
MATHEMATICAL COMMUNICATIONS 521
Math. Commun., Vol. 15, No. 2, pp. 521-537 (2010)

Common fixed points of self maps satisfying an integral type
contractive condition in fuzzy metric spaces

Penumarthy Parvateesam Murthy1, Sanjay Kumar2 and Kenan Tas3,∗

1 Department of Pure and Applied Mathematics, Guru Ghasidas University, Koni,
Bilaspur (C.G.)-495 009, India
2 Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat,
Haryana, India
3 Cankaya University, Department of Mathematics and Computer Science, Ankara,
Turkey

Received October 10, 2009; accepted May 1, 2010

Abstract. In this paper, first we prove fixed point theorems for different variant of com-
patible maps, satisfying a contractive condition of integral type in fuzzy metric spaces,
which improve the results of Branciari [2], Rhoades [33], Kumar et al. [23], Subra-
manyam [35] and results of various authors cited in the literature of ”Fixed Point Theory
and Applications”. Secondly, we introduce the notion of any kind of weakly compatible
maps and prove a fixed point theorem for weakly compatible maps along with the notion of
any kind of weakly compatible. At the end, we prove a fixed point theorem using variants
of R-Weakly commuting mappings in fuzzy metric spaces.
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1. Introduction

The notion of a probabilistic metric space corresponds to the situation when we do
not know the distance between the points but one knows only the possible values of
the distance. Since the 16th century, probability theory has been studying a kind of
uncertainty known as the randomness of the occurrence of an event; in this case, the
event itself is completely certain. The study of mathematics began to explore the
restricted zone-fuzziness, which followed the study of uncertainty and randomness.
Fuzziness is a kind of uncertainty. It is applied to those events, whose chances of
occurrence are uncertain, i.e., they are in non-black or non-white state. Zadeh [38]
introduced the concept of fuzzy set as a new way to represent vagueness in our
everyday life. A fuzzy set A in X is a function with domain X and values in [0, 1].
Since then, many authors have developed a lot of literature regarding the theory of
fuzzy sets and its applications. However, when the uncertainty is due to fuzziness
rather than randomness, as in the measurement of an ordinary length, it seems that
the concept of a fuzzy metric space is more suitable.
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There are many viewpoints of the notion of the metric space in fuzzy topology.We
can divide them into following two groups:
The first group involves those results in which a fuzzy metric on a set X is treated
as a map d: X x X → R+, where X represents the totality of all fuzzy points of
a set and satisfy some axioms which are analogous to the ordinary metric axioms.
Thus, in such an approach numerical distances are set up between fuzzy objects.
On the other hand, in the second group, we keep those results in which the distance
between objects is fuzzy and the objects themselves may or may not be fuzzy.

Especially, Erceg [10], Kaleva and Seikkala [20], Kramosil and Michalek [21] have
introduced the concept of fuzzy metric space in different ways. Grabiec [13] followed
Kramosil and Michalek [21] and obtained a fuzzy version of Banach contraction
principle. Grabiec [13] results were further generalized for a pair of commuting
mappings by Subramanyam [35]. Moreover, George and Veermani [11] modified the
concept of fuzzy metric spaces, introduced by Kramosil and Michalek [21]. Further,
George and Veermani [12] introduced the concept of Hausdorff topology on fuzzy
metric spaces and showed that every metric induces a fuzzy metric.

Definition 1. A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition 2. A binary operation ∗ : [0, 1] x [0, 1] → [0, 1] is a continuous t-norm if
{[0, 1], .} is an abelian topological monoid with unit 1 such that a∗ b ≤ c∗d whenever
a ≤ c and b ≤ d , a, b, c, d ∈ [0, 1].

Definition 3. The 3-tuple (X,M, ∗) is called a fuzzy metric space (shortly, FM-
space) if X is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in X2

x [0,∞) satisfying the following conditions:
For all x, y, z ∈ X and s, t > 0,

(FM-1) M(x, y, 0) = 0

(FM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t),

(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s)

(FM-5) M(x, y, .) : [0,∞) → [0, 1] is left continuous for all x, y, z ∈ X and s, t > 0.

Note that M(x, y, t) can be thought of as the degree of nearness between x and
y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0 and
M(x, y, t) = 0 with respect to t. Since ∗ is a continuous t-norm, it follows from
(FM-4) that the limit of the sequence in FM-space is uniquely determined. In 1994,
George and Veermani [11] introduced the concept of Hausdorff topology on fuzzy
metric spaces and showed that every metric space induces a fuzzy metric space.
We can fuzzify examples of metric spaces into fuzzy metric spaces in a natural way:

Let (X, d) be a metric space. Define a ∗ b = ab for all x, y in X and t > 0.
Define

M(x, y, t) =
t

(t + d(x, y))

for all x, y in X and t > 0. Then (X, M, ∗) is a fuzzy metric space and this fuzzy
metric induced by a metric d is called the standard fuzzy metric.
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Definition 4. Let (X,M, ∗) be a fuzzy metric space . A sequence {xn} in X is said
to

(i) be convergent to a point x ∈ X (denoted by limn→∞ xn = x), if

limn→∞M(xn, x, t) = 1, for all t > 0.

(ii) be a Cauchy sequence if

limn→∞M(xn+p, xn, t) = 1, for all t > 0 and n, p ∈ N
(iii) be a complete if every Cauchy sequence in X is convergent to some point in

X.

A map f : X → X is called continuous at x0 if {f(xn)} converges to f(x0) for
each {xn} converging to x0.
For more properties and examples of fuzzy metric spaces, see [4]– [13], [20]– [21],
[27], [29], [35]– [33]. Moreover, we know that every metric induces a fuzzy metric.

Remark 1. Since ∗ is continuous, it follows from (FM-4) that the limit of the
sequence in FM-space is uniquely determined. In this paper, we consider (X,M, ∗)
a fuzzy metric space with the condition

(FM − 6) lim
t→∞

M(x, y, t) = 1, for all x, y ∈ X.

In 1994, Mishra et al. [27] introduced the concept of compatible mapping in
FM-space akin to concept of compatible mapping in metric space as follows:

Definition 5. Let f and g be mappings from a fuzzy metric space (X, M, ∗) into
itself. A pair of map {f, g} is said to be compatible if limn→∞M(fgxn, gfxn, t) = 1,
whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = u for
some u ∈ X and for all t > 0.

In 2001, Chugh and Kumar [6] defined the concept of compatible mapping of
type (A) as follows:

Definition 6. Let f and g be mappings from a fuzzy metric space (X,M, ∗) into it-
self. A pair of map {f, g} is said to be compatible of type (A) if limn→∞M(fgxn, ggxn,
t) = 1 and limn→∞M(gfxn, ffxn, t) = 1 whenever {xn} is a sequence in X such
that limn→∞ fxn = limn→∞ gxn = u for some u ∈ X and for all t > 0.

Chugh, Rathi and Kumar [7] introduced the concept of compatible mappings of
Type (P) as follows:

Definition 7. Let f and g be self mappings on a fuzzy metric space (X, M, ∗). A
pair of map {f, g} is said to be compatible of type (P) if limn→∞M(ffxn, ggxn, t)
= 1 whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = u
for some u ∈ X and for all t > 0.

In 2003, Chugh, Rathi and Kumar [7] defined the concept of weak compatible
mapping of type (A) as follows:
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Definition 8. Let f and g be mappings from a fuzzy metric space (X, M, ∗) into
itself. A pair of map {f, g} is said to be weak compatible maps of type (A) if
limn→∞M(fgxn, ggxn, t) = 1 or limn→∞M(gfxn, ffxn, t) = 1 whenever {xn} is a
sequence in X such that limn→∞ fxn = limn→∞ gxn = u for some u ∈ X and for
all t > 0.

Recently in 2008, Al-Thagafi and Shahzad [3] weakened the concept of weakly
compatible maps by giving the new concept of occasionally weakly compatible maps.

Definition 9. Two self-maps f and g of X are called occasionally weakly compatible
maps (shortly owc) if there is a point x in X such that fx = gx at which f and g
commute.

This notion was used in 2006 by Jungck and Rhoades [18] to prove some common
fixed point theorems in symmetric spaces.

Definition 10 (see [1]). Let f and g be mappings from a fuzzy metric space (X,M, ∗)
into itself. A pair of map {f, g} is said to satisfy the property (E.A) if there is a
sequence {xn} in X such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

2. Compatible maps

In 1995, Subramanyam [35] proved the following theorem:

Theorem 1. Let f and g be self maps of a complete fuzzy metric space (X,M, ∗)
satisfying the following conditions:

(a) f(X) ⊂ g(X),

(b) g is continuous,

(c) M(fx, fy, αt) ≥ M(gx, gy, t) for all x, y in X and 0 < α < 1.

Then f and g have a unique common fixed point provided f and g commute.

Now, we generalize Theorem 1 for a pair of compatible of type (A) (compatible
of type (P), weak compatible of type (A) ), weakly compatible and any kind of
weakly compatible map along with the notion of weakly compatible maps satisfying
a contractive condition of integral type.

Lemma 1 (Lebesgue Dominated Convergence Theorem). If a sequence {fn} of
Lebesgue measurable functions converges almost everywhere to f and if there exists
an integrable function g ≥ 0 such that |fn(x)| ≤ g(x) for every n, then |f(x)| ≤ g(x)
and limn→∞

∫
fn(x)dµ =

∫
f(x)dµ.

Theorem 2. Let f and g be compatible maps of type (A) of a complete fuzzy metric
space (X, M, ∗) satisfying the following conditions:

(2.1) f(X) ⊂ g(X),

(2.2) any one of the mapping f or g is continuous,
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(2.3) ∫ 1−M(fx,fy,ct)

0

φ(p)dp <

∫ 1−M(gx,gy,t)

0

φ(p)dp,

for each x, y ∈ X, t > 0, c ∈ [0, 1), where φ : R+ → R+ is a Lebesgue-integrable
mapping which is a summable, non-negative, and such that

(2.4)
∫ ε

0
φ(p)dp > 0 for each ε > 0.

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X. Since f(X) ⊂ g(X), choose x1 ∈ X such that gx1 = fx0.
choose xn+1 such that yn = gxn+1 = fxn. We now show that {yn} is a Cauchy
sequence. For each integer n ≥ 1, and from (2.3), we have

∫ 1−M(yn,yn+1,t)

0

φ(p)dp =
∫ 1−M(fxn,fxn+1,t)

0

φ(p)dp <

∫ 1−M(gxn,gxn+1, t
c )

0

φ(p)dp

=
∫ 1−M(fxn−1,fxn, t

c )

0

φ(p)dp <

∫ 1−M(gxn−1,gxn, t
c2

)

0

φ(p)dp,

In this fashion one obtains
∫ 1−M(yn,yn+1,t)

0

φ(p)dp <

∫ 1−M(y0,y1, t
cn )

0

φ(p)dp.

Now letting n →∞ and using Lebesgue dominated convergence theorem it fol-
lows in view of (2.4), limn→∞,M(yn, yn+1, t) = 1. Similarly, limn→∞,M(yn+1, yn+2,
t) = 1.

Now for any positive integer p, we have

M(yn, yn+p, t) ≥ M(yn, yn+1,
t

p
) ∗ . . . p− times . . . ∗M(yn+p−1, yn+p,

t

p
)

≥ M(yn, yn+1,
t

p
) ∗ . . . p− times . . . ∗M(yn, yn+1,

t

p
)

Since limn→∞M(yn, yn+1, t) = 1, for t > 0, it follows that

lim
n→∞

M(yn, yn+p, t) ≥ 1 ∗ . . . ∗ 1 ≥ 1.

Thus {yn} is a Cauchy sequence in X. Since X is complete, so there exists a point
z ∈ g(X) such that limn→∞ yn = z. Hence limn→∞ gxn+1 = limn→∞ fxn = z. Since
either f or g is continuous, for definiteness assume that g is continuous, therefore
limn→∞ gfxn = gz. But f and g are weak compatible mappingss of type (A), by
Remark 1, limn→∞ fgxn = gz. Now from (2.3), we have

∫ 1−M(fgxn,fxn,t)

0

φ(t)dt <

∫ 1−M(ggxn,gxn, t
c )

0

φ(t)dt,

where c ∈ [0, 1).
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Letting limn→∞ and using Lebesgue dominated convergence theorem it follows
in view of (2.4) that gz = z. Again from (2.3), we have

∫ 1−M(fxn,fz,t)

0

φ(t)dt <

∫ 1−M(gxn,gz, t
c )

0

φ(t)dt.

Taking limn→∞ and using Lebesgue dominated convergence theorem it follows
in view of (2.4) that fz = z. Hence , z is a common fixed point of f and g.
Uniqueness: Suppose that w(6= z) is also another fixed point of f and g. Then, we
have

∫ 1−M(z,w,t)

0

φ(t)dt =
∫ 1−M(fz,fw,t)

0

φ(t)dt

<

∫ 1−M(gz,gw, t
c )

0

φ(t)dt

=
∫ 1−M(z,w, t

c )

0

φ(t)dt

where c ∈ [0, 1), which implies z = w and so uniqueness follows.

Next we prove a theorem for weakly compatible maps that satisfy a contractive
condition of integral type.

Theorem 3. Let f and g be weakly compatible self maps of a fuzzy metric space
(X,M, ∗) satisfying (2.1), (2.3), (2.4) and the following condition

(2.6) any one of f(X) or g(X) is closed subset of X .
Then f and g have a coincidence point. Moreover, f and g have a unique common
fixed point.

Proof. From the proof of Theorem 2, we conclude that {yn} is a Cauchy sequence
in X and since either f(X) or g(X) is closed, for definiteness assume that g(X) is
a closed subset of X. Note that the sequence {y2n} is contained in g(X) and it has
a limit in g(X), call it z. Let u ∈ g−1z. Then gu = z . Now we show that fu = z.
From (2.3), we have

∫ 1−M(fxn,fu,t)

0

φ(t)dt <

∫ 1−M(gxn,gu, t
c )

0

φ(t)dt,

where c ∈ [0, 1). Letting limn→∞ and using Lebesgue dominated convergence the-
orem and c ∈ [0, 1), it follows in view of (2.4) , fu = z. Since f and g are weakly
compatible, therefore, it follows that fz = fgu = gfu = gz. Now we show that z is
a common fixed point of f and g. From (2.3), we have

∫ 1−M(fz,z,t)

0

φ(p)dp =
∫ 1−M(fz,fu,t)

0

φ(p)dp

<

∫ 1−M(gz,gu, t
c )

0

φ(p)dp

=
∫ 1−M(fz,z, t

c )

0

φ(p)dp,
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which is a contradiction, since c ∈ [0, 1), therefore, fz = z = gz and hence, z is a
common fixed point of f and g.
Uniqueness: Suppose that w(6= z) is also another fixed point of f and g. Then, we
have

∫ 1−M(z,w,t)

0

φ(p)dp =
∫ 1−M(fz,fw,t)

0

φ(p)dp

<

∫ 1−M(gz,gw, t
c )

0

φ(p)dp

=
∫ 1−M(z,w, t

c )

0

φ(p)dp

which implies z = w. Hence uniqueness follows.

Remark 2. On setting φ(t) = 1 in (2.3), Theorem 1 can be significantly improved
by employing compatible and weakly compatible maps instead of commutativity of
maps.

We now provide an example in support of our theorem.

Example 1. Let X = [0, 1] be equipped with the usual metric space. Define

M(x, y, t) =
t

t + d(x, y)

for all x, y ∈ X and for each t > 0. Define mappings f, g : X → X by
fx = x

3 and gx = x
2 for all x ∈ X. Clearly

fX = [0,
1
3
] ⊂ gX = [0,

1
2
].

Moreover, φ defined by φ(t) = t for t > 0 is a Lebesgue-integral mapping which is
summable (with finite integral) on each compact subset of R+, non-negative, and
such that for each ε > 0, ∫ ε

0

φ(p)dp > 0.

Now ∫ M(fx,fy,ct)

0

φ(p)dp <

∫ M(gx,gy,t)

0

φ(p)dp,

where

1−M(fx, fy, ct) =
d(x, y)

(3ct + d(x, y))

and

1−M(gx, gy, ct) =
d(x, y)

(2ct + d(x, y))
.

Thus all hypotheses of Theorem 2 are satisfied with φ(t) = t, for t > 0, φ(0) = 0,
and c ∈ [ 23 , 1) and 0 is the unique common fixed point of f and g.
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Example 2. Let X = [3, 22] and d be a usual metric on X. Let f, g : X → X be
defined by

f(x) =
{

3 : if x = 3 or x > 7
8 : if 3 < x ≤ 7,

, g(x) =





10 : if 3 < x ≤ 7
x+2
3 : if x > 7

3 : if x = 3
.

Define ψ, φ : [0,∞) → [0,∞), where ψ(t) = (t+1)(t+1)−1 and φ(t) = ψ
′
(t). Further,

define

M(x, y, t) =
t

t + d(x, y)

for all x, y ∈ X and for each t > 0. Moreover, fX = {3, 8} and gX = [3, 10].
Hence fX ⊆ gX. To see that f and g are non-compatible maps, let us consider the
sequence {xn}, where xn is defined by

xn = {(7 +
1
n

), n ≥ 1}.

Therefore, limn→∞ fxn = 3, limn→∞ gxn = 3, limn→∞ fgxn = 8 and limn→∞ gfxn

= 3. Hence, f and g are non-compatible maps. But they are any kind of weakly
compatible since they commute at the coincidence point at x = 3. Thus f and g
satisfy all the conditions of the above theorem and have a unique common fixed point
at x = 3.

Remark 3. The contractive condition of integral type can be reduced to a contractive
condition, not involving integrals, by setting φ(t) = 1 over R+ on setting φ(t) = 1 in
(2.3), Theorem 3 can be significantly improved by employing weakly compatible maps
instead of commutativity of maps.

3. Any kind of weakly compatible maps

Now we shall define any kind of weakly compatible maps in fuzzy metric spaces as
follows:

Definition 11. A pair of self-mappings (f, g) of a fuzzy metric space (X, M, ∗) is
said to be any kind of weakly compatible maps if and only if there is a sequence {xn}
in X satisfying limn→∞ fxn = limn→∞ gxn = t for some t ∈ X, and fgt = gft at
this point.

Example 3. Let (X, M, ∗) be a fuzzy metric spaces, where X = [0, 2] with a t-norm
defined by a ∗ b = min{a, b} for all a, b ∈ X and

M(x, y, t) =
t

t + d(x, y)
,

for all x, y ∈ X and for each t > 0. M(x, y, 0) = 0 for all x, y ∈ X.
Define f, g : [0, 2] → [0, 2] by

f(x) =
{

2 : if x ∈ [0, 1]
x
2 : if x ∈ (1, 2] , g(x) =

{
2 : if x ∈ [0, 1]
x+3
5 : if x ∈ (1, 2] .
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Consider the sequence {xn} where xn = (2 − 1
2n ). Clearly f(1) = g(1) = 2 and

f(2) = g(2) = 1 . Here 1 and 2 are two coincidence points for maps f and g. Note
that f and g commute at 1 and 2, i.e., fg(1) = gf(1) = 1, also fg(2) = gf(2) = 2
and so f and g are weakly compatible maps on R. Now,

fxn = (1− 1
4n

), gxn = (1− 1
10n

).

Therefore,

fxn → 1, gxn → 1, fgxn = 2, gfxn = (
4
5
− 1

20n
)

and
lim

n→∞
M(fgxn, gfxn, t) =

t

t + 6
5

< 1,

so, f and g are not compatible maps on R but they are any kind of weakly compatible
on R.

Example 4. Let X = [ 23 , +∞). Define f, g : X → X by gx = x+1
3 and fx = 2x+1

3 ,
for all x in X. Suppose that f and g are any kind of weakly compatible maps.
Then, there exists a sequence {xn} in X satisfying fxn = gxn = z for some z ∈ X.
Therefore, limn→∞ xn = 3z − 1 and limn→∞ xn = 3z−1

2 .Thus, z = 1
3 , which is a

contradiction, since 1
3 is not contained in X. Hence f and g are not any kind of

weakly compatible maps.

Example 5. Let X = [0, 1] with the usual metric space d i.e., d(x, y) = |x − y|.
Define

M(x, y, t) =
t

t + d(x, y)
,

for all x, y ∈ X and for all t > 0.
Hence (X, M, ∗) is a fuzzy metric space. Also define

f(x) =
{

1− x : if x ∈ [0, 1
2 ]

3
4 : if x ∈ ( 1

2 , 1] , g(x) =
{

1
2 : if x ∈ [0, 1

2 ]
0 : if x ∈ ( 1

2 , 1] .

Consider the sequence {xn} = 1
2 − 1

n , n ≥ 2, we have

lim
n→∞

f(
1
2
− 1

n
) =

1
2

= lim
n→∞

g(
1
2
− 1

n
)

and
fg(

1
2
) = gf(

1
2
) =

1
2
.

Thus the pair (f, g) is any kind of weakly compatible maps.
Further, f and g are weakly compatible since x = 1

2 is their unique coincidence
point and fg( 1

2 ) = f( 1
2 ) = g( 1

2 ) = gf( 1
2 ). We further observe that

lim
n→∞

d(fg(
1
2
− 1

n
), gf(

1
2
− 1

n
)) 6= 0
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showing that
lim

n→∞
M(fgxn, gfxn, t) 6= 1,

therefore, the pair (f, g) is not subcompatible.

Thus any kind of weakly compatible maps does not imply subcompatibility. Here,
we notice that subcompatible and any kind of weakly maps are independent of each
other.

Example 6. Let X = R+ and d be the usual metric on X. Define

M(x, y, t) =
t

t + d(x, y)
,

for all x, y ∈ X and for all t > 0. Hence (X,M,*) is a fuzzy metric space. Also define
f, g : X → X by fx = 0, if 0 < x ≤ 1 and fx = 1, if x > 1or x = 0; and gx = [|x|],
the greatest integer that is less than or equal to x, for all x ∈ X. Consider a sequence
xn = 1 + 1

n , n ≥ 2 which is in (1, 2), then we have limn→∞ fxn = 1 = limn→∞ gxn.
Thus the pair (f, g) is any kind of weakly compatible maps . However, f and g are
not weakly compatible as each u1 ∈ (0, 1) and u2 ∈ (1, 2) are coincidence points of
f and g, where they do not commute. Moreover, they commute at x = 0, 1, 2, . . .,
but none of these points are coincidence points of f and g. Further, we note that a
pair (f, g) is a non-compatible maps. Thus we can conclude that any kind of weakly
compatible maps does not imply weak compatibility. Here, we notice that weakly
compatible and any kind of weakly maps are independent of each other, see a paper
on metric space by H. K. Pathak, Rosana Rodriguez-Lopez and R. K. Verma [32].

Now we prove a theorem for a pair of weakly compatible maps along with the
notion of any kind of weakly compatible maps.

Theorem 4. Let (X,M, ∗) be a fuzzy metric space. Suppose f and g are weak
compatible self-maps of X satisfying (2.1), (2.3), (2.4) and the following:

(3.1) f, g are any kind of weakly compatible maps

(3.2) f(X) or g(X) is a closed subset X.

Then f and g have a coincidence point. Moreover, f and g have a unique common
fixed point.

Proof. Since f and g are any kind of weakly compatible maps, therefore, there
exists a sequence {xn} in X such that limn→∞ fxn = limn→∞ gxn = u ∈ X. Since
either f(X) or g(X) is a closed subspace of X, for definiteness we assume that g(X)
is a closed subset of X. Further, note that the sequence {y2n} which is contained
in g(X), so there is a limit in g(X). Call it be u such that u = ga. Therefore,
limn→∞ fxn = u = ga = limn→∞ gxn for some a ∈ X. This implies u = ga ∈ gX.
Now we show that u = fa = ga. Now from (2.3), we have

∫ F (fa,fxn,ct)

0

φ(p)dp <

∫ F (ga,gxn,t)

0

φ(p)dp.
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Letting limn→∞ and using the Lebesgue dominated convergence theorem and
c ∈ [0, 1), it follows in view of (2.4) that F (fa, fa, ct) ≤ F (ga, fa, t), this implies
that u = ga = fa.

Thus a is the coincidence point of f and g. Since f and g are weakly compatible,
therefore, fu = fga = gfa = gu. Now we show that fu = u. From (2.3), we have

∫ F (fu,fa,ct)

0

φ(p)dp <

∫ F (gu,ga,t)

0

φ(p)dp,

which in turns implies that fu = u. Hence u is the common fixed point of f and g.
Uniqueness: Suppose that w(6= z) is also another common fixed point of f and g.
From (2.3), we have

∫ F (z,w,t)

0

φ(p)dp =
∫ F (fz,fw,t)

0

φ(p)dp

<

∫ F (gz,gw, t
c )

0

φ(p)dp

=
∫ F (z,w, t

c )

0

φ(p)dp,

where c ∈ [0, 1). Thus z = w and, therefore, uniqueness follows.

4. Variants of weakly commuting mappings

In 1994, Pant [31] introduced the notion of R-weakly commuting maps in metric
spaces. Later on, Vasuki [36] initiated the concept of non compatibility of mappings
in fuzzy metric spaces, by introducing the notion of R-weakly commuting mappings
in fuzzy metric spaces and proved some common fixed point theorems for these maps.

Definition 12. A pair of self-mappings (f, g) of a fuzzy metric space (X, M, ∗) is
said to be R-weakly commuting if there exists some R > 0 such that

M(fgx, gfx, t) ≥ M(fx, gx,
t

R
),

for all x ∈ X and t > 0.

Of course, R-weak commutativity implies weak commutativity only when R ≤ 1.

Example 7 (see [37]). Let X = R, the set of all real numbers. Define a ∗ b = ab
and

M(x, y, t) =
{ −|x−y|

t : if t > 0
0 : if t = 0

for all x, y ∈ X. Then (X, M, ∗) is a fuzzy metric space.
Let f(x) = 2x− 1 and g(x) = x2. Then

M(fgx, gfx, t) = e
−2(x−1)2

t
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and
M(fx, gx,

t

R
) = e

−R(x−1)2

t .

Therefore, for R = 2, f and g are R-weakly commuting. However, f and g are
not weakly commuting mappings since the exponential function is strictly increasing.

Later on, Pathak et al. [30] improved the notion of R-weakly commuting map-
pings in metric spaces by introducing the notions of R-weakly commutativity of
type (Ag) and R-weakly commutativity of type (Af ). In 2008, Imdad and Ali [19]
embarked the notion of R-weakly commutativity of type (Ag) and R-weakly com-
mutativity of type (Af ) in fuzzy metric with inspiration from Pathak et al. [30]
and they further introduced the notion of R-weakly commuting mappings of type
(P ) in fuzzy metric spaces.

Definition 13. A pair of self-mappings (f, g) of a fuzzy metric space (X, M, ∗) is
said to be

(i) R-weakly commuting mappings of type (Ag) if there exists some R > 0 such
that M(gfx, ffx, t) ≥ M(fx, gx, t

R ) for all x ∈ X and t > 0.

(ii) R-weakly commuting mappings of type (Af ) if there exists some R¿0 such that
M(fgx, ggx, t) ≥ M(fx, gx, t

R ), for all x ∈ X and t > 0.

(iii) R-weakly commuting mappings of type (P ) if there exists some R > 0 such
that M(ffx, ggx, t) ≥ M(fx, gx, t

R ), for all x ∈ X and t > 0.

Remark 4. We have some suitable examples to show that R- weakly commuting
mappings, R-weakly commuting of type (Af ), R-weakly commuting of type (Ag) and
R-weakly commuting of type (P ) are distinct.

Example 8. Let X = [−1, 1] be the set of all real numbers with usual metric d
defined by d(x, y) = |x− y| for all x, y in X. Define

M(x, y, t) =
t

t + d(x, y)
,

for all x, y ∈ X and for all t > 0.Then (X, M, ∗) is a fuzzy metric space. Define
fx = |x| and gx = |x| − 1.

Then by a straightforward calculation, one can find that

d(fx, gx) = 1, d(fgx, gfx) = 2(1− |x|), d(fgx, ggx) = 1,

d(gfx, ffx) = 1, d(ffx, ggx) = 2|x|,

for all x ∈ X.
Now we conclude the following:

(i) pair (f, g) is not weakly commuting,

(ii) for R = 2, pair (f, g) is R-weakly commuting, R-weakly commuting of type
(P ), R-weakly commuting of type (Ag) and R-weakly commuting of type (Af ),
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(iii) For R = 3
2 , pair (f, g) is R-weakly commuting of type (Af ) but not R-weakly

commuting of type (P ) and R-weakly commuting.

Example 9. Let X = [0, 1] with usual metric d defined by d(x, y) = |x − y| for all
x, y in X. Define

M(x, y, t) =
t

t + d(x, y)
,

for all x, y ∈ X and for all t > 0.Then (X, M, ∗) is a fuzzy metric space. Further
define fx = x and gx = x2.

Then by a straightforward calculation, one can show that

ffx = x, gfx = x2, fgx = x2, ggx = x4

and

d(fgx, gfx) = 0, d(fgx, ggx) = |x2(x− 1)(x + 1)|, d(gfx, ffx) = |x(x− 1)|,

and
d(ffx, ggx) = |x(x− 1)(x2 + x + 1)|, d(fx, gx) = |x(x− 1)|,

for all x ∈ X. Therefore, we conclude that

i) pair (f, g) is R- weakly commuting for all positive, real values of R,

ii) for R = 3, pair (f, g) is R-weakly commuting of type (Af ), R-weakly commuting
of type (Ag) and R-weakly commuting of type (P ),

iii) for R = 2, pair (f, g) is R-weakly commuting of type (Af ) and R-weakly com-
muting of type (Ag) and not R-weakly commuting of type (P ) (for this take
x = 3

4 ).

Example 10. Consider X = [ 12 , 2] with usual metric d. Define

M(x, y, t) =
t

t + d(x, y)
,

for all x, y ∈ X and for all t > 0. Then (X, M, ∗) is a fuzzy metric space. Let us
define self maps f and g by fx = x+1

3 , gx = x+2
5 . We calculate the following:

d(fx, gx) =
2x− 1

15
, d(fgx, gfx) = 0, d(fgx, ggx) =

2x− 1
75

,

and

d(gfx, ffx) =
2x− 1

45
, d(ffx, ggx) =

8(2x− 1)
225

.

Now we conclude the following, i.e.
the pair (f, g) is R-weakly commuting for all positive real numbers:

i) for R ≥ 8
15 , it is R-weakly commuting of type (Af ), R-weakly commuting of

type (Ag) and R-weakly commuting of type (P ),
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ii) for 1
3 ≤ R < 8

15 , it is R-weakly commuting of type (Ag) and R-weakly commut-
ing of type (Af ), but not R-weakly commuting of type (P ),

iii) for 1
5 ≤ R < 1

3 , it is R-weakly commuting of type (Af ), but neither R-weakly
commuting of type (Ag) nor R-weakly commuting of type (P ).

Moreover, such mappings commute at their coincidence points. It is also obvious
that f and g can fail to be point-wise R-weakly commuting only if there exists some
x ∈ X such that fx = gx but fgx 6= gfx , that is, only if they possess a coincidence
point at which they do not commute. Therefore, the notion of a point-wise R-weak
commutativity type mapping is equivalent to commutativity at coincidence points, as
mentioned in [31].

Theorem 5. Theorem 3 (Theorem 4) remains true if a weakly compatible property
is replaced by any one of the following (retaining the rest of hypotheses):

(a) R-weakly commuting property,

(b) R-weakly commuting property of type (Ag),

(c) R-weakly commuting property of type (Af ),

(d) R-weakly commuting property of type (P ),

(e) weakly commuting property.

Proof. Since all the conditions of Theorem 3 (Theorem 4) are satisfied, then the
existence of coincidence points for both pairs is insured. If x is an arbitrary point
of coincidence for the pair (f, g), then using R-weak commutativity one gets

M(fgx, gfx, t) ≥ M(fx, gx,
t

R
) = 1,

which amounts to say that fgx = gfx.
Thus the pair (f, g) is weakly compatible. Now applying Theorem 3 (Theorem 4)

one concludes that f and g have a unique common fixed point. In case (f, g) is an
R-weakly commuting pair of type (Af ), then

M(fgx, gfx, t) ≥ M(fx, gx,
t

R
) = 1,

which amounts to say that fgx = ggx.
Now

M(fgx, gfx, t) ≥ M(fgx, ggx,
t

2
) ∗M(ggx, gfx,

t

2
) = 1 ∗ 1 = 1,

yielding thereby fgx = gfx.
Similarly, if a pair is an R-weakly commuting mapping of type (Ag) or type (P )

or weakly commuting, then pair (f, g) also commutes at their points of coincidence.
Now in view of Theorem 3 (Theorem 4), in all the cases f and g have a unique
common fixed point. This completes the proof.
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As an application of Theorem 3 (Theorem 4) we prove a common fixed point
theorem for two finite families of mappings which runs as follows:

Theorem 6. Let {f1, f2, ..., fm} and {g1, g2, ..., gn} be two finite families of self-
mappings of a fuzzy metric space (X, M, ∗) such that f = f1f2...fm, g = g1g2...gn,
satisfy conditions (2.1), (2.3), (2.4),

iii) gm(X) is a closed subspace of X for all m.
Then f and g have a point of coincidence. Moreover, if fifj = fjfi and gkgl = glgk

for all i, j ∈ I1 = {1, 2, ..., m}, k, l ∈ I2 = {1, 2, ..., n}, then (for all i ∈ I1, k ∈ I2) fi

and gk have a common fixed point.

Proof. The conclusions are immediate, i.e., f and g have a point of coincidence as
f and g satisfy all the conditions of Theorem 3. Now appealing to component-wise
commutativity of various pairs, one can immediately prove that fg = gf ; hence,
obviously pair (f, g) is coincidentally commuting. Note that all the conditions of
Theorem 3 are satisfied ensuring the existence of a unique common fixed point, say
z. Now one needs to show that z remains the fixed point of all the component maps.
For this consider

f(fiz) = ((f1f2...fm)fi)z = (f1f2...fm−1)((fmfi)z) = (f1...fm−1)(fifmz)
= (f1...fm−2)(fm−1fi(fmz)) = (f1...fm−2)(fifm−1(fmz))
...
= f1fi(f2f3f4...fmz) = fif1(f2f3...fmz) = fi(fz) = fiz.

Similarly, one can show that f(gkz) = gk(fz) = gkz, g(gkz) = gk(gz) = gkz and
g(fiz) = fi(gz) = fiz, which shows that (for all I and k ) fiz and gkz are other fixed
points of the pair (f, g). Now appealing to the uniqueness of common fixed points of
both pairs separately, we get z = fiz = gkz, which shows that z is a common fixed
point of fi, gk for all i and k.

By setting
f = f1 = f2 = ... = fm, g = g1 = g2 = ... = gn,

we deduce the following:

Corollary 1. Let f and g be two self-mappings of a fuzzy metric space (X,M, ∗)
such that fm and gn satisfy conditions (2.1), (2.3), (2.4). If one of fm(X) or gn(X)
is a complete subspace of X, then f and g have a unique common fixed point provided
(f, g) commute.
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