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N-fractional calculus operator N* method to a modified
hydrogen atom equation
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Abstract. By means of fractional calculus techniques, we find explicit solutions of the
modified hydrogen atom equations. We use the N-fractional calculus operator N* method
to derive the solutions of these equations.
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1. Introduction, definitions and preliminaries

Let

g ="V " 0 r ),

where /¢ is a positive integer or zero and n > 0. Then

d*y n ((l+1)
R St =0. 1
dr2+ E+r r2 y=0 (1)

In quantum mechanics the study of energy levels of the hydrogen atom leads to
this equation [1]. For the problem having analogous singularity, some questions of
spectral analysis are given in [7].

The differintegration operators and their generalizations [5, 6, 9, 10] have been
used to solve some classes of differential equations and fractional differential equa-
tions.

Two of the most commonly encountered tools in the theory and applications of
fractional calculus are provided by the Riemann-Liouville operator RY (v € C) and
the Weyl operator WY (v € C), which are defined by [2, 3, 8, 11, 12]

RVf(z) = ﬁ foz(z —t)v7Lf(t)dt :  Re(v) >0,
> RVt f(z): —n < Re(v) <0; neN,

dzm

and
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WO (2) = %:) f:o(t —2)V"Lf(t)dt 1 Re(v) >0,
A" Wotnf(z): —n < Re(v) <0; neEN,

dzm

3)

provided that the defining integrals in (2) and (3) exist, N being the set of positive
integers.

Definition 1 (See [5, 4, 13]). Let
D={D",D*}, Cc={Cc~,C*},

C~ be a curve along the cut joining two points z and —oco +ilm(z) , CT be a curve
along the cut joining two points z and co + iIlm(z) , D~ be a domain surrounded
by C~, and DT a domain surrounded by C+. (Here D contains the points over the
curve C).

Moreover, let f = f(z) be a regular function in D (z € D),

fu(2) = (f(2)),
_ 1“(,u+1)/ f(t)dt (LeR\Z;Z™ ={-1,-2,..})
c

27 (t —2)*
and
fon(z) = Hl_i)rr_lnf# (z), (nez'),
where t # z,
—r <arg(t—z)<m for C~
and

0 <arg(t—z) <2r for CT,

then f, (z) (n>0) is said to be the fractional derivative of f(z) of order p and
fu(2) (1 <0) is said to be the fractional integral of (z) of order —pu, provided (in
each case) that |f,, (2)| < oo (p € R).

Finally, let the fractional calculus operator (Nishimoto’s operator) N* be defined

by (cf. [5])
o [(T(p+1) dt _
N _< o /c(t—z)”“>’ (g 27)

with

N~ = lim N*, (n€Z").

pn——n

We find it worthwhile to recall here the following useful lemmas and properties
associated with the fractional differintegration defined above (cf.e.g. [5, 4]).
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Lemma 1 (Linearity property). If the functions f(z) and g(z) are single-valued
and analytic in some domain Q) C C, then

(h1f (2) + h2g (2)), = b1 fu (2) + hagu (2), (pER;2€Q) (4)
for any constants hy and hs.

Lemma 2 (Index law). If the function f(z) is single-valued and analytic in some
domain Q C C, then

(1 () = Frwn(2) = (Fu (), (Fy(2) #0:fu(2) # 05, € R 2 € Q) (5)

Lemma 3 (Generalized Leibniz rule). If the functions f(z) and g (z) are single-
valued and analytic in some domain 2 C C, then

o0

7@ =3 () o 00 (). weRizen). ©

n=0

where gy, (2) is the ordinary derivative of g(z) of order n (n € Ng :=NU{0}), it
being tacitly assumed (for simplicity) that g (z) is a polynomial part (if any) of the
product f (2) g (z).

Property 1. For a constant A,
(e)‘z)u = e N£0peR;zeC). (7)

Property 2. For a constant A,
(ef)‘z)u —e M e (N A0 peR;z€C). (8)

Property 3. For a constant A,

i D= A) _
A I A . .
(2 )H—e lif( N 2T, <MER,Z€C,

2. The N* method applied to a modified hydrogen atom equa-
tion

Theorem 1. Lety € {y: 0 # |y,| <oo;p € R} and f € {f:0#|f.] < oo;p € R}.
Then the non-homogeneous modified hydrogen atom equation (putting E = k* (k the
corresponding wave number), m = £+ (1/2) in (1)):

(1/4) — m?

L[y,r,m,n]y2+y[k2+;l+ 5 ]f, (r#£0) (10)

r

has particular solutions of the forms:

1 _; 1_ i —9; _in 1
y = rm+2€ ikr |:(f’l"2 mezkr) ‘ ) e 21krTm % 2:|
M=o 2 -1

; in _ 1
% eszrr—m+ﬁ—§ }

y! (11)
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62ikr,,,m+é’,é;:|
—1

1 4 1_ i
y*Tm+2eZkT |:<f’l"2 m, 'Lk'r‘) . )
—m+tgp—3
; in _ 1
% —2ikr _m_ﬁ_i}
m—

in
2k

N

_ 1 ikr 1 ik —92; —m—in_1
y=r m-l-26 ikr [(fr2+mezkr) ‘ e 2zkrT m— gy 2:|
m= g~ -1

1
2

% e2ikrrm+%7% } .
~m+ig -4

— III
y = r ik |:(f,r§+m6ikr) . eZikr,’nm+£’,§§:|
m+ -3 -1
% e—Qikr,rm—%—%} »
—m—gE—3
_ IV
=y, (14)

Here yy = d?y/dr?, y = y(2) (2 € C), f = f(2) (an arbitrary given function) and
m,n are given constants.

Remark 1. The cases m =0 of (13) and (14) overlap with those in (11) and (12),
respectively.

Proof.
y=1"¢ withp=¢(r) (r#0); (15)
hence
yr = v+ (16)
and
Yo =v (v —1)r""2¢ 4+ wr’ "Ly + 1V . (17)

Substituting the relations (15),(16) and (17) into (10), we have

Mmz} —f. (18)

v(v—1)r""2¢p + 2" Loy + V¢ + 170 {kQ + % + -

With some rearrangement of the terms in (18), we have

Por + 2Up1 + @ |:<V2 —v+ i - m2) r k2 n] = fri=v. (19)
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Here we choose v such that

that is

(I): Let v =m + (1/2) . From (15) and (19) we have

y = rmt1/2)g (21)
and
par+ 1 (2m—+1)+ ¢ (n + kzr) = fr/2-m (22)
respectively.
Next, set
¢ =¢€"Y with ¢ = (r), (23)

then equation (22) may be written in the form:
(€7 Y)yr + (€"Y); (2m+ 1) + TP (n+ kPr) = fr/2-m, (24)
At this point, calculating the derivatives
(€")y = €T () +¢n) (25)
and
(€™ )y = €™ (0% + 2n1 +42) (26)
and substituting from (23),(25) and (26) in (24), we can express (24) as
Yor + 11 (2nr +2m+ 1) + ¢ [(772 + kz) r+(2m+1)n+ n] = fr(l/Q)_me_”T. (27)
Choose 7 such that
4+ k% =0, (28)
that is,
n = Lki. (29)
(I) (i): In the case when 1 = —ki, we have
6=y (30)
and

Vot 4 1 (—=2ikr + 2m + 1) + ¥ [—ik (2m + 1) 4+ n] = fr(t/2=meikr (31)
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from (23) and (27), respectively.
Applying the operator N* to both members of (31), we then obtain

(or) ,,+ 1 (=2ikr +2m + 1), +{¢ [<ik 2m + 1) +n]} = (fr“/?)—me“") .(32)

Using (4), (5), (6) we have
(ar),, = appr + Y14 pupt (33)
and
[1 (=2ikr + 2m + 1)), = 14y, (=2ikr + 2m + 1) — 9, 2ikp. (34)

Making use of the relations (33) and (34), we may write (32) in the following
form:

Yoqp,m + V14 (=2ikr +2m + 14 p) + ¢, [n— ik (2m + 1 4 2p))

_ (fr(l/Q)fmeikr> ) (35)
m
Choose p such that
in 1
p=—me o= g (36)
we have then
v v i (2k " 1
¢2_m_%_%7’ +7/’1_m_§%_% —1 ( T+ ﬁ) +m+ B
_ 1/2)—m _ikr
_ <fr< /2)-m,, ),m,m,i (37)
2k 2
from (35).
Next, writing
¢1_m_%_%:u:u(r), (38)
we obtain
1 4 ;
up +u {—Qik + (m +t5 - ;Z) rl] = (fr(l/m*me“") el r~t (39)

from (37). This is an ordinary differential equation of the first order which has a
particular solution:

= |:(f7,(1/2)—meikr>

in 1

—92; —14m—irg4l i —m4in_1
e 21]{11 r 1+m Sk 2:| eQ’L}C’I r m Sk 3 . (40)
—MmTor T3

-1

Making use of the reverse process to obtain y!, we finally obtain solution (11) from
(40), (38),(30) and (21).
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Inversely, (40) satisfies (39) clearly; then

Y= Uppyin 1, (41)
satisfies (37). Therefore, (11) satisfies (10) because we have (21),(30),(40) and
g;)(u) In the case when n = ik, we have

b = ey (42)
and
Yor + Py (2ikr + 2m + 1) + 4 [ik (2m + 1) +n] = frt/D—me=ikr (43)

from (23) and (27), respectively.
Applying the operator N* to both members of (43), we have

Vot + Y1 (2tkr +2m 4+ 1+ p) + 1y [0+ ik (2m + 1+ 2p)]

_ (f,r(l/Q)—me—ikr) . (44)

o

Choosing s such that
n 1
=— — == 45
p=—mt o =g (45)
and replacing

Yy mpin 1 =w=w(r), (46)

we have then

1 ] )
wy t+w|2tk+ (m+ =+ T 1| = (fr(l/z)*me*””) _ r! (47)
2 2k —m+in_1

2k 2

from (44) . A particular solution of equation (47) is given by

w — |:<f7,(1/2)meikr)

Therefore, we have (12) from (48), (46), (42) and (21).

(IT): Let v = —m + (1/2) . In the same way as the procedure in (I), replacing m by
—m in (I) (i) and (I) (ii), we have other solutions (13) and (14) different from (11)
and (12), respectively, if m # 0. O

i in _ 1 — 92 —m—in 1
e2zkrrm+2k 2:| e szrr m-gE =3 (48)

in 1
—mtaE T3 -1

3. The operator N* method to a homogeneous modified hy-
drogen atom equation

Theorem 2. Ify € 57 just like in Theorem 1, then the homogeneous modified
hydrogen atom equation:

Lly,r,m,n] =0 (r#0), (49)
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has solutions of the forms:

y = hptE i ( 2ikr,. —m+%—%)m+(m/2k) . y@D, (50)
y = hrm T kT (6721167‘ 7m—ﬂf—)m 1 = y I, (51)
y = hr—m+§e—ikr( 2ikr m+ 5 — %) PR, = 1D (52)
y = hr—mh ik (e—mr m—in %) sy = g, (53)

for m #£ 0, where h is an arbitrary constant.

Remark 2. In the case when m = 0, (52) and (53) overlap with (50) and (51),
respectively.

Proof. When f = 0 in Section 2, we have

. 1 an\ 4
u1—|—u{—2zk+< +2—2k>r ]—0 (54)
and
wl—l—w{%k—&-(m—k +2k> } =0 (55)

for n = —ik and n = ik, instead of (39) and (47), respectively.

Therefore, we obtain (50) for (54) and (51) for (55).

And, for v = —m + (1/2), replacing m by —m in (54) and (55), we have (52)
and (53), respectively. O

Theorem 3. Lety € % and f € E), just like in Theorem 1. Then the nonhomoge-
neous modified hydrogen atom equation (10) is satisfied by the fractional differinte-
grated functions (for example)

y=y" +y". (56)
Proof. It is clear by Theorems 1 and 2. O
Example 1. In the case when m = —%,n =0and k= %, we have then

Y2 + éy =0 (57)

from (49) . Solutions of equation (57) are given as

y = y(I) — he—ir/3 (€2¢T/3>
3h .,
7Z'€ZT/3

-1

by (50) . The function shown by (58) satisfies (57) clearly.
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Example 2. In the case when m = ,%771 =0,k= %, and f = ir, we have

1 )
Y2 + iy =r (59)

and

y=yl = o—ir/2 { [(irTeir/Z) e*i’r‘T71:| eir}
0 -1 1
_ 67”/2 { |:’L'T’€7ir/2] eir}
-1
— i/ {2ie““/ 2 (ir 4 2)}

— —ir/2 <4ireir/2>

= 4dir (60)

-1

-1

from (10) and (11). The function shown by (60) satisfies (59) clearly.

4. Two further cases of a modified hydrogen atom equation

In the same way as in the preceding sections, we can solve the following nonhomo-
geneous modified hydrogen atom equation:

1/4 2
Yo +y k2+ﬁ+m =f (61)
T r2
and
1/4 2
y2+y[—k:2+n+</)2+m] = f, (62)
r r
which are obtained by replacing m by im (—k? instead of k2) in (10), that is,
1/4) — (im)*
_— k2+n+m2@m]:f (63)
r r
and
1/4) — (im)?
Yo+ —k2+2+(/)r2(zm)]_f- (64)

i) Therefore, the solutions for (63) are given by replacing m by im in (11),(12),
(13) and (14), as follows:

yl = pim+3 g—ikr |:<f,r§imeikr> o—2ikr i(m—35)— 4
(me+35) -3

X eQikrr_i(m_gﬂ)_%} ( ) (65)
K3
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gl = pim+s gikr { [(ﬂ;—ime—ikr)

eQikrri(erg}c)é]

~i(m= )~} L

X 672ikr,’,7i(m+%)*% } . (66)
i(m—3) -4
111 _ —im+} —ikr |:(f7,;+imeikr) e2ikr7,i(m+;;€)§:|
i(m=g5)=3 -1
% eszrri(m+ﬁ)7%} o (67)
~i{m=3)-4
YTV = pmim+3 gikr (fr%Jrimefik:r) ik, —i(m—i) -}
i(mtgr) =3 -1
y 672ikr,’ﬂi(mfﬁ)*%} . (68)
~i{m+ 45)-4

ii) Similarly, the solutions for (64), substituting the relations (15),(16) and (17)
into (64), we have

dor +2vd1 + ¢ [(V2 -v+ i - (im)2> L n} = fri=v. (69)

Here we choose v such that
2 1 2
vi—v+-—-+m” =0,
4
that is

1
V= 3 + im. (70)

Let v = im + (1/2) . From (15) and (69) we have
y=r"tg (71)
and
por + ¢1 (2im+ 1) + ¢ (n — k:2r) = fr(t/2)=im (72)
Next, set (23). Then equation (72) may be written in the form:
(€M7 Y)yr + (€7 ), (2im + 1) + TP (n — kPr) = fr/D—im (73)
Substituting the relations (23),(25) and (26) into (73), we have

Yor + 11 (2pr + 2im + 1) + ¢ [(n* — k*) r + (2im + 1) n + n]
= fr/2)—ime=nr, (74)
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Choose 1 such that

= k* =0,
that is,
n = =xk. (75)
ii.1) In the case when n = —k, we have
¢p=e"y (76)
and

Yot 4 1 (—2kr + 2im + 1) + ¥ [~k (2im + 1) 4+ n] = frt/2-imekr (77)

from (23) and (74).
Applying the operator N* to both members of (77), we then obtain

(V2r), + [ (=2kr + 2im + 1)], + {¢ [k (2im + 1) + n},
— (fr(l/Z)fimekrr) ) (78)

m

Using (4), (5), (6) we have

Yoqpr + V14 (=2kr +2im + 14 p) + ¢, [n — k (2im + 1 4 2p))

_ (fr(1/2)7imekr> ) (79)
“w
Choose p such that
) n 1
u:—zm—i—ﬁ—g, (80)
we have then
. n 1
¢27im+%7%7’ + wl*i'ﬁﬁri»%f% |:—2]€’I" +m + E + 5
_ <f,,,(1/2)7imekr) (81)
—im+2—1
from (79).
Next, writing
q/jl—im—&-ﬁ—% =u=u (7") ) (82)

we obtain

1 .
wi+u [ =2k+ (im A o= ) Y| = (fr“/”—zme’““) rt(83)
2]'(7 2 _im_i_%c_%
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from (81). This is an ordinary differential equation of the first order which has a
particular solution:

w— [<f7,(1/2)im6kr) erTTim+2"§cé:| o2kr —im—gE—1 (84)

; n 1
—imtar—3 -1

We finally obtain the solution

yI _ Tim+%67kr (f,r,%fimekr) ef2krrim+ﬁ7%
—im+ & —

X ezkrr_im_ﬁ_%}l (85)

-1

from (84),(82),(76) and (71).
ii.2) Similarly, in the case when n = k, we obtain

Y 1 a1
yII :T,zm+2ekr |:<f7,2 im k:r) - ) e2kr7,zm 25— 3
—im— g} o
_ —i n o1
x e~ 2krTyp—imt oy 2} . (86)
imt 354
Let v = —im + (1/2). In the same way as the procedure in (ii), replacing im by
—im (ii.1) and (ii.2), we have
yIII — T—im-}-%e—kr (fT%+im€kT) 6—2krr—im+%—%
ier%f% 1
im— 2 — L1
x kT pim=3k 2} _ r (87)
—im— =}
—i 1 1.4 — oy —im— L
yIV —r 1m+2ekr |:(fr2+zme kr’)' ) errT im—gr 2:|
iMm—gr—73% 1
; n 1
X e_%’"r”n"’ﬁ_f} ) (88)
—imt -}

iii) In the homogeneous case for equation (63) with f = 0, using the results (50),
(51), (52) and (53), and replacing m by im, we obtain

g = ppim+ig=ikr <62ikrr—i(m—ﬁ)—%> 7 (89)
i(m+ 2% )‘%
y(II) _ hrier%eikr (672ikr,’d—i(m+%)—%) , (90)
i(m— 21)_%
(IID) _ po—im+ L —ikr (2ikr i(mtgt)—1
Yy = hr ze e“" 'y , (91)
~i(m- )~
yIV) = ppim+3 gikr <672ikrri(mfﬁ)7%) (92)
—i(m+gr)—%

for m # 0, where h is an arbitrary constant.
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