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Abstract. A singularly perturbed linear system of second order ordinary differential equa-
tions of reaction-diffusion type with given boundary conditions is considered. The leading
term of each equation is multiplied by a small positive parameter. These singular per-
turbation parameters are assumed to be distinct. The components of the solution exhibit
overlapping layers. Shishkin piecewise—uniform meshes are introduced, which are used in
conjunction with a classical finite difference discretisation, to construct a numerical method
for solving this problem. It is proved that the numerical approximations obtained with this
method are essentially second order convergent uniformly with respect to all of the param-
eters.
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1. Introduction

The following two-point boundary value problem is considered for the singularly
perturbed linear system of second order differential equations

~Eid"(x) + A@)i(z) = flz), z€(0,1), @0)and (1) given. (1)

Here @ isacolumn n—vector, E and A(x) are nxn matrices, F = diag(g), £=
(€1, +++, &n) with 0 < g; < 1 forall ¢ =1,...,n. The ¢; are assumed to be
distinct and, for convenience, to have the ordering

€1 < -+ < ep.
Cases with some of the parameters coincident are not considered here.
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The problem can also be written in the operator form

Li = f, @(0)and @(1) given,
where the operator L is defined by

- d?
L = -ED*+ A and D?=——.
dax?
For all € [0,1], it is assumed that the components a;;j(z) of A(x) satisfy the
inequalities

n

a;;(x) > Z\aij(a:ﬂ for 1 <i<mn and a;;(z) <0 for i#j (2)
i
=1

and, for some «,

n
0<a< mrgl[ér}](z a;;(x)). (3)
1<i<n j=1
The required smoothness of the problem data is assumed wherever necessary. It is

also assumed, without loss of generality, that

max Ve < @. (4)

1<i<n 6
The norms || V ||= maxj<g<n |Vi| for any n-vector V, || y ||= SUPg<, <1 |y()| for
any scalar-valued function y and || ¥ ||= maxi<k<n || yx || for any vector-valued

function 7 are introduced. Throughout the paper C' denotes a generic positive con-
stant, which is independent of x and of all singular perturbation and discretization
parameters. Furthermore, inequalities between vectors are understood in the com-
ponentwise sense.

For a general introduction to parameter-uniform numerical methods for singular
perturbation problems, see [8], [6] and [1]. Parameter-uniform numerical methods
for various special cases of (1) are examined in, for example, [4] and [5]. For the
problem (1) itself parameter-uniform numerical methods of first and second order
are considered in [3]. However, the present paper differs from [3] in two important
ways. First of all, the meshes, and hence the numerical methods, used are different
from those in [3]; the transition points between meshes of differing resolution are
defined in a similar but different manner. The piecewise-uniform Shishkin meshes
Mg in the present paper have the elegant property that they reduce to uniform

meshes whenever b = 0. Secondly, the proofs given here do not require the use of
Green’s function techniques, as is the case in [3]. The significance of this is that it
is more likely that such techniques can be extended in future to problems in higher
dimensions and to nonlinear problems, than is the case for proofs depending on
Green’s functions. It is also satisfying to demonstrate that the methods of proof
pioneered by G. I. Shishkin can be extended successfully to systems of this kind.
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The plan of the paper is as follows. In the next section both standard and
novel bounds on the smooth and singular components of the exact solution are
obtained. The sharp estimates for the singular component in Lemma 7 are proved by
mathematical induction, while interesting orderings of the points xgs) are established
in Lemma 5. In Section 4 piecewise-uniform Shishkin meshes are introduced, the
discrete problem is defined and the discrete maximum principle and discrete stability
properties are established. In Section 6 expressions for the local truncation errors
and some standard estimates are stated. In Section 7 parameter-uniform estimates
for the local truncation error of the smooth and singular components are obtained
in a sequence of lemmas and theorems. The section culminates with the statement
and proof of the essentially second order parameter-uniform error estimate.

2. Standard analytical results

The operator L satisfies the following maximum principle

Lemma 1. Let A(z) satisfy (2) and (3). Let ¢ be any function in the domain of
L such that (0) > 0 and (1) > 0. Then Li(z) >0 for all = € (0,1)
implies that ¥(x) >0 for all z € [0,1].

Proof. Let i*,z* be such that ¢;+ (z*) = min; , 1;(z) and assume that the lemma is
false. Then v« (2*) < 0. From the hypotheses we have z* ¢ {0,1} and ¢/, (z*) > 0.
Thus

(L(a"))ir = —e (@) + Y i j(a )y (2") <0,

which contradicts the assumption and proves the result for L. O

Let A(x) be any principal sub-matrix of A(z) and L the corresponding operator.

To see that any L satisfies the same maximum principle as I_:, it suffices to observe
that the elements of A(z) satisfy a fortiori the same inequalities as those of A(x).

Lemma 2. Let A(z) satisfy (2) and (3). If ) is any function in the domain of L,
then for each i, 1 <i<mn,

(o) < max {11 50) 115 1.5 1 EG 0}, ol
Proof. Define the two functions
7@ = max {150 1. 190 1, 2171} e = i)
where € = (1, ..., 1)T is the unit column vector. Using the properties of A it

is not hard to verify that 6=(0) > 0, 6*(1) > 0 and Lf*(z) > 0. It follows
from Lemma 1 that §*(z) > 0 forall = € [0, 1]. O
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Standard estimates of the exact solution and its derivatives are contained in the
following lemma.

Lemma 3. Let A(x) satisfy (2) and (3) and let i@ be the exact solution of (1). Then,
foreachi=1...n,z€0,1] and k=0,1,2,

k

W™ ()| < Ce; 2 ([ao)|| + @)l + 1171
1wl (2)] < Cey 2er (@) + 1@ + 1] + Va7 )

and

Wl ()] < Certer 1(1@O)]| + ([ + [IF1 + el F77]])-

Proof. The bound on  is an immediate consequence of Lemma 2 and the differential
equation.

To bound w}(x), for all ¢ and any x, consider an interval N, = [a,a+ /¢;] such that
x € N,. Then, by the mean value theorem, for some y € N,,

oy uila++E) — uila)

and it follows that

Now

[ui(2)| < ui(y)] + Ce (I fill + II@TII)/ ds < Ce; * (|| fill + /)

Y

from which the required bound follows.
Rewriting and differentiating the differential equation gives @’ = E~!(A@ — f),
i@® = EY AT + Ad — f), @@ = E-Y(A@" + 24’7 + A"@ — f) and the bounds
on uy, uE?’), uz(-4) follow. O
The reduced solution i of (1) is the solution of the reduced equation Aiy = f.
The Shishkin decomposition of the exact solution @ of (1) is @ = ¢+ & where
the smooth component @ is the solution of L& = f with #(0) = @(0) and
#(1) = @(1) and the singular component @ is the solution of L& = 0 with
w(0) = @(0) — ¥(0) and wW(1) = @(1) — ¥(1). For convenience the left and right
boundary layers of @ are separated using the further decomposition @ = @' + w"
where Lat = 0, @'(0) = @(0) — #(0), @' (1) = 0 and L™ = 0, @ (0) = 0, (1) =
(1) — v(1).
Bounds on the smooth component and its derivatives are contained in
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Lemma 4. Let A(x) satisfy (2) and (3). Then the smooth component U and its
derivatives satisfy, for all z € [0,1], i=1, ..., n and k=0, ..., 4,

_k
o (@) < O+ %),
Proof. The bound on ¥ is an immediate consequence of the defining equations for
¥ and Lemma 2.
The bounds on ¢' and ¢” are found as follows. Differentiating twice the equation for
¥, it is not hard to see that " satisfies
L" = § where = f" — A"t — 24'%" (5)
Also the defining equations for ¢’ yield at z =0, z =1
7'(0) =0, ¢"(1) =0. (6)
Applying Lemma 2 to ¢ then gives
17" < CA+[[T])). (7)
Choosing i*, z* such that 1 <¢* <n, z* € (0,1) and

vi (&%) = [[7]] (®)

and using a Taylor expansion it follows that, for any y € [0,1 — z*] and some 7,
Tt < n <zt 4y,

vi (2" 4 y) = v (&%) +y v (@7) + 5 0 (). 9)
Rearranging (9) yields
ol (l'*) — Vix (I + y) — Ug* (Jf ) _ QU;/* (77) (10)
Y 2
and so, from (8) and (10),
1711 < 21181 + L1 (11)
=7 5 -
Using (11), (7) and the bound on ¥ yields
C 2
(1=l <), (12)

Choosing y = min(&,1 —z*), (12) then gives ||7”|| < C and (11) gives ||'|| < C as

4)

required. The bounds on 7, #*) are obtained by a similar argument. O
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3. Improved estimates

The layer functions Bﬁ, B!, B;, i=1, ..., n,, associated with the solution #, are
defined on [0, 1] by

Bl(x) = e *V/%, BI(z) = BY(1 - x), By(z) = Bl(z) + Bl (x).

The following elementary properties of these layer functions, for all 1 <i < j <mn
and 0 < x <y < 1, should be noted:

(@) Bilo) < Bita) Blla) > Blw). 0 < Bl(x) < 1

(b) BI(z) < Bi(a), Bl(z) < Bl{y), 0 < Bl(x) < 1.

(c) Bi(z) is monotone decreasing (increasing) for increasing « € [0, 1]([3, 1]).
(d) Bi(z) < 2Bl(z) for z € [0, 5].

Definition 1. For Bll, Bg., each i,7, 1 <1i# j <n and each s,s > 0, the point
2 s defined by

L j
Bl Bl (2
) _ Bl »
€7 &
It is remarked that
Br(1—2z%)  Br(1—z®
2( _ zg): ]( ’L,J). (14)

(s )

In the next lemma the existence and uniqueness of the points z;”; are shown. Various

properties are also established.

Lemma 5. For all i,j such that 1 <i < j <n and 0 < s < 3/2, the points xg?

exist, are uniquely defined and satisfy the following inequalities

B! Bi(x B! Bl(z
) B0 ), B BO e )
&7 e g g3 es )
[ J ? J
Moreover,
2 <2 i< d 2% <2 if i < (16)
z <aiy g if i Jj an x x iy if 1<
Also \[
S € S 1 . . .
()<23ﬁ and :1:()6(0,5) if 1<j. (17)

Analogous results hold for the B}, B} and the points 1 — w(g)

Proof. Existence, uniqueness and (15) follow from the observation that the ratio of
the two sides of (13), namely

Bix) & _
x_;f (\Fff(

1
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is monotonically decreasing from the Value > 1 as z increases from 0.

The point x(s) is the unique point x at Wthh this ratio has the value 1. Rearranging
(13), and usmg the inequality Inz < z — 1 for all > 1, gives

VE;
M TR 2GR VE
L o) | T VaGE - o) Ve

x(-s) =2s

Val &

1

which is the first part of (17). The second part follows immediately from this and

(4).

To prove (16), writing /&, = exp(—py), for some pi, > 0 and all &, it follows that

20 25(pi — pj)

Y15 = alexpp; — expp;)’

() (s)

The inequality ;7 <z, ; is equivalent to

Di — Dj < Pi+1 — Pj
eXpp; —exXpp;  exXppit1 — expp;’

which can be written in the form

(Pit1 — pj) exp(pi — pj) + (pi — Pig1) — (i — pj) exp(Piy1 — pj) > 0.

With @ = p; — p; and b = p;11 — p; it is not hard to see that @ > b > 0 and
a —b=p; — piy1. Moreover, the previous inequality is then equivalent to

expa — 1 - epr—l7
a b

which is true because a > b and proves the first part of (16). The second part is
proved by a similar argument.
The analogous results for the B, B} and the points 1 — mf‘? are proved by a similar

argument. O

In the following lemma sharper estimates of the smooth component are presented.

Lemma 6. Let A(x) satisfy (2) and (8). Then the smooth component ¥ of the
solution @ of (1) satisfies for i=1,...,n, k=0,1,2,3 and x €

(@) < C 1+Z

q=i 5q
Proof. Define a barrier function

UF(z) = C1+ Bp(z))e £ 0P (2), k=0,1,2 and z€Q.
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Using Lemma 1, we find that L¢*(z) > 0 and ¢*(0) > 0, ¢*(1) > 0 for
proper choices of the constant C.
Thus using Lemma 4 we conclude that for £ =0,1,2,

W™ (@) < ClL+ By(z)], =€ (19)

Consider the system of equations (5), (6) satisfied by "' and note that || § || < C
from Lemma 4.
For convenience let p denote ¢/ then

Li = g. #0) = 0, (1) = 0. (20)
Let ¢ and 7 be the smooth and singular components of p given by

Ly = g q0) = A0)7'§(0), q(1) = A(1)'g(1)

and .
L = 0, #(0) = —q(0), 7(1) = —¢(1).
Using Lemmas 4 and 7 we have, for i =1,...,n and z € Q,
lgi(z)| < C, " "
B;(x B, (x
4 < C i n
I R
Hence, for 2 € Q and i=1,...,n,
B;i(x) B (33)
i = <C|1+=~+- 21
@) = i) < € 1+ 2 1)

f
From (19) and (21), we find that for k£ =0,1,2,3 and z € Q,
_k _k
(@) < © [1+e§ EBi(a) -+ e ZBn(x)}. 0

Remark 1. It is interesting to note that the above estimate reduces to the estimate
of the smooth component of the solution of the scalar problem given in [6] when
n=1.

Bounds on the singular components @', @" of @ and their derivatives are con-
tained in
Lemma 7. Let A(z) satisfy (2) and (3). Then there exists a constant C, such that
for each x € 0,1} andi=1, ..., n,

Bl

‘w ’<C’Bl( ’wf'ax‘ <Ci:

nBz

[t !<CZ m )| < o,

l(4

Analogous results hold for w] and their derivatives.
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Proof First we obtain the bound on @'. We define the two functions §+ = CBlée+
@'. Then clearly 6%(0) > 0, 6#*(1) > (and L% = CL(BLE). Then, fori=1,...,n
(L6F); = C(Xiy aij — aj—i)BﬁL > 0. By Lemma 1, #* > 0, which leads to the
required bound on .

Assuming, for the moment, the bounds on the first and second derivatives wﬁ’/
and wﬁ’”, the system of differential equations satisfied by @' is differentiated twice
to get

_Ed 4)+A—»l//+2A/—»l/+A//—»l:"

The required bounds on the w;, L9 follow from those on wt, w " and w . It remains

therefore to establish the bounds on w!’,w"” and w" i , for which the following
mathematical induction argument is used It is assumed that the bounds hold for
all systems up to order n — 1. It is then shown that the bounds hold for order n.
The induction argument is completed by observing that the bounds for the scalar
case n = 1 are proved in [6].

It is now shown that under the induction hypothesis the required bounds hold
for wl ! wl " an d f "’ The bounds when i = n are established first. The differential
equation for w!, glves epwh” = (Ad), and the required bound on w."” follows at

once from that for . For wk’ it is seen from the bounds in Lemma 3, applied to
1 1
the system satisfied by ", that |w "(z)| < Ce; %. In particular, |wh'(0)| < Ce, 2
1 —
and |w’'(1)| < Ce,, 2. Tt is also not hard to verify that L'’ = —A'4w!. Using these
results, the inequalities €; < &5, @ < n, and the properties of A, it follows that the two
barrier functions % = CE~2 Bl e+ satisfy the inequalities 6% (0) > 0, (1) > 0
and LT > 0. It follows from Lemma 1 that 6= > 0 and in particular that its nt”
1
component satisfies |wh'(x)| < Cep, ? B, () as required.
Now, consider
—enwy” (@) + ant (@)w] (€) + anz(@)wh(2) + - + apn @)y (x) = fulz).  (22)

Differentiating (22) once, we get

_5nwn(3)( Z anj )’

j=1

n
i (@) < Cet (14wl (@)

[ Bi(z) B, ()
<Cet | =+ 4 2 ]
_\ﬁl \ﬁn
n Bl
<CZ 3/2~
=1 &q

Lol L(3 . . >,
To bound w;”, w;" and w; ®) for 1 <i <n—1 introduce @' = (wh, ... wh_y).
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Then, taking the first n — 1 equations satisfied by ', it follows that
— B + Adt = g,

where E, A is the matrix obtained by deleting the last row and column from E, A,
respectively, and the components of g are g; = —a;, nwt for 1 <i < n—1. Using the

bounds already obtained for w!,, wk’ w%” and wl 1t is seen that g is bounded
By(x)

n n
! x — ! x
by CBl (), § by CE2, g by CE( and g by CZ 57
q=1 q
conditions for @' are u:)l(O) = u(O) @°(0), w'(1) = 0, where @ is the solution of
the reduced problem 12'0 = A~1f, and are bounded by C(]] @(0) || + || f(0) ||) and

c(|| @) || + || f(1) ||). Now decompose @' into smooth and singular components
to get

The boundary

5l — — Sl —/ —/
w=q+r, w =q +7r

Applying Lemma 4 to ¢ and using the bounds on the inhomogeneous term g and its
derivatives ¢, g’ and g it follows that

17" (z)] < CB\%x), 17 (2)] < CM

and

By ()
ped q
@<y 2

q=1 €q

Using mathematical induction, assume that the result holds for all systems with
n — 1 equations. Then Lemma 7 applies to 7 and so, fori=1,...,n—1,

n—1 1 n—1 l n—1 l

B, () B, () B, ()

(@) <0y \qu @) <Cy 27 @) <e S 2
q=i q q=i g =1 €q

Combining the bounds for the derivatives of ¢; and r;, it follows that

" Bl(x) " Bl

l///
ol |<CZ 3/2-

jwi"(2)] < €

M=
3@
£
o)
IN
Q
™ [
<

Thus, the bounds on wl/ wﬁ’” and w;" hold for a system with n equations, as
required. A similar proof of the analogous results for the right boundary layer

functions holds. O

Lm

4. The Shishkin mesh

A piecewise uniform mesh with N mesh-intervals and mesh-points {z;}Y , is now
constructed by dividing the interval [0, 1] into 2n + 1 sub-intervals as follows

0,1]U- - U(Tp=1, 7] U (Tn, 1 = 1] U1 =70, 1 = 7o q] U - - U (1 — 7y, 1].
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The n parameters 7;, which determine the points separating the uniform meshes,
are defined by

Tn:min{i,Q\fglnN} (23)

and for k=1,...,n—1

. Tk+1 \/gk
= 2—L1InN ;. 24
Th mln{ > A n } (24)
Clearly
1 3
0<7'1<...<Tn§1, Z§1—7n<...<1—71<1.
Then, on the sub-interval (7,,1 —7,] a uniform mesh with % mesh-intervals is
placed, on each of the sub-intervals (7, 7x+1] and (1—7g41,1—7%], k=1,...,n—1,

a uniform mesh of 2”_% mesh-intervals is placed and on both of the sub-intervals
[0,71] and (1—7i,1] a uniform mesh of 52+ mesh-intervals is placed. In practice
it is convenient to take

N = 2ntrHl (25)

for some natural number p. It follows that in the sub-interval [r;_1, 7] there are
N/2n—k+3 = 2k+P=2 mesh-intervals. This construction leads to a class of 2" piece-
wise uniform Shishkin meshes M, where b denotes an n—vector with b, = 0 if
7; = Z2 and b; = 1 otherwise. From the above construction it clear that the only
points at which the meshsize can change are in a subset J; of the set of transition
points Ty = {7 }}_; U{l — 7% }}_;. It is not hard to see that the change in the
meshsize at each point 7, is 2" ¥¥3(dj, — dy_1), where dj, = 22 — 7, for 1 < k < n,
with the conventions dy = 0, 7,41 = 1/2. Notice that dj > 0 and that b = 0 if and
only if dy = 0. It follows that Mj is a classical uniform mesh when b=0.

The following notation is now introduced: H; = zj41 — x5, h; = z; — zj_1, 0; =
Tjy1 — w51, Jy ={x; : Hj — h; # 0}. Clearly, J; is the set of points at which the
meshsize changes and J; C Tj;. Note that, in general, J; is a proper subset of T;.
Moreover, if by, = 0 then Hy < hy and if by, = bp_1 = 0 then Hy = hy. In the latter
case, it follows that the meshsize does not change at 74 or 1 — 7.

It is not hard to see also that

i < CVe,InN, 1<k<n, (26)
he = 2" FNT = mmq),  Hi =2""FPN"H1qq — ), (27)
0; =Hj+hj <Cmax{Hj;,h;}, 1<j<N-1, (28)
7o =2 0D whenb, =---=b;=0, 1<k<j<n (29)
and
BL(m,) = Bi(1 —7,) = N~ 2 when b, = 1. (30)

The geometrical results in the following lemma are used later.
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Lemma 8. Assume that by, = 1. Then the following inequalities hold

o < T e for1 <k <, (31)
Bi(m) 1 -
= < —— for 1<i,k<n, (32)
\/gi \/gk
By(ri ~ hi) < CBi(n) for 1<k<q<n. (33)

Proof. To verify (31) note that by Lemma 5

(s) Ve STk STk Tk
<2 = = < —.
Ttk Sﬂ InN (n+p+1)ln2 ~ 2
Also,
on—k+3(r _ 7 g T — Th— T
hi = (]\]; kl):22kp(7k—7k—1)§ - 2k1<5k'

5)

It follows that x,(%l) x + hi < 71 as required.
To verify (32) note that if ¢ > k the result is trivial. On the other hand, if i < k, by
(31) and Lemma 5,

1 1
Bl(n) _ Biel) _ Bie) 1
Ve Ve Ver T Ve

Finally, to verify (33) note that

3
hie = (Th — Tp—1)2" PPN < 2R N = ‘Qﬁ 2" MHANT In N
«
and
627L—k+4N—1 In N _ (N%)2"7k+4 S 07
SO

@hk < @2"*’”4]\/*1 InN < 2" FHN-IInN < (C
Ve, Ve,

since k < ¢. It follows that
Bll —h 7Bl7 \/;hk<CBl]
q( k k) q( g)eVie T < q( k)

as required. O

5. The discrete problem

In this section a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1), which is shown later to be
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essentially second order parameter-uniform convergent. In the scalar case, when
n = 1, this result is well known. In [2] a similar numerical analysis is done for
a first order system of m equations with coincident perturbation parameters. For
the general case considered here, the error analysis is based on an extension of the
techniques employed in [7]. It is assumed henceforth that the problem data satisfy
whatever smoothness conditions are required.

The discrete two-point boundary value problem is now defined on any mesh M; by
the finite difference method

—

—E?U(z) + A(x)U (z) = f(z),  U(0) =a@(0), U(1)=1a(1). (34)

This is used to compute numerical approximations to the exact solution of (1). Note
that (34) can also be written in the operator form

INU = f,  0(0)=a(0), U@1)=aQ)

where

IN = _E5?24+ A

and 62, Dt and D~ are the difference operators

620 (z;) = - :
(z;) n
D+(j(m‘ ) = U(zjt1) — Ulz))
J hj+l
and . .
= U(II?)—U(SIJ,l)

D U(ZL’]) = s h] s

with Ej = 7]77 + hj+1, hj = acj — .’L‘jfl.

The following discrete results are analogous to those for the continuous case.

Lemma 9. Let A(z) satisfy (2) and (3). Then, for any mesh function U, the
inequalities U(0) > 0, (1) > 0 and LNU(z;) > 0 forl < j < N—1 imply
that W(x;) >0 for0 < j < N.

Proof. Let ¢*, j* be such that ¥;-(x;+) = min, ; ¥;(z;) and assume that the lemma
is false. Then ;- (x;-) < 0. From the hypotheses we have j* # 0, N and ¥;«(z;+ ) —
Wi (zje_1) <0, U (@jeq1) — Win(mj+) >0, 50 82U (z5+) > 0. It follows that

n
(LN\I/(.IIj*)>i* = —62‘*52\1/1‘* (Zl?j*) + Zam k(xj*)\llk(xj*) < 07
) k=1

which is a contradiction, as required. O

An immediate consequence of this is the following discrete stability result.
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Lemma 10. Let A(x) satisfy (2) and (3). Then, for any mesh function U,
- - - 1 on e .
| W(z;) || < maX{H‘I’(O)L Il a|LN‘I’||}, 0<j<N.

Proof. Define the two functions

- . - 1o o =
O (z5) = max{[[T(0)[], || ¥(1)]], aHLN‘I’II}e + ¥(z;)

where €= (1, ... ,1) is the unit vector. Using the properties of A it is not hard to
verify that 6%(0) > 0, 6%(1) > 0 and I_:N(:)i(xj) > 0. Tt follows from Lemma 9
that 6% (z;) > 0 for all 0 < j < N. O

The following comparison result will be used in the proof of the error estimate.

Lemma 11. Assume that the mesh functions ® and Z satisfy, forj=1, ..., N—1,
1Z(0)]| < @(0), [[Z(V)]] < ®(1), [|ILYZ(z))l] < LY ®(xy).
L N

Then, for j =0, ..

7

1Z(@))]] < ().
Proof. Define the two mesh functions ¥+ by
e E A
Then ¥* satisfies, for j =1, ..., N —1,

UEO0)=U*(1) =0, LNU*(x;)>0.

The result follows from an application of Lemma 9. O

6. The local truncation error

From Lemma 10, it is scen that in order to bound the error ||U — @|| it suffices to
bound LY (U — @). But this expression satisfies

which is the local truncation of the second derivative. Let ‘7, W be the discrete
analogues of U, W, respectively. Then, similarly,

LN(V = 7) = —E(8* — D*)7, LN(W — @) = —E(6* — D?)w.
By the triangle inequality,

IZNW —a@) | < | LNV = &) | + || LY (W — @) || - (35)
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Thus, the smooth and singular components of the local truncation error can be
treated separately. In view of this it is noted that, for any smooth function 1, the
following three distinct estimates of the local truncation error of its second derivative
hold:

for z; € M;
(5% = D?)ola)] < € e 07 -
and
(6% = D?)o(ay)| < COjmax [w(s)] (37)
for z; ¢ J;
(8% = D*)i(ay)| < O max|y(s)], (5)
for 7, € J;
(6 = D2l < O Hy — hel 6 ()] + 0 max [ O(s) ). (39)

Here Ij = [.Tj_hxj_‘_ﬂ.

7. Error estimate

The proof of the error estimate is broken into two parts. In the first a theorem
concerning the smooth part of the error is proved. Then the singular part of the
error is considered. A barrier function is now constructed, which is used in both
parts of the proof.

For each 74 € Ty, introduce the piecewise linear polynomial

X
—, 0<z <7,

Tk
Or(z) = 11,77':;;<x<1—rk
s lkagﬂjSl.
Tk

It is not hard to verify that, for each z; = 7, € T,

261'

- o+ —_—,
LY (Ox(x5)@); > 7 (Hy, + hy)
a9k(:cj), if Z; ¢ ‘]l_;

if Zj:TkGJg

On the Shishkin mesh M; define the barrier function o by

O(a;) =CN2(In NP+ Ox(a;)]éE, (40)
kel

where C' is any sufficiently large constant.
Then & satisfies

0< ®;(x;) <CN?*(InN)* 1<i<n. (41)
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Also, for z; ¢ J;,
(LN®(z;)); > CN~2(In N)? (42)

and, for 7, € J3,

&
Ver(Hi + hy)

from which it follows that, for 7, € J; and Hy > hy,

(LN®(71)); > C(1 + )(N"'In N)?,

[ £
(LN®(14)); > O(N"2 4+ ———=——N"'InN) (43)
\/gk\/ngrl
and, for 7 € Jy and Hy, < hy,
(IN&(r)); > C(N"2 + LN N). (44)

€k
The following theorem gives the error estimate for the smooth component.

Theorem 1. Let A(x) satisfy (2) and (3). Let ¥ denote the smooth component of
the exact solution from (1) and V the smooth component of the discrete solution

from (34). Then
IV =7 < CN2(InN)>. (45)

Proof. An application of Lemma 11 is made, using the above barrier function. To
prove the theorem it suffices to show that the ratio

_ i = Dui(zy)|
(LN D(;))i

R(vi(x;)) , ¥ € My

satisfies
R(vi(x,)) < C. (46)

For z; ¢ J; the bound (46) follows immediately from Lemma 4, (38), (28) and (42).
Now assume that z; = 7, € J;. The required estimates of the denominator of
R(v; (1)) are (43) and (44). The numerator is bounded above using Lemma 6, (32)
and (37). The cases by = 1 and by = 0 are treated separately and the inequalities
(26), (27), (28), (30) and (33) are used systematically.

Suppose first that by = 1, then there are four possible subcases:

7 S k, Hk Z hk, R(UZ(Tk)) S O€k+1.
Hy < hg, R(vi(mx)) < Céy.

i >k, H, > hyg, R(Ui(Tk)) < Cepq1 é’“ (47)
Hy, < hy, R(vi(my)) < Cep 2
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Secondly, if by = 0, then by_; = 1, because otherwise 75, ¢ J; and furthermore
Hj. < hg. There are two possible subcases:

) < k — ]., Hk < hk, R(Ui(’rk)) < CEk.

>k — 1, H;, < hk, R(’UZ'(T]C)) < CEZ'. (48)

In all six subcases, because of the ordering of the ¢, it is clear that condition (46)
is fulfilled. This concludes the proof. O

Before the singular part of the error is estimated the following lemmas are estab-
lished.

Lemma 12. Let A(x) satisfy (2) and (8). Then, on each mesh My, for 1 <i<n
and 1 < j < N, the following estimates hold

52
lei(6% — D*)wl(x;)| < CEJ for x; & Jp. (49)
An analogous result holds for the w.

Proof. When xz; ¢ J;, from (38) and Lemma 7, it follows that

(62 — D2)wl(z;)| < C62 max|awl()( )|

sel
Bl (s Cé?
< 0(52 max a(3) < —L
selj a1 Eq €1
as required. O

In what follows fourth degree polynomials of the form

4
I—xe L(k
pz@ Z z( )(Z‘g)

k=0
are used, where 6 denotes a pair of integers separated by a comma.

Lemma 13. Let A(z) satisfy (2) and (3) and assume that My is such that by =1
for some k, 1 <k <n-—1. Then, for each i, j, 1 <i<n, 1< j <N there exists

a decomposition
k+1

I _
w; = E Wi,q,
q=1

for which the following estimates hold for each q andr, 1 < ¢ <k, 0<r <2,

leiwl™ (x)| < Ceq ® Bl (x;)

and
n Bl (I) n Bl (l’)
el (@) SO 30 U5 i)l <0 3 SL
q=k+1 q gkt q
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Furthermore, for x; ¢ J;

2

(8 = DP)ul(ay)| < C(Blaso0) + ) (50)

and, for , € Jg,

l€:(6% — D*ywi(m)| < C( Bi(me — hae) + )- (51)

O
Ver
Analogous results hold for the w] and their derivatives.

Proof. Consider the decomposition

k+1

I _ E
w; = Wi my
m=1

where the components are defined by

! otherwise

79

(1)
Dik,k+1, on |0,
Wi g1 = { 4 +1; [ kk+1)

and for each m, k > m > 2,

1)

DPism—1,m; on [Ov‘rm—l,m)
W k+1
u Z W;,q, otherwise
q=m-+1
and
k+1
w; = w! — Zwi,q on [0,1].
q=2
From the above definitions it follows that, for each m, 1 < m < k, w;,», = 0 on
(1)
[xm,erl? 1]

To establish the bounds on the fourth derivatives it is seen that:
for x € [q:,(cll)ﬁl, 1], Lemma 7 and x > m,(:,)ﬁl imply that

" Bl(x ", Bl(z)
4
lestf s (@)] = leww @03 =<0 3 =
q=k+1 q
for x € [0, x,(c%,)c+1], Lemma 7 and x < m,(gl’,)ﬁl imply that
@ 53,1 )
+
|5iwi,k+1(x)| = |5iw a?k k+1 )< CZ

n (1) n

Z kk+1 <C, Z

q=k+ q=k+1 q
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and for each m = k, , 2, it follows that

for z € [x(l) 1], w @ —

m,m+1> z m

(€] 1

for x € [x,,” | .\, i), Lemma 7 implies that
k+1 z
B, (z
@l <lewt e+ 3 @l sy P < ol
qg=m+1 m

for x € [O,xg)_lm], Lemma 7 and x < xg)_lm

imply that

n 1
(4) 1,(4), (1) 571) 1m)
|eiw; o (2)] = leiwy™ (x )< CZ

mlm

B (W I
S C m(mm—l,m) < C B ( )’
Em Em

for x € [;vglg, 1], w (4) =0;
for z € [0, ac(llg], Lemma 7 implies that

TLBl 1
e (@) < el (@) |+Z|ez G <oy Bl < B,
=1 1

€1

For the bounds on the second and third derivatives note that, for each m, 1 < m < k:
forxe[() 1], wf —0=w®.

m,m+1> i,m i,m’

forxG[Oz() 1,

sy Ym,m—+11
O
/ Y eiwl(%( )ds = e;w (3) (:Ugi?m_H) — 5iw(?’) (z) = —siw(?’) (x)
and so
)

e
xﬂl,ﬂl 1 zm,,m, 1 Bl
|€1w£3731(x)‘ S/ : leiw] ( )ds < EQ/ N Bl (s)ds < C \7(35)

m

In a similar way, it can be shown that
leiwl (2)] < OBy, (x).

Using the above decomposition yields
k
|€4(0% = DHwi(x;)] < Y [ei(6% = D*)wig(x;)] + [ei(8* = D*)wi g ().
q=1

For x; ¢ J;, applying (38) to the last term and (36) to all other terms on the
right-hand side, it follows that

k
4
[£4(6 — D?)uwi(a)) |<o§jmax\sz wfy(s)| + 8} max ez i), (5))).
© J
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Then (50) is obtained by using the bounds on the derivatives obtained in the first
part of the lemma.

On the other hand, for z; = 7, € Jj, applying (37) to the last term and (36) to the
other terms, (51) is obtained by a similar argument. The proof for the w] and their
derivatives is similar. O

In what follows third degree polynomials of the form

& (af—ya)k 1,(k
pio() = Twi’( (yo)

k=0
are used, where 6 denotes a pair of integers separated by a comma.

Lemma 14. Let A(z) satisfy (2) and (3) and assume that My is such that by =1
for some k, 1 <k <n-—1. Then, for each i, j, 1 <i<n, 1< j <N there exists
a decomposition

k+1

I _ E
w; = Wi, m s
m=1

for which the following estimates hold for each m, 1 < m < k,

Bl () | @) 1 ()
"LU (x.])| < C Em I |w2 ( )| < C 3/2
and
|wz Jk+1 x] ‘ < ¢ Z 3/2
g=k+1 €q
Furthermore,

k 1 iy ]
le:(8% — D)l (x;)| < Ce; (Z By(zj-1) + 5/]2 ) . (52)

q=1 €q €k+1
Analogous results hold for the w] and their derivatives.

)

Proof. The proof is similar to that of Lemma 13 with the points z; ; replaced by

(3/2

the points ;"7 ~". Consider the decomposition

k+1

l E
wz’ - wi,ma
m=1

where the components are defined by

* (3/2)
jo on (0,2
Wi gg1 = { zl,k,kJrl? [0, K, k+1)

i otherwise
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and for each m, k > m > 2,

* 3/2
pi;mfl,nm on [07 'En/l)m)

I k+1

,m T .

’ wh — E wj ¢, otherwise
qg=m+1

and
k+1

Wi = wh — Zwi’q on [0,1].
q=2

From the above definitions it follows that, for each m, 1 < m < k,
3/2
[ gn/m)-i-l’ 1]

To establish the bounds on the third derivatives it is seen that:
for x € [x,(:’,éj_)l, 1], Lemma 7 and x > ac,(:’,ﬁ_)l imply that

n

3
|w§,k)+1<x)‘ - |U) | < CZ 3/2 Z 3/2 ;

a=k+1 €4

for x € [0, x,(f’,{i)l], Lemma 7 and z < ”31(@31&)1 imply that

n (3/2)
|w(3) ()] = |u! 1(3) 3/2) ) < CZ Bl kk+1)
i k41 = Tl k+1 3/2

(3/2)

<C Z 3]6/;€+1 <C Z 3/2 ;

q=k+1 &q g=k+1 €4

and for each m =k, ... ,2, it follows that

for z € [37;3,/731)+1a 1], wl(gr)n =0;
53/,21)%, xﬁi{i)ﬂ], Lemma 7 implies that

for x € [z

k+1

607

w;.m = 0 on

(z)

1 (z) Bin
i) @) < fwy@ @)+ > i \<cz S <

g=m-+1

(3/2)

7m1m

/2)

for x € [0,z ], Lemma 7 and = < x&n {.m imply that

n (3/2) )

3 1,(3) 32 1
), (@)] = )@ @32 \<OZ ;”/2*”

Bz ) Bl ()
<cC 53/2 <C 3/2 )

for z € [z (3/2),1], “%(731) = 0;

32
m
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for z € [0, a:%/z)], Lemma 7 implies that
3) L(3) SIRG ~ By(x) _  Bi(x)
|wi,1 (l‘)l < |wz (ZL‘)| + Z |wi,q (.T)l < CZ 3/2 < C 3/2 -
q=2 q=1 €q &

For the bounds on the second derivatives note that, for each m, 1 <m < k:

for x € [3:(3/2) 1], wy,, = 0;

m,m-+1>
for € 0,012,
@)
U wi(s)ds = wll, (@32 ) — wl, (2) = —w], (@)
and so
(3/2) (3/2)
Lo m41 3 C T m41 Bin(x)
@) < [ lolas < < [ Bl (sas < 0220,
Finally, since
k
l€i(6% = DH)wi(x;)| < D [ei(6% = D*)wim ()] + |6:(6% = D*)w; pyr (x;)],
m=1

using (37) on the last term and (36) on all other terms on the right-hand side, it
follows that

k
3
(6% — D)l < O maae eqwll,(5)] + b maax exw,  (5))
m—1 J s&lj

The desired result follows by applying the bounds on the derivatives obtained in the
first part of the lemma. The proof for the w] and their derivatives is similar. O

Lemma 15. Let A(x) satisfy (2) and (3). Then, on each mesh Mg, the following
estimate holds fori=1, ..., n and each j=1, ..., N,

(6% = D*)wi(z;)| < OB, (aj-1).
An analogous result holds for the w.

Proof. From (36) and Lemma 7, for each ¢ =1,...,n and j =1,...,N, it
follows that

[e:(0% — D*ywi(a;)| < C max|e;wy”(s)
selj
n Bé(a:j_l)

SCEiZ

q=i

S CB»fl(xj—l)-
€q

The proof for the w] and their derivatives is similar. 0
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The following theorem provides the error estimate for the singular component.

Theorem 2. Let A(z) satisfy (2) and (3). Let & denote the singular component of
the exact solution from (1) and W the singular component of the discrete solution

from (34). Then
W — ]| < CN"2(In N)®. (53)

Proof. Since @ = @' + ", it suffices to prove the result for @' and " separately.
Here it is proved for @' by an application of Lemma 11. A similar proof holds for
w".

The proof is in two parts.

First assume that x; ¢ J;. Each open subinterval (73, 7x1) is treated separately.
First, consider x; € (0,71). Then, on each mesh Mj, §; < CN~17; and the result
follows from (26) and Lemma 12.

Secondly, consider x; € (11, 72), then 71 < z;_1 and §; < CN~'7,. The 2" possible
meshes are divided into subclasses of two types. On the meshes Mj with b; = 0 the
result follows from (26), (29) and Lemma 12. On the meshes M; with b; = 1 the
result follows from (26), (30) and Lemma 13.

Thirdly, in the general case z; € (T, Tim+1) for 2 < m < n — 1, it follows that
Tm < xj—1 and §; < CN~'7,,41. Then Mz is divided into subclasses of three types:
MEO:{Mg:b1:~o:bm:0}, Mg:{Mgibr:L bry1 = o+ = by, =
0 for some 1 < r < m — 1} and Mgm = {M; : by, = 1}. On Mg the result follows
from (26), (29) and Lemma 12; on M from (26), (29), (30) and Lemma 13; on M?
from (26), (30) and Lemma 13.

Finally, for z; € (7,,1), 7, < z;_1 and §; < CN~!. Then M, is divided into
subclasses of three types: Mg ={M;:b = - = b, = 0}, My = {M; - b, =
1, bpy1 =---=b, =0forsomel <r <n-1} andMl;”:{Ml;:bnzl}. OnMg
the result follows from (26), (29) and Lemma 12; on M from (26), (29), (30) and
Lemma 13; on M from (30) and Lemma 15.

Now assume that x; = 7, € J;. Analogously to the proof of Theorem 1, the ratio
R(w!(7y)) is introduced in order to facilitate the use of Lemma 11. To complete the
proof it suffices to show that the ratio

[£i(8% — D*)wi(w,)|

7

(LN ®(z)))il

R(wi(z;)) = , ¥ € Mg

satisfies
R(wl()) < C. (54)

The required estimates of the denominator of R(w!(7)) are (43) and (44). The
numerator is bounded above using Lemmas 13 and 14. The cases by = 1 and by, =0
are treated separately and the inequalities (26), (27), (28), (30) and (33) are used
systematically.
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Suppose first that by = 1, then there are four possible subcases:
C’(EIN + 51 N Lin N)

L 14, i<k, Hy> H(k)) < '
emma 14, ¢ <k, Hy > hy, R(wj(tx)) < C(N-2 N-1InN)

t e

C(EN"2+ S22 N "1 N)
k+1

C(N-2+ £N-TInN)

Hy, < hy, R(wi(mk))

IA

(55)
C(N"24+N-'InN)

Lemma 13, i >k, Hy > hy, R(wli(m)) < 5 T )
C(N—2+ fkalN In N)

7

C(N- +fk N-1InN)

C(N2+ N-'InN)

Hy, < hg, R(wi(mi)) <

Secondly, if by = 0, then by_; = 1, because otherwise 7, ¢ J;, and furthermore
Hj, < hg. There are two possible subcases:

C(ZE-N"24 &N-"1InN)
€k—1 €k

L 14, i<k—1, Hy <h ! <
emma 14, i< , Hi < hg, R(wi(m)) < C’(N—Z—l—;—;N—llnN)

(56)
C(N"24+N~'InN)
C(N“2+ N-'InN)’

Lemma 13, i>k—1, Hy < hg, R(wl(rg)) <

In all six subcases, because of the ordering of the &;, it is clear that condition (54)
is fulfilled. This concludes the proof. O

The following theorem gives the required essentially second order parameter-uniform
error estimate.

Theorem 3. Let A(x) satisfy (2) and (3). Let @ denote the exact solution from (1)
and U the discrete solution from (34). Then

||U — || < CN~2(In N)®. (57)

Proof. An application of the triangle inequality and the results of Theorems 1 and
2 lead immediately to the required result. O

8. Numerical results

The above numerical method is applied to the following singularly perturbed bound-
ary value problem

Example 1.

—euf (x) + buy (z) — ua(x) — uz(x) = 2
—eguf(x) —ur(z) + (5 + z)uz(x) — uz(x) = e * (58)
—egus(z) — (1 + 2)ur (@) —ua(z) + b+ 2)us(z) =1+
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for z € (0,1) and @(0) = 0, @(1) =

from [1]. The results are presented in Table 1.

611

0. For various values of €1, €9, €3 and
a=20and N=2", r=8,---,13 the computed order of £-uniform convergence
and the computed &-uniform error constant are found using the general methodology

n Number of mesh points N
512 | 1024 | 2048 4096 [ 8192
0.100E+01 | 0.284E-05 | 0.711E-06 | 0.178E-06 | 0.421E-07 | 0.192E-06
0.100E-02 | 0.519E-03 | 0.242E-03 | 0.109E-03 | 0.414E-04 | 0.146E-04
0.100E-05 | 0.519E-03 | 0.242E-03 | 0.109E-03 | 0.414E-04 | 0.146E-04
0.100E-08 | 0.519E-03 | 0.242E-03 | 0.109E-03 | 0.414E-04 | 0.146E-04
0.100E-11 | 0.519E-03 | 0.242E-03 | 0.109E-03 | 0.414E-04 | 0.146E-04
0.100E-14 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.146E-04
0.100E-17 | 0.519E-03 | 0.242E-03 | 0.109E-03 | 0.414E-04 | 0.145E-04
DN 0.519E-03 | 0.242E-03 | 0.109E-03 | 0.414E-04 | 0.146E-04
pv 0.110E+01 | 0.115E401 | 0.140E401 | 0.150E+401
Cév 0.432E+00 | 0.432E+400 | 0.417E+400 | 0.339E+400 | 0.257E4-00
Computed order of & -uniform convergence = 0.110E + 01
Computed £ -uniform error constant = 0.432F + 00

Ui

Ui .
€9 = —, €3 =1 and various

Table 1. Values of DY, DN pN p*, and C’I]]\l forer = 16’ 1

values of N with o = 2.0
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