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Abstract. We consider an optimal design problem with a hyperbolic initial boundary
value problem as the state equation. As a possible application consider a body made from
a mixture of different materials which is vibrating under the given external force, subject
to a prescribed boundary and initial values. The control function (the distribution of given
materials in the given domain) uniquely determines the response (the state function) of the
vibrating material. Our goal is to find a distribution of materials minimising given integral
functional depending on state and control functions.
We derive the necessary condition of optimality, which enables us to formulate an optimality
criteria method for a numerical solution. Two numerical examples are presented. The same
procedure can be applied in the case of multiple state equations as well.
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1. Introduction

The homogenisation method proved to be well suited for treatment of optimal design
for elliptic problems (in modelling both conductivity and elasticity), first for the
theoretical questions on proper relaxation, but also as a starting point for application
of classical methods of calculus of variations leading to numerical solutions [19, 23,
25, 1].

As long as the coefficients of the wave equation depend only on spatial variables, a
similar approach is possible: the same H-topology on coefficients multiplying spatial
derivatives can be used to obtain a proper relaxation [24, 2, 3]. We shall restrict our
attention to the wave equation with a three-dimensional spatial variable.

Unfortunately, due to different regularity properties for the wave operator, nec-
essary conditions of optimality cannot be obtained as easily as in the elliptic case. In
the literature, this problem was resolved by assuming more regularity on the right-
hand side [16, 17]. In these papers the authors used gradient Young measures as a
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relaxation tool, allowing them to consider space and time dependent coefficients (in
one spatial variable) and quadratic cost functional depending on first derivatives of
the state function.

For a numerical solution of our optimal design problem via the homogenisation
method, a characterisation of G-closure of original materials is important, so we
need to restrict ourselves to the case of two-phase isotropic mixtures (for the space
and time dependent coefficients the G-closure problem was studied in one spatial
variable in [14], see also [15]).

Similarly to elliptic optimal design problems, based on the necessary conditions
of optimality, we can conclude that the optimal design can be found among sequen-
tial laminates, which is important for the implementation of the classical gradient
method for a numerical solution [4, 5]. An analogous situation also occurs for mul-
tiple state optimal design problems.

However, the optimality criteria method, derived directly from necessary condi-
tions of optimality, appears to be the most popular numerical method for optimal
design problems. The key role of this paper is to present how this method can be
applied to our problem. For this purpose we use some explicit calculations (Lemma
2 and 3, below) performed in [27].

Let Ω ⊆ Rd be a bounded domain, V = H1
0(Ω), H = L2(Ω), and for T > 0 let

ΩT = 〈0, T 〉 × Ω. By MS(α, β; Ω) we shall denote the set of all symmetric matrix
functions on Ω with eigenvalues between α and β (0 < α < β). For A ∈MS(α, β; Ω)
and u0 ∈ V , u1 ∈ H and f ∈ L2(0, T ; H) = L2(ΩT ), we consider the initial boundary
value problem

Find u ∈ L2(0, T ;V ) ∩H1(0, T ;H) such that



u′′ − div (A∇u) = f
u(0, ·) = u0

u′(0, ·) = u1 .
(1)

After introducing bilinear forms

a(u, v) =
∫

Ω

A(x)∇u(x) · ∇v(x) dx ,

c(u, v) =
∫

Ω

u(x)v(x) dx

the weak formulation of (1) reads




(∀ v ∈ V )
d

dt
c(u′(t, ·), v) + a(u(t, ·), v) =

∫

Ω

f(t, ·)v dx in D′

u(0, ·) = u0

u′(0, ·) = u1 .

(2)

This problem has a unique solution satisfying u′′ ∈ L2(0, T ; V ′) as well, together
with the estimate

(∀ t ∈ [0, T ]) ‖u(t)‖V + ‖u′(t)‖H ≤ C
(
‖u0‖V + ‖u1‖H + ‖f‖L2(0,T ;H)

)
, (3)
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where the constant C depends only on numbers α and β [11, 10]. Moreover, the
solution u belongs to C([0, T ];V ) with u′ ∈ C([0, T ]; H). The same is true if f ∈
L1(0, T ;H); the only difference is that u′′ ∈ L1(0, T ;V ′). Looking for the Gâteaux
derivative of the functional that we shall consider in the optimal design problem,
we come to a less regular right-hand side: f ∈ L2(0, T ; V ′). Although the weak
formulation given above still makes sense, one gets only a much weaker a priori
estimate

(∀ t ∈ [0, T ]) ‖u(t)‖H + ‖u′(t)‖V ′ ≤ C
(
‖u0‖H + ‖u1‖V ′ + ‖f‖L2(0,T ;V ′)

)
. (4)

This implies that for u0 ∈ H and u1 ∈ V ′ there exists a unique solution u ∈
L2(0, T ;H) with u′ ∈ L2(0, T ;V ′). Actually, it belongs to C([0, T ];H) with u′ ∈
C([0, T ]; V ′).

2. Optimal design problem

Assume that we want to fill the set Ω with m given materials. Each material is
characterised by a symmetric positive definite matrix Ai (i = 1, . . . , m) (mechanical
properties of a particular material). Furthermore, for simplicity, suppose that all
the materials are isotropic, i.e. Ai = γiI, where γi ∈ [α, β]. In this situation, after
denoting by χi the characteristic function of the i-th material, the coefficients in (1)
can be expressed as

A =
m∑

i=1

χiγiI . (5)

The optimal design problem consists of minimisation of the functional

I(χ) =
∫

ΩT

F (t,x,A(x), u(t,x)) dx dt ,

where χ = (χ1, . . . , χm) ∈ L∞(Ω; {0, 1}m),
∑m

i=1 χi = 1 a.e. on Ω, corresponds to
the distribution of given materials and u is the state function determined by (1),
with A as in (5). Due to a special type of admissible controls χ used, the above cost
functional can be written in a slightly different form. For (t,x) ∈ ΩT and λ ∈ R we
define

gi(t,x, λ) = F (t,x, γiI, λ) ,

so that the cost functional reads

I(χ) =
∫

ΩT

m∑

i=1

χi(x)gi(t,x, u(t,x)) dx dt .

As ubiquitous in optimal design problems, the non-existence of a solution can occur.
The main problem is the question of continuity of the mapping χ 7→ u. In [19]
Murat and Tartar, using the notion of H−convergence, introduced relaxation of
the optimal design problem for the case where the state equation is the stationary
diffusion equation. An analogous approach for the hyperbolic problems is presented
in [2, 3].
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Let us first write down the original problem as




J(χ,A) =
∫

ΩT

m∑

i=1

χi(x)gi(t,x, u(t,x)) dx dt −→ min

(χ,A) ∈ A ,

(6)

where function u is determined by (1), while

A =

{
(χ,A) : χ ∈ L∞(Ω; {0, 1}m),

m∑

i=1

χi = 1, A =
m∑

i=1

χiγiI a.e. on Ω

}
.

As showed in [2], although J depends only on χ, we are forced to consider A as
an additional argument in order to get continuity of the extension of functional J ,
defined by the same formula (6), to the set

T =

{
(θ,A) ∈ L∞(Ω; [0, 1]m)×MS(α, β; Ω) :

m∑

i=1

θi = 1 a.e. on Ω

}
.

The following product topology on T : L∞ weak ∗ for θ and H-topology for A
is reasonable, according to the homogenisation result for the wave equation [24]:
if the sequence (An) in MS(α, β; Ω) H−converges to A, then the corresponding
sequence of solutions un for (1) (with coefficients An instead of A) converges to u,
determined by (1), weakly in L2(0, T ; V ), with derivatives u′n converging weakly to
u′ in L2(0, T ; H).

To get the continuity of J on T we consider the appropriate growth condition on
gi, i = 1, . . . , m. In order to obtain necessary conditions of optimality under weaker
assumptions, one needs an improvement of the result presented in [2].

Lemma 1. Let gi, i = 1, . . . ,m, be Carathéodory’s functions (i.e. measurable in t,x
and continuous in λ) satisfying

|gi(t,x, λ)| ≤ ϕi(t,x) + ψi(t)|λ|q for λ ∈ R, a.e. (t,x) ∈ ΩT ,

with ϕi, ψi ∈L1 and some q ∈ [1, q∗〉, where

q∗ =
{ ∞ , d ≤ 2

2d
d−2 , d > 2.

Then J : T → R, given by the formula in (6), is continuous.

Proof. If we take a sequence (θn,An) in T such that θn
∗−⇀ θ and An

H−⇀ A, then
the corresponding sequence (un) converges to u in H1(ΩT ). But u, un ∈ C([0, T ];V )
and by the a priori estimate (3), for any t ∈ [0, T ] the sequence (un(t, ·)) is bounded
in V . Therefore, we have

(∀ t ∈ [0, T ]) un(t, ·) −⇀ u(t, ·) in V .

By the Sobolev embedding theorem, un(t, ·) −→ u(t, ·) in Lq(Ω), for q ∈ [1, q∗〉. On
the subsequence, we have the convergence almost everywhere on Ω, so that

gi(t, x, un(t, x)) −→ gi(t, x, u(t, x)) a.e. (t, x) ∈ ΩT , i = 1, . . . , m .
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Now, using the growth condition on gi, the Fubini theorem and the Lebesgue dom-
inated convergence theorem, gi(t, ·, un(t, ·)) converges to gi(t, ·, u(t, ·)) strongly in
L1(Ω) for almost every t ∈ [0, T ] implying the convergence

∫

Ω

θi
ngi(t,x, un(t,x)) dx −→

∫

Ω

θigi(t,x, u(t,x)) dx

almost everywhere on [0, T ]. By a second application of the Lebesgue dominated
convergence theorem, we conclude the proof.

Since T is compact, the proper relaxation of the original problem (6) consists
only of replacing A by its closure in T :





J(θ,A) −→ min , (θ,A) ∈ A , where

A = {(θ,A) : θ ∈ [0, 1]m ,

m∑

i=1

θi = 1 , A ∈ K(θ) a.e. on Ω} .

The set K(θ) denotes all effective matrix coefficients obtained by mixing original
phases with local proportion θ, in literature known under the name G-closure of
the set of original conductivities with prescribed ratio (originally called Gm-closure
[12]). For the case m = 2 the complete characterisation of K(θ) is described in
[12, 13, 19, 22]. The presented concept for the relaxation follows [19] and relies on
the local representation of G-closure [8, 21, 25].

The same approach holds if one adds the following constraints on the amount of
given materials: ∫

Ω

χi dx ≤ κi , i = 1, . . . , m .

3. The Gâteaux derivative

In this section we shall calculate the Gâteaux derivative of the cost functional J , at
the admissible point (θ,A) ∈ A. The corresponding state function, defined by (1),
is denoted by u.

We need additional assumptions on functions gi: Their partial derivatives ∂gi

∂λ
should be Carathéodory’s functions satisfying the growth condition

∣∣∣∣
∂gi

∂λ
(t,x, λ)

∣∣∣∣ ≤ ϕ̃i(t,x) + ψ̃i(t)|λ|r for λ ∈ R, a.e. (t,x) ∈ ΩT ,

with ϕ̃i ∈ L1(0, T ;H), ψ̃i ∈ L1(0, T ) and some r ∈ [1, r∗〉, where

r∗ =
{ ∞ , d ≤ 2

d
d−2 , d > 2.

Let us consider the smooth path ε 7→ (θε,Aε) ∈ A, passing through (θ,A) for
ε = 0; uε ∈ L2(0, T ; V ) ∩H1(0, T ; H) is the corresponding state function:





u′′ε − div (Aε∇uε) = f
uε(0, ·) = u0

u′ε(0, ·) = u1 .
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Denoting by δθ = d
dεθε

∣∣
ε=0

and δA = d
dεAε

∣∣
ε=0

, we proceed to calculate the
variation of J , more precisely, we look for δJ := d

dεJ(θε,Aε)
∣∣
ε=0

:

δJ = lim
ε→0

1
ε

∫

ΩT

[
m∑

i=1

θε
i (x)gi(t,x, uε(t,x))− θi(x)gi(t,x, u(t,x)))

]
dx dt

= lim
ε→0

[∫

ΩT

m∑

i=1

θε
i − θi

ε
gi(·, ·, uε) dx dt

+
∫

ΩT

m∑

i=1

θi
uε − u

ε

∫ 1

0

∂gi

∂λ
(·, ·, u + s(uε − u)) ds dx dt

]
. (7)

As Aε −→ A in L∞ for ε → 0, which implies H-convergence, in an analogous way
to the proof of Lemma 1 we have

(∀ t ∈ [0, T ]) uε(t, ·) −⇀ u(t, ·) in V , or strongly in Lq(Ω) ,

for any q ∈ [1, q∗〉, with q∗ given in Lemma 1. Consequently, by an application of
the Lebesgue dominated convergence, one gets the convergence

∫ 1

0

∂gi

∂λ
(·, ·, u + s(uε − u)) ds −→ ∂gi

∂λ
(·, ·, u) in L1(0, T ; H) as ε → 0 .

We introduce wε :=
uε − u

ε
, which solves





w′′ε − div (A∇wε) = div (δA∇uε)
wε(0, ·) = 0
w′ε(0, ·) = 0 .

(8)

One should notice that the right-hand side div (δA∇uε) belongs to C([0, T ]; V ′),
so the solution wε belongs to L2(0, T ; H) with time derivative in L2(0, T ;V ′).

Moreover, as ε → 0, it converges weakly in L2(0, T ;V ′), so the corresponding
sequence of solutions (wε) converges in L∞(0, T ;H) weakly ∗ to w, the solution of
the initial boundary value problem

Find w ∈ L2(0, T ;H) ∩H1(0, T ; V ′) such that



w′′ − div (A∇w) = div (δA∇u)
w(0, ·) = 0
w′(0, ·) = 0 .

(9)

Thus, we can pass to the limit in (7) and obtain

δJ =
∫

ΩT

m∑

i=1

(
δθi(x)gi(t,x, u) + θi(x)

∂gi

∂λ
(t,x, u) w(t,x)

)
dx dt .

After introducing the adjoint state function p, we make the dependence of δJ on
δA explicit:

Find p ∈ L2(0, T ; V ) ∩H1(0, T ; H) such that



p′′ − div (A∇p) =
∑m

i=1 θi
∂gi

∂λ (·, ·, u)
p(T, ·) = 0
p′(T, ·) = 0 .

(10)
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We would like to test (10) on w, which cannot be done directly. One should approx-
imate the right-hand side in (9) by a sequence (fn) ⊆ L2(0, T ; H):

fn −→ div (δA∇u) in L2(0, T ; V ′) .

With this approximation fn instead of div (δA∇u) we obtain a solution wn that
converges to w in L∞(0, T ; H). After testing (10) on wn we have

−
∫

ΩT

p′w′n dx dt +
∫

ΩT

A∇p · ∇wn dx dt =
∫

ΩT

m∑

i=1

θi
∂gi

∂λ
(·, ·, u)wn dx dt .

On the other hand, by testing the equation for wn on p we get (〈·, ·〉 is the duality
pairing between V ′ and V )

−
∫

ΩT

p′w′n dx dt +
∫

ΩT

A∇p · ∇wn dx dt = −
∫ T

0

〈fn, p〉 dt ,

implying that
∫

ΩT

m∑

i=1

θi
∂gi

∂λ
(·, ·, u)wn dx dt = −

∫ T

0

〈fn, p〉 dt .

At the limit we have the equality
∫

ΩT

m∑

i=1

θi
∂gi

∂λ
(·, ·, u)w dx dt = −

∫

ΩT

δA∇u · ∇p dx dt ,

which simplifies the expression for δJ :

δJ =
∫

ΩT

[
m∑

i=1

δθi(x)gi(t,x, u(t,x))− δA(x)∇u(t,x) · ∇p(t,x)

]
dx dt .

4. Necessary condition of optimality

The necessary condition of optimality is obtained by following the same idea as for
the optimal design problems for the stationary diffusion equation [19, 23, 25, 1]:
One first considers variations only in A, while keeping θ fixed. As we shall see, the
dependence on t does not introduce significant difficulties.

Let us denote the relaxed optimal design by (θ∗,A∗), and the corresponding state
function u∗ ∈ L2(0, T ; V ) ∩H1(0, T ; H), the solution of:





u∗′′ − div (A∗∇u∗) = f
u∗(0, ·) = u0

u∗′(0, ·) = u1 ,

and the adjoint state function p∗ ∈ L2(0, T ; V ) ∩H1(0, T ;H) solving




p∗′′ − div (A∗∇p∗) =
∑m

i=1 θ∗i
∂gi

∂λ (·, ·, u∗)
p∗(T, ·) = 0
p∗′(T, ·) = 0 .
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The necessary condition of optimality states that the variation δJ in an optimal
point (θ∗,A∗) must be nonnegative, for any admissible variation (δθ, δA). If we
take δθ = 0, since any variation is given by δA = A−A∗ for some A ∈ K(θ∗), we
arrive to the following necessary condition of optimality

(∀A ∈ K(θ∗))
∫

ΩT

A∇u∗ · ∇p∗ dx dt ≤
∫

ΩT

A∗∇u∗ · ∇p∗ dx dt .

Since A’s are independent of t, we rewrite this maximisation problem in the
following form (here · denotes the Euclidean scalar product on Rd×d)





∫

Ω

A(x) ·M∗(x) → max

A ∈ K(θ∗) .
(11)

Here matrix function M∗ stands for the symmetric part Sym
∫ T

0
∇u∗⊗∇p∗ dt, where

⊗ denotes the tensor product on Rd. It is easy to see (by contradiction) that (11)
is equivalent to pointwise maximisation: For almost every x ∈ Ω, the optimal A∗(x)
is the maximum point of {

A ·M∗(x) → max
A ∈ K(θ∗(x)) .

(12)

It is important that we have finally obtained a finite-dimensional optimisation prob-
lem, similarly to the case in stationary diffusion [23], where it was proved that A∗

can be found among simple laminates. A surprising fact is that this was obtained
while mixing an arbitrary number of anisotropic materials (where optimal bounds
for set K(θ∗) are not known), using only Wiener bounds (for example, in the case of
mixing two isotropic phases these correspond to inequalities (14)). In our situation,
this happens only if matrix function M∗ is a rank-one matrix (almost everywhere on
Ω) which fails in general, because of the integration over [0, T ]. This is the reason
why in the last section we consider only the case m = 2, where the optimisation
problem (12) can be solved explicitly (under an additional assumption that d ≤ 3).

Therefore, in the rest of the paper, we assume that m = 2, and for simplicity we
write γ1 = α, γ2 = β. Moreover, instead of θ we use only a scalar function θ, the
local fraction of the first material, with θ = (θ, 1− θ).

According to (12), we introduce function f : [0, 1]×Rd×d → R given by

f(θ,M) = max
A∈K(θ)

A ·M .

Now we take into account variations in θ: We consider a smooth path ε 7→ θε in
L∞(Ω; [0, 1]), passing through θ∗ for ε = 0, and for any ε and x ∈ Ω we take Aε(x)
to be the maximiser for f(θε(x),M∗(x)).

Theorem 1. The optimal design (θ∗,A∗) satisfies A∗(x)·M∗(x) = f(θ∗(x),M∗(x)),
for almost every x ∈ Ω. Defining the quantity

Q(x) = −∂f

∂θ
(θ∗(x),M∗(x)) +

∫ T

0

g1(t,x, u∗(t,x))− g2(t,x, u∗(t,x)) dt ,
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the optimal θ∗ satisfies

θ∗(x) = 0 if Q(x) > 0
θ∗(x) = 1 if Q(x) < 0

0 ≤ θ∗(x) ≤ 1 if Q(x) = 0 .
(13)

Remark 1. The presence of a constraint on the amount of materials
∫
Ω

θ dx = c is
treated as usual by adding l

∫
Ω

θ dx to the cost functional J , where l is a Lagrange
multiplier, which leads to the same result for the function

Q(x) = −∂f

∂θ
(θ∗(x),M∗(x)) + l +

∫ T

0

g1(t,x, u∗(t,x))− g2(t,x, u∗(t,x)) dt .

5. Optimality criteria method

If a local proportion of the first material is θ, then the set K(θ) of effective con-
ductivities consists of all symmetric matrices with eigenvalues belonging to the set
Λ(θ) ⊆ Rd [12, 13, 19, 22]:

λ−θ ≤ λj ≤ λ+
θ , j = 1, . . . , d , (14)

d∑

j=1

1
λj − α

≤ 1
λ−θ − α

+
d− 1

λ+
θ − α

, (15)

d∑

j=1

1
β − λj

≤ 1
β − λ−θ

+
d− 1

β − λ+
θ

, (16)

where λ+
θ and λ−θ stand for the arithmetic and harmonic average: λ+

θ = θα+(1−θ)β

and λ−θ =
(

θ
α + 1−θ

β

)−1

.
Let us now fix a point x ∈ Ω (the common Lebesgue point of θ∗,A∗,M∗) and

consider the optimisation problem (12). The classical von Neumann result (v. [18])
says that a maximum in (12) is attained at a matrix A such that A and M∗ are
simultaneously diagonalisable. Therefore, denoting by λ = (λ1, . . . , λd) the eigen-
values of A, and by µ = (µ1, . . . , µd) those of M∗, we have

max
A∈K(θ∗)

A ·M∗ = max
λ∈Λ(θ∗)

d∑
n=1

λnµn . (17)

This maximal value, denoted by f(θ∗,M∗), can be calculated explicitly, as well as
the optimal microstructure, for the case d = 2 [1, Lemma 3.2.17] or d = 3 [26, 27].
For completeness, we state the result in Lemma 3.

In general, since in (17) a linear function in λ is maximised, for any µ there
exists a maximum point λ satisfying the equality in (15) or (16). These parts of the
boundary correspond to sequential laminates, which are defined inductively starting
from simple (or rank-one) laminates. Suppose that two original materials are put in
layers periodically, such that their thickness ratio is θ

1−θ . If we pass to the zero limit
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of the layer thickness (with the ratio preserved), we obtain a homogenised material
described by a constant matrix with eigenvalues λ−θ (in the direction of lamination)
and λ+

θ (perpendicular to the direction of lamination). A sequential rank-r laminate
is obtained by lamination of a rank-(r − 1) sequential laminate with a single pure
phase (always the same one which is then called a matrix phase).

It is known [1, 7] that the conductivity of rank-m sequential laminates is a matrix
with exactly d−m eigenvalues equal to λ+

θ and such that the equality in (15) is sat-
isfied if the matrix material is αI, or (16) if the matrix material is βI. The equalities
in (15) and (16) hold simultaneously only in the case of first order laminates, where
m− 1 eigenvalues are equal to λ+

θ and one is λ−θ .
One concludes that if M∗(x) 6= 0, then the optimal A∗(x) corresponds to a

sequential laminate of rank at most d. In zero points of M∗ we have no information
on optimal λ∗ for (17). However, in these points one can change θ∗ and A∗ such
that the new design is still optimal and A∗ is a sequential laminate of rank at most
d, using the technique of Artstein [6] — for applications in optimal design problems
see [20, 23, 5]. This information simplifies the application of a classical gradient
method for a numerical solution, as presented in [4, 5] for the stationary diffusion
problem.

Let us now describe the application of the optimality criteria method in our
situation. Suppose that we have a design (θn,An) at the n-th iteration (start-
ing from some initial design (θ0,A0)). Using these coefficients we calculate the
corresponding state function un by (1) and then the adjoint function pn by (10)
using θn,An and un instead of θ,A and u, respectively. Furthermore, we define
Mn(x) = Sym

∫ T

0
∇un(t,x)⊗∇pn(t,x) dt and a function Qn : Ω× [0, 1] → R by

Qn(x, θ) = −∂f

∂θ
(θ,Mn(x)) +

∫ T

0

g1(t,x, un(t,x))− g2(t,x, un(t,x)) dt .

For the next iteration θn+1(x) of the local fraction at x we take the zero point of
Q(x, ·) (function θ 7→ Q(x, θ) is monotone [1]), otherwise let θn+1(x) be 0 (1) if
Q(x, ·) is positive (negative) on [0, 1]. Finally, solve (12) to obtain An+1(x) (with
θn+1(x),Mn(x) instead of θ,M) — this can be done explicitly by Lemma 3 below.

Lemma 2. For given θ ∈ [0, 1] and a symmetric 3 × 3 matrix M with eigenvalues
µ1 ≤ µ2 ≤ µ3 we have

A. If µ1 = 0, then
∂f

∂θ
(θ,M) = −(β − α)(µ2 + µ3).

B. If µ1 > 0, then

∂f

∂θ
(θ,M)=





−β(β − α)(α + 2β)
(√

µ1 +
√

µ2 +
√

µ3

θ(β − α) + α + 2β

)2

, θ < θB
1 ,

−β(β2 − α2)
( √

µ1 +
√

µ2

θ(β − α) + α + β

)2

− µ3(β − α) , θB
1 ≤ θ < θB

2 ,

− αβ(β − α)µ1

(θ(β − α) + α)2
− (β − α)(µ2 + µ3) , θ ≥ θB

2 ,

with θB
1 = 1− (2

√
µ3 −√µ2 −√µ1 )β√

µ3 (β − α)
, θB

2 = 1− (
√

µ2 −√µ1 )β√
µ2 (β − α)

.



Optimal design in hyperbolic problems 565

C. The case µ1 < 0. If µ2 and µ3 are negative as well, then

∂f

∂θ
(θ,M) =





α(β − α)(2α + β)
(√−µ1 +

√−µ2 +
√−µ3

θ(β − α) + 3α

)2

, θ > θC
2 ,

α(β2 − α2)
(√−µ1 +

√−µ2

θ(β − α) + 2α

)2

− µ3(β − α) , θC
1 < θ ≤ θC

2 ,

− αβ(β − α)µ1

(θ(β − α) + α)2
− (β − α)(µ2 + µ3) , θ ≤ θC

1 ,

with θC
1 =

(
√−µ1 −√−µ2 )α√−µ2 (β − α)

, θC
2 =

(
√−µ1 +

√−µ2 − 2
√−µ3 ) α√−µ3 (β − α)

.

If µ2 < 0 and µ3 ≥ 0, then θC
2 is not defined, and we can express

∂f

∂θ
(θ,M) by

the formulae given above, but omitting its first case and the assumption θ ≤ θC
2

in the second case.

If µ2 ≥ 0, then both θC
1 and θC

2 are not defined, and
∂f

∂θ
(θ,M) is given by the

formula given in the third case above, for any θ ∈ [0, 1].

To make the above update procedure clear, suppose that Mn(x) fits the case B
of Lemma 2. For simplicity, we shall use notation M for Mn(x) and L for

∫ T

0

g1(t,x, un(t,x))− g2(t,x, un(t,x)) dt.

As
θ 7→ ∂f

∂θ
(θ,M)

is strictly increasing (in case B), it is enough to calculate its values for θ ∈ {0, 1, θB
1 ,

θB
2 } (if they all belong to the segment [0,1]; otherwise, the situation is even more

simple) to find out which of the intervals 〈0, θB
1 〉, 〈θB

1 , θB
2 〉 or 〈θB

2 , 1〉 contains the
solution θn+1(x) of the equation

∂f

∂θ
(θ,M) = L.

When we know which interval is right, it is easy to solve this equation explicitly.
Moreover, knowing the location of θn+1(x) we can easily calculate An+1(x) by

the following Lemma equivalent to Corollary 1 in [27], but written in such a way
that fits this application better.

Lemma 3. For given θ ∈ [0, 1] and a symmetric 3 × 3 matrix M with eigenvalues
µ1 ≤ µ2 ≤ µ3, the maximiser A in the definition of f(θ,M) (i.e. such that A ·M =
f(θ,M)) is simultaneously diagonalisable with M, with eigenvalues λ1 ≤ λ2 ≤ λ3

defined by the following procedure

A. If µ1 = 0, then λ1 = λ−θ and λ2 = λ3 = λ+
θ .

B. The case µ1 > 0.
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1. If θ < θB
1 , then

λi = α +
√−µ1 +

√−µ2 +
√−µ3

c2(θ)
√−µi

, i = 1, 2, 3 ;

with c2(θ) =
1

λ−θ − α
+

2
λ+

θ − α
.

2. If θB
1 ≤ θ < θB

2 , then

λi = α +
√−µ1 +

√−µ2

c1(θ)
√−µi

, i = 1, 2 , λ3 = λ+
θ ;

with c1(θ) =
1

λ−θ − α
+

1
λ+

θ − α
.

3. If θ ≥ θB
2 , then λ1 = λ−θ and λ2 = λ3 = λ+

θ .

C. The case µ1 < 0.

1. If θ > θC
2 , then

λi = β −
√

µ1 +
√

µ2 +
√

µ3

d2(θ)
√

µi
, i = 1, 2, 3 ;

with d2(θ) =
1

β − λ−θ
+

2
β − λ+

θ

.

2. If θC
1 < θ ≤ θC

2 , then

λi = β −
√

µ1 +
√

µ2

d1(θ)
√

µi
, i = 1, 2 , λ3 = λ+

θ ;

with d1(θ) =
1

β − λ−θ
+

1
β − λ+

θ

.

3. If θ ≤ θC
1 , then λ1 = λ−θ and λ2 = λ3 = λ+

θ .

6. Numerical examples

We shall present numerical results for two optimal design problems, differing only
in initial condition u0.

In both examples Ω = 〈−1, 1〉3, T = 1, α = 1 and β = 2, with a volume constraint
of 40% of the first material:

∫
Ω

θ = 0.4|Ω|.
The cost functional is given by

J(θ,A) = −
∫

ΩT

u dx dt −→ min,

the right-hand side is f = 3χA, where χA is the characterististic function of the set
A = {(t,x) ∈ ΩT : x1 ≥ 0} and the initial velocity u1 = 0.

The initial position u0 in the first example equals zero, and for the second one

u0(x, y, z) = (1− x2) cos
πy

2
cos

πz

2
.
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Figure 1. Convergence history for the first example: a) cost functional J and b)
‖θi − θi−1‖2L2 , in terms of the iteration number i
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Figure 2. Convergence history for the second example: a) cost functional J and b)
‖θi − θi−1‖2L2 , in terms of the iteration number i

We used deal.II C++ library [9] for the finite element solution of initial boundary
value problems for wave equation. The space domain was divided into a 64×64×64
cubic mesh, with bilinear elements and we used Gaussian quadratures of order two
for numerical integration; time discretisation step was 1

128 . At each iteration of
the algorithm (we made 20 iterations) two initial boundary value problems with
the same coefficient matrix are solved: for the state function and the adjoint state
function. Based on these solutions, the update of the design variables is calculated,
as described in the previous Section. The initial design for the numerical solutions
presented here is θ = 0.4 on Ω, A being the simple laminate with layers orthogonal
to e1, in both examples. However, many experiments show that a numerical solution
practically does not change if we consider different initial design.

The convergence histories for these two examples are shown in Figures 1 and 2,
respectively. The method shows a very quick convergence: the optimal design can be
approximately reconstructed after just three iterations. In Figure 5 the local fraction
θ is presented at the final iteration. As a reminder, the value θ = 1 corresponds
to the material with coefficient αI, and θ = 0 to the other one. In Figure 3 we
presented the level set of function θ at height 0.05, to see more closely what happens
inside.

The second numerical example is presented in the same way in Figures 6 and 4.
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Figure 3. Level set θ = 0.05 for the first example, two different view angles
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Figure 4. Level set θ = 0.05 for the second example: The whole cube [−1, 1]3 and its
half [−1, 1]× [0, 1]× [−1, 1]
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Figure 5. Optimal distribution of materials for the first example: The whole cube
[−1, 1]3 and its half [−1, 1]2 × [−1, 0]

Figure 6. Optimal distribution of materials for the second example: The whole cube
[−1, 1]3 and its half [−1, 1]2 × [−1, 0]

7. Multiple state equations

We consider the response of a body obtained by a mixture of two isotropic phases,
under N different right-hand sides:





uj ∈ L2(0, T ; V ) , u′j ∈ L2(0, T ; H)
u′′j − div (A∇uj) = fj

uj(0, ·) = u0
j

u′j(0, ·) = u1
j .

j = 1, . . . , N
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Denoting the solution by u = (u1, . . . , uN ) we state the optimal design problem




J(χ,A) =
∫

ΩT

χ(x)g1(t,x, u(t,x)) + (1− χ(x))g2(t,x, u(t,x)) dx dt −→ min

χ ∈ L∞(Ω; {0, 1}) , A = χαI + (1− χ)βI .
(18)

The analysis presented in Section 2 is applicable to this problem as well, so the
relaxation consists of considering the closure of the original admissible set of designs
in L∞ weak ∗ topology for χ and H-topology for A. A similar situation occurs for
the case of stationary diffusion optimal design problems [1, 4, 5]. If the analogous
conditions on functions gi are set, by defining the adjoint state p∗ = (p∗1, . . . , p

∗
N ) as

a solution to




p∗j ∈ L2(0, T ; V ) , p∗j
′ ∈ L2(0, T ;H)

p∗j
′′ − div (A∗∇p∗j ) =

∑m
i=1 θ∗i

∂gi

∂λj
(·, ·, u∗)

p∗j (T, ·) = 0
p∗j
′(T, ·) = 0 ,

j = 1, . . . , N

one obtains the following result.

Theorem 2. Let (θ∗,A∗) be the optimal relaxed design for (18), u∗ the corresponding
state function, p∗ the adjoint state function and

M∗ = Sym
∫ T

0

N∑

j=1

∇u∗j ⊗∇p∗j dt .

Then the optimal design satisfies A∗(x) ·M∗(x) = f(θ∗(x),M∗(x)), for almost every
x ∈ Ω. Defining the quantity

Q(x) = −∂f

∂θ
(θ∗(x),M∗(x)) +

∫ T

0

g1(t,x, u∗)− g2(t,x, u∗) dt ,

the optimal θ∗ satisfies

θ∗(x) = 0 if Q(x) > 0
θ∗(x) = 1 if Q(x) < 0

0 ≤ θ∗(x) ≤ 1 if Q(x) = 0 .
(19)

Based on this necessary condition of optimality, the optimality criteria method
can be used in the same way as it was done in the case of one state equation in
Section 5.

References

[1] G. Allaire, Shape optimization by the homogenization method, Springer, Berlin, 2002.
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