krrim− n
2k− 1

2

]

−1

× e−2krr−im+ n
2k− 1

2

}
im+ n

2k− 1
2

. (86)

Let ν = −im + (1/2) . In the same way as the procedure in (ii) , replacing im by
−im (ii.1) and (ii.2), we have

yIII = r−im+ 1
2 e−kr

{[(
fr

1
2+imekr

)
im+ n

2k− 1
2

e−2krr−im+ n
2k− 1

2

]

−1

× e2krrim− n
2k− 1

2

}
−im− n

2k− 1
2

, (87)

yIV = r−im+ 1
2 ekr

{[(
fr

1
2+ime−kr

)
im− n

2k− 1
2

e2krr−im− n
2k− 1

2

]

−1

× e−2krrim+ n
2k− 1

2

}
−im+ n

2k− 1
2

. (88)

iii) In the homogeneous case for equation (63) with f = 0, using the results (50) ,
(51) , (52) and (53) , and replacing m by im, we obtain

y(I) = hrim+ 1
2 e−ikr

(
e2ikrr−i(m− n

2k )− 1
2

)
i(m+ n

2k )− 1
2

, (89)

y(II) = hrim+ 1
2 eikr

(
e−2ikrr−i(m+ in

2k )− 1
2

)
i(m− n

2k )− 1
2

, (90)

y(III) = hr−im+ 1
2 e−ikr

(
e2ikrri(m+ n

2k )− 1
2

)
−i(m− n

2k )− 1
2

, (91)

y(IV ) = hr−im+ 1
2 eikr

(
e−2ikrri(m− n

2k )− 1
2

)
−i(m+ n

2k )− 1
2

. (92)

for m 6= 0, where h is an arbitrary constant.



N-fractional calculus operator Nµ method 501

References
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