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General chemical engineering modelling principles are valuable tools to represent
both stationary and dynamic characteristics of complex cell processes. Elaboration of re-
duced (lumped) dynamic models uses all types of information ‘translated’ from the ‘lan-
guage’ of molecular biology to that of mechanistical chemistry, by preserving cell struc-
tural hierarchy and component functions. A combination of non-/conventional estimation
methods reported significant model quality improvements by accounting for qualita-
tive/quantitative data and global properties of the living system. Derivation of a satisfac-
tory model is closely related to the ability of selecting the suitable lumping rules, key-pa-
rameters, and influential terms that better realize a trade-off between model simplicity
and its predictive quality. Several examples, on the modular modelling of protein synthe-
sis regulation, genetic regulatory networks, and on the successive drug-ligand release in
human plasma from a complex multivalent support, illustrate the advantages but also the
over-simplifications introduced by various lumping rules.

Key words:
Lumping analysis, genetic regulatory networks, modules, dynamic models

Introduction

Living cells are organized, self-replicating,
self-adjustable, evolvable and responsive structures
to environmental stimuli, able to convert ‘raw mate-
rials’ (nutrients) from environment into additional
copies of themselves. Due to the highly complex
and partly unknown aspects of the metabolic pro-
cesses, the detailed mathematical modelling at a
molecular level remains still an unsettled issue,
even if remarkable progresses and developments of
extended cell simulation platforms have been re-
ported, by using large amounts of information and
data (see review of Maria1). Given these develop-
ments, as well as tremendous advances in comput-
ing power, it is tempting to believe that reliable
whole-cell models with predictive power will be
forthcoming once complete sets of ‘bio-omic’ infor-
mation become available. However, a better theo-
retical understanding of detailed cell metabolic pro-
cesses is necessary before to understand how the
process of life emerges out of complex networks of
molecular-level interactions between cellular com-
ponents.

Reliable and sufficiently accurate mechanistic
models are very effective tools in representing a
chemical/biological process, its influential vari-
ables, and physical meaning of parameters and re-
action steps. Classical modelling rules use experi-
mental information to build-up a mathematical

structure based on conservation and thermodynamic
relationships, hypothetical reaction mechanism, ki-
netic expressions, and known stoichiometry. Then,
conventional identification steps, derived from the
statistical estimation theory, lead to adapt the model
structure/size according to the available data and
utilization scope. The costly estimation rules are
linked to the statistical methods because the ob-
served data are always subjected to experimental
errors, and multiple constraints are usually imposed
to the kinetic parameters.2

These general modelling rules, based on
physico-chemical-biological and chemical engi-
neering principles, are more difficult to be applied
to living systems when the analysis is expanded to
complex metabolic networks. That is because cell
processes at a molecular level present a low
observability and data reproducibility vs. very large
number of species (states), reactions and transport
parameters (many of them poorly understood),
while mechanistic details and standard kinetic data
are difficult to be obtained. To represent the cell
process complexity, by including all key-species,
reactions and large number of interactions, modern
modelling and lumping techniques have been de-
veloped in two complementary approaches: struc-
ture-oriented topological analysis and kinetic (dy-
namic) models.1 Kinetic models, using various types
of variables (continuous, Boolean/discrete, stochas-
tic, or hybrid/mixed) are suited to represent various
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processes such as species-interconnectivity, tran-
scriptional regulation, gene expression, internal
autocatalysis, system homeostasis and regulation
hierarchy, variable volume and isotonic osmolarity,
continuous perturbations, cell signalling, gene mu-
tation, molecular diffusion, etc.34

To overcome structural low identifiability, cur-
rent trend in dynamic modelling is to apply ad-
vanced numerical techniques that use all types of
information ‘translated’ from the ‘language’ of mo-
lecular biology to that of mechanistic chemistry by
preserving the cell structural hierarchy and compo-
nent functions together with a combination of un-
conventional – conventional estimation and lump-
ing procedures that account for qualitative/(poor)
quantitative information and global properties of
the system (e.g. regulatory properties, structural and
functional cell hierarchy, key-species homeostatic
properties, equilibrated growth stability, cell pro-
cess periodicity and succession of events, etc.).1,35

One key aspect during elaboration of reduced
dynamic models in molecular biology is the ade-
quate application of lumping rules that group spe-
cies of similar functions or metabolic reactions in
lumps. This approach must keep a satisfactory pre-
dictability on key-species and steps, species
inter-connectivities, structural and functional hier-
archy, multi-cascade control with adjustable inter-
mediate levels and multiple effectors in feedback
loops. Due to the cell process large complexity, i.e.
104–106 species, 106–107 reactions and parameters,
and multiple cell sub-structures and functions, ap-
plication of lumping techniques present important
advantages in modelling, such as:

I) increase in the model identifiability and
estimability, compensating the data low-observa-
bility, low-reproducibility and process variability
by reducing the accounted number of reactions and
variables and by keeping the most influential terms
in the kinetic and transport relationships;

ii) computational tractability allowing applica-
tion of engineering rules and dynamic systems the-
ory to better characterize the cell system in terms of
stationary state (homeostasis) multiplicity, stability,
flexibility, robustness to environmental perturba-
tions, etc.;

iii) easier application of effective numerical
rules to develop integrated databank – modularised
platforms for process simulation, similarity analy-
sis, generation of model algebraic-differential equa-
tions from reaction biochemistry, storage of model
equations and parameters.

Among the model reduction costs are to be
mentioned: I) loss of information on certain species
and reactions; ii) biased estimate of model parame-
ters; iii) loss in model generality, prediction capa-

bilities and physical meaning of the derived appar-
ent (overall) rate constants; iv) increased number of
reduced structures (rival models) to be discrimi-
nated; v) alteration of systemic/holistic predicted
properties (such as stability, sensitivity/robustness
to perturbations, regulatory effectiveness, response
rate to external stimuli, system flexibility, tight con-
trol, etc.). For instance, reduced dynamic models
indicate too idealized cell regulatory functions, al-
tered response to stationary or dynamic perturba-
tions (by re-allocating species functions to a fewer
number of components), reduced possibility to in-
clude intermediates that increase the system robust-
ness and to account for the cell-content “inertial”
and “ballast” effects. Besides, if elementary serial
or parallel steps are lumped together, the identified
overall rate constants are always smaller or larger
than those of the original steps, leading to apparent
reaction parameters of lower significance.

In spite of such drawbacks, lumping in cell dy-
namic modelling is indispensable, being a widely
used technique to adequately represent the cell
complexity. Model quality tests, parameter and spe-
cies sensitivity analysis, principal component and
algorithms to find invariant subspaces are common
rules to reduce the extended model structures.

The scope of this paper is to illustrate, with
some examples, how elaboration of reduced kinetic
models of satisfactory quality is closely related to
the ability of selecting the suitable heuristic/rigor-
ous lumping rules, key-parameters, and influential
terms, and to apply unconventional identification
strategies that better realize a trade-off between
model simplicity and its predictive quality.

Examples on the gradual lumping analysis in-
clude elaboration of genetic regulatory network
(GRN) models for simulating the mechanism by
which genes and proteins interact to regulate the
gene expression. Various semi-autonomous lumped
kinetic modules are elaborated, based on experi-
mental observations, in order to represent the pro-
tein synthesis regulation. Individual modules are
separately investigated in terms of structure and
regulatory efficiency, and then linked in regulatory
chains accordingly to certain rules that ensure the
overall network efficiency in conditions that mimic
the stationary and perturbed cell growth, system ho-
meostasis, variable volume and isotonic osmolarity.
Advantages and limitations of such a lumping
strategy are also discussed.

Another example refers to elaboration of lump-
ing relations between extended (intrinsic, low-esti-
mable) reaction pathway structures of moderate size
and apparent (reduced) biokinetic models, with ex-
emplification for the successive drug-ligand release
in human plasma. Such links can reveal kinetic
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characteristics of the elementary steps to be ac-
counted for the design of a drug-support of desir-
able properties and release characteristics.

Lumping rules applied in (bio)chemical
kinetic modelling

The low-observability and low identifiability
of very complex cell biochemical systems lead to
the impossibility to identify all parameters and
terms of extended mechanistic models. Because in
the cellular processes there is a large excess of de-
grees of freedom in adjustable parameters than in
observed and manipulated variables, adequate mod-
elling can lead to multiple solutions, even if re-
duced model structures are checked. Insensitive and
uncertain parameters to the input data changes can
cause intrinsic poor-conditioning of the estimator,
biased and poor-quality solution, ambiguous esti-
mate, and estimation algorithm failure. If no sup-
plementary information is available, a considerable
increase in estimate quality is obtained by reducing
the extended models, thus decreasing the model
over-parameterization or internal degeneracy due to
additive and/or multiplicative parametric terms of
unobservable separate influences. The obtained re-
duced models of higher identifiability can be
effective tools to investigate the cell sub-systems
and certain cell properties.

Kinetic model reduction is realised by means
of special experimental methods (not discussed
here)2 and computational algorithms. As reviewed
by Maria1 and Gorban et al.,3 the ‘reduced descrip-
tion of a chemical system’ means: (i) to shorten the
list of species, by eliminating inessential compo-
nents and/or lumping some species; (ii) to shorten
the list of reactions, by eliminating inessential
side-reactions and/or assuming quasi-equilibrium
for some reaction steps; (iii) to decompose the ki-
netics into fast and slow ‘parts’ allowing a separate
study and application of the quasi-steady-state-ap-
proximation (QSSA) to reduce its dimensionality.

Among used methods, are to be mentioned: pa-
rameter and species sensitivity analysis, principal
component, ridge parameter selection, and algo-
rithms to find invariant subspaces and invariant
manifolds of the original dynamic system, with ac-
counting for physico-chemical-biological restric-
tions. All these methods can suggest the key-param-
eters and lumped species subsets that can compen-
sate the model uncertainty.4,5

From the mathematical point of view, lumping
of continuous variables in (bio)chemical kinetic
models implies reduction of the dimensionality of
the state (concentrations c) and parameter (rate con-
stants k) vectors, that is:
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The lumped species �c are related to the original
ones c by some lumping functions h, which can be
linear or non-linear. The link between reduced and
extended models depends on the way in which
lumping has been realised. Moreover, various con-
straints must also be accounted during application
of lumping rules, representing thermodynamic,
physico-chemical-biological limitations, reaction
hypotheses, QSSA for intermediates, or some ther-
modynamic conditions in reversible cyclic reac-
tions.2 Among the large variety of lumping rules,
some techniques can be relevant for biochemical
system representation.

Reaction lumping. Elimination, or reaction
lumping, lead to simplify a reaction schema, but in-
herently lead to apparent reaction rates, rate con-
stants and reaction orders.6 One method to identify
low-significant reactions is based on sensitivity
measures of model predictions (in terms of species
concentrations) vs. rate constants:7
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(where xu = independent variable vector for the run
u = 1,…n;; ns = number of species). As these sensi-
tivities vary with the reaction time, a threshold of
kj-unimportance may be dependent on species and
reaction progress. A uniform threshold of 5 % can
be adopted to identify redundant reactions to be left
from the scheme, even if the risk to obtain an over-
simplified model is not diminished (see discussion
of Tomlin et al.4). Otherwise, elimination of kj can
be decided based on small values of the overall sen-

sitivity measure ( ln ln ) .� �c kiu j
i

n

u

n
2

11 ��

��
s

A similar
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rejection test:8
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Similarly, relative sensitivities of species i vs.
parameter kj in every run u, lead to the rejection
test:9
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Another lumping method is based on a si-
multaneous analysis of reaction sensitivity and re-
action significance in the model, i.e. the so-called
principal component analysis (PCA10). By eva-
luating the species sensitivities vs. parameters,
Su iu mc k�[ ln ln ],� � the “information” matrix S S

T

can be computed for all runs, S S S S
T

n� �[ ].1 2

As revealed by Vajda et al.,5,9 very small S S
T eigen-

values (
min �0) correspond to linear dependencies
among sensitivities and indicate a structurally un-
identifiable model. Thus, a parameter kj rejection
test is proposed of the form:9
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T ). A way to lump

kinetic parameters uses identified approximate lin-
ear dependencies, by inspecting the eigenvectors Xi
corresponding to S S
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components of such eigenvectors are then used
to construct rate constant lumps, of the form
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Side reactions, of less importance in the model,
can be identified by means of the ridge selection
analysis (RSA11–13). The method is based on the
system (1) matrix, Su iu mf k� [ ],� � and on the
eigenvectors 
j of the modified information matrix
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(where � is the Hoerl’s factor, and

I the identity matrix). The kj rejection test, of the
form 
 �j min ( )2 1 3� (with � �� min

2 ), is related to

the observation that the biased estimate of redun-
dant/insensitive parameters strongly depends on the
Hoerl factor.13,14 As � increases as the information
that comes from experimental data is more and
more dumped, and the kj estimate is more and more
independent on such information. In fact, this
model intrinsic poor-conditioning reveals the inca-
pacity to assert kj and to extract information in the
direction of Xj from the available data.

When elimination of low-sensitive/low-estima-
ble parameters kj is not desirable, the alternative is
to fix these parameters to some apriori values (i.e.
the so-called principal component regression
PCR8,13,15,16). PCR identifies low-significant param-
eters corresponding to small eigenvalues of the S S

T

matrix (
 
j max < threshold). By reducing the esti-
mation vector-size, the estimate dispersion is dimin-

ished, but it also becomes biased and more and
more independent on the data.

Species lumping. Elimination, or species
lumping in a kinetic model is performed when there
is insufficient information to characterize the dy-
namics of all compounds, or when by-products and
intermediate separate prediction is not crucial for
the process analysis. In other terms, the reduced re-
action scheme must not contain redundant species,
while the information is condensed in a smaller set
including groups of species represented as single
variables. Some techniques perform simple mani-
pulations of differential model equations by re-
ducing the set-size and by replacing some indivi-
dual species with convenient lumps.6 When chain
reactions include at least one equilibrium step, a
pre-equilibrium assumption can reduce the parame-
ter vector size.17 One of the most used methods to
reduce the species vector-size is application of the
quasi-steady-state approximation QSSA.4 Assum-
ing quasi-negligible reaction rates for some (low
observable) intermediates, their elimination from
the model is realised based on small values for the
product of target species lifetime (LT Ji ii�	1 )
and their production rate ri (where the Jacobian ele-
ments are J f cik i k�� �( , )c k ).18 The model simpli-
fication cost is the introduction of a corresponding
prediction error �ci (which includes an instanta-
neous error �c t ri i ii

s( )� J and contributions from

other QSSA in the same model).
Another variant is based on the sensitivity

analysis of reaction rates vs. individual species. Re-
dundant species i are detected based on a small

global sensitivity index, B s ti im
m
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over all reactions, s t r cim m i( ) ln( ) ln( ),�� � by in-
cluding all direct and indirect effects.4,7

If lumping functions h (linear or non-linear)
can be established in a systematic and coherent
way, links between the species and parameters of
the extended and reduced models can be used
to interpret low-observable/low-estimable extended
models from using apparent/identifiable kinetics.
Necessary and sufficient conditions for an exact lin-
ear lumping of linearizable kinetic models have
been establish:19–22
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These conditions require that Mf(c) is a func-
tion of � ,c and that an inverse (or a generalised in-
verse) of M exists, because c M c� 


�. The lumping
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rule consists of finding a suitable lumping matrix
M, of a chosen dimension, and its inverse.

A systematic approach to determine the lump-
ing matrix M is based on a suitable decomposition
of JT and on the invariant subspaces of the original
system.20 The exact linear lumping matrix M can be
constructed from the eigenvectors of the Jacobian
JT (i.e. X x� [ ]j from J X X

T � 
 ), because any

subspace spanned by a subset of the eigenvectors
is a JT invariant. As a consequence, [span{0},
span{x1},…] gives a 1-dimensional lumping matrix
M; [span{x x1 2, }, span{x x2 3, },…] gives a 2-di-

mensional lumping matrix M with rows formed
with the X-columns, etc. Then, the lumping matri-
ces of different dimensions can be simply formed
by taking the columns of X, or any linear combina-
tion of them. In the exact lumping, the eigenvalues
of the reduced system JT represent a subset of the
eigenvalues of the full JT. In the approximate lump-
ing, there are several accepted transformation and
model prediction errors.

Concerning the nonlinear lumping of species,
there is any general rule to derive the link functions
h because JT(c) is not a constant matrix in general.
As a consequence, JT conversion into a canonical
form to find invariant subspaces is not a simple
task, even if necessary and sufficient conditions for
nonlinear lumping have been already assigned.4,23

Other lumping rules, based on Markov chain
theory, stochastic/entropy measures of the kinetic
process, and/or fuzzy information on species simi-
larities have been reported.24

A special strategy to apply the lumping rules
refers to the analysis of the reaction time-scales.4,17

The method of ‘time-scale separation’ starts from
the observation that lacks in chemical system
observability and in an efficiently modelling comes
from the large range of time-scales of complex
mechanisms. Intermediate species of small concen-
trations may have relaxation times up to ten orders
of magnitude less than stable species, leading to
stiff systems. This is also the case of cell biochemi-
cal systems where small amount of intermediates
are responsible for quick adjustment of the regula-
tory and synthesis path efficiency. Moreover, the
osmotic equilibrium with the extra-cellular medium
and the cell energetic ‘effort’ to produce a large
number of metabolic intermediates impose low con-
centration levels for enzymes and intermediates com-
paratively to substrates, metabolites, or key-pro-
ducts. A common measure of the relaxation process
is the characteristic time of intermediate species,
defined from the original system (1) Jacobian ma-
trix:17
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The very fast time-scales are usually associated
with the local equilibrium processes (in the reaction
coordinates). Often, by assuming local equilibriums
fulfilled, it is possible to decouple these processes
from the whole mechanism and to reduce the model
size and stiffness. This time-scale separation allows
identification of a ‘slow manifold’ from the large
gap in the eigenvalues of the liniarized system Jaco-
bian J. The slow manifold describes the long-term
system behaviour once the fast modes (i.e. eigen-
vectors of J corresponding to large 
i) have died
away. A �min threshold (of ca. 1s in cell systems17) is
usually used to separate species subjected to QSSA.
Other model reduction variants, such as singular
perturbation method, slow manifold approach or
approximate lumping in systems with time-scale
separation can be applied to decouple fast pro-
cesses, and to investigate the low-dimensional,
quasi-invariant, inertial manifold.4 A better and
slow/fast manifold separation and detection of pos-
sible inversions during the system evolution to-
wards the equilibrium points/stable limit cycle have
been reported recently.51–53 The variable time-scale
hierarchy is proved to depend not only on the
model structure and its parameters, but also on the
process operating conditions (system environment)
and operating time. The system global properties
are determinant, determining the structure of slow
manifolds and prevailing over the local system be-
haviour.

Application of lumping methods to stiff cellu-
lar kinetic systems, such as QSSA, pre-equilibrium
assumptions, model quasi-linearizations/modal ana-
lysis17 must be made with caution, especially when
modelling fast dynamic metabolic steps, regulatory
functions, system response to dynamic perturba-
tions or cell signalling processes for which the
lumped model structure is partly known. Impor-
tance of individual fast equilibriums and intermedi-
ates has to be separately checked, and approximate
lumping in system variables has to be based on
slow sub-spaces and lumping of some intermediates
that lead to an acceptable loss of information about
the system dynamics.

The wide-separation of time constants in cell
systems is called time hierarchy. Hierarchic organi-
sation (structural, functional, and temporal) is a
characteristic of the living matter in general. Only
fast and slow modes are of interest, while the very
slow processes are neglected or treated as parame-
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ters (such as the external nutrient or metabolite evo-
lution). Aggregate pools (combining fast reactions)
are used in dynamic models in a way that they are
produced and consumed only by irreversible reac-
tions.17 Besides, application of lumping rules to
metabolic processes must also account for physical
significance, species interactions, and systemic pro-
perties of the metabolic pathway. The only separa-
tion of components and reactions based on the
time-constant scale (as in the modal analysis of the
J matrix case) has been proved to be insufficient.

Lumped GRN models

A large variety of lumped dynamic models
have been developed to represent various complex
cell processes.1,34 A worthy route to develop re-
duced models is to base the analysis on the con-
cepts of ‘reverse engineering’ and ‘integrative un-
derstanding’ of the cell system.34,35 Such a rule al-
lows disassembling the whole system in parts
(modules) and then, by performing tests and suit-
able numerical/sensitivity analysis, to define rules
that allow recreation of the whole and its character-
istics, reproducing the real system. Such an ap-
proach, combined with derivation of lumped mod-
ules, allows reducing the model complexity by re-
lating the cell response to certain perturbations to
the response of few inner regulatory loops instead
of the response of thousands of gene expression and
metabolic circuits.

One remarkable application of the reverse en-
gineering and lumping techniques is the modular
construction of GRN models. Such dynamic models
(Boolean, continuous, or stochastic), of adjustable
size in accordance to the available experimental in-
formation, are used ‘to divide’ the complex gene
circuits in sub-systems (modules) of a more tracta-
ble size. By representing the transcriptional mecha-
nism and gene interactions, the architecture of the
cell regulatory network is related to the physiologi-
cal characteristics of the organism.34,38 Semi-auton-
omous lumped modules are elaborated for repre-
senting various regulatory units used in protein syn-
thesis, and then linked to efficiently cope with cell
perturbations, and to ensure an equilibrated growth
during the cell cycle, with an optimised resource
consumption (substrate, metabolic energy). Be-
sides, the gene expression multi-cascade control
presents a monotonous response that implies an in-
trinsic system modularity.38 This approach allows
reduction of the analysis complexity by investi-
gating individual modules, and then their relation to
the holistic cell properties.

Due to the large size of the identification prob-
lem and the time-related data type, co-regulated

genes are clustered together, and (un-)structured
model is derived. In the structured alternative,35 a
three-level control is defined for subcellular struc-
ture, nuclear connectivity and dynamic interactions
by the standard kinetic model:

d

d g

x
g u x

t
t t p� ( ( ), ( ), ), (in nucleus)

(8)

u h x v( ) ( ( ), ( ), ),t t t p� h (in sub-cellular units)

[where v = vector of external variables (stimuli);
x = state vector (usually species concentrations,
mRNA-levels); u = gene transcription factors (TFs);
p = model parameters; t = time]. Due to the GRN
system complexity [pg ~ O(103–104), number of
states and p pg t� parameters; pt = number of TFs;
pt ~ O(103)] and due to few available data, modular
approach is used as a valuable modelling technique
in various lumping alternatives: gene clustering,
minimum number of gene interactions, structure re-
duction based on various system constraints (stabil-
ity, sensitivity, multiplicity).34,35

A potential application of lumped modular
GRN models is the so-called ‘genetic circuit engi-
neering’, by which simulation of gene expression is
used to in-silico design organisms that possess spe-
cific and desired functions.36,37 By inserting the new
GRNs into organisms, one can create a large variety
of mini-functions/tasks (or desired ‘motifs’) in re-
sponse to external stimuli. The induced functions in
gene circuits are diverse, such as: switches (de-
cision-making branch points between on/off states
according to the presence of inducers), oscillators
(cell systems evolving among two or several
quasi-steady-states), signal / external stimuli ampli-
fiers, amplitude filters, genetic ‘memory’ storage.
The genetic components may be considered as
‘building blocks’ because they can be extracted,
replicated, altered, and spliced into new biological
organisms.

By combining the induced motifs in modified
cells one can create potent applications in industrial
and medical fields, e.g. the production of bio-
sensors used in medicine or for environmental engi-
neering applications. The design of modular GRN
construction must present some characteristics:37 a
tight control of gene expression (i.e. low-expression
in the absence of inducers and accelerated expres-
sion in the presence of specific external signals); a
quick dynamic response and high sensitivity to spe-
cific inducers; gene circuit robustness (low sensiti-
vity) vs. undesired inducers (external noise).

As an example, Kaznessis36,37 designed a bi-
stable switch genetic circuit, by using two gene
modules extracted from the lac operon of E. coli.
The transcriptional regulation is modelled by using
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a stochastic approach accounting for 40 reactions
and 27 species (reduced model) or 70 reactions and
50 species (extended model). Such a regulatory
scheme (Fig. 1), including dimeric repressors (RR)
and mutual repression following the presence in ex-
cess of one of the activating inducers (I), can be il-
lustrated by means of the conventional representa-
tion of Yang et al.26 and Maria1 (see below para-
graph). Several lumped alternatives are possible for
the two linked modules: simple mutual repression
of the gene expression, G1(R2R2)2 + G2(R1R1)2
(G = gene; R = repressor); combined self- and mu-
tual-repression, G1(R2R2)n(R1)m + G2(R1R1)n(R2)m
(with n = 1–4; m = 1–2). The advantage of such a
modular approach is the possibility to adapt the
model size to the available information.

When linking modules, various system proper-
ties have to be ensured in terms of metabolic effi-
ciency (minimum energy and substrate consump-
tion), individual or associative component functions
of components, hierarchic organization, system ho-
meostasis, equilibrated cell growth, minimum inter-
mediate levels, etc. Several linking rules have been
advanced such as:1,27 linking reactions between
modules must be set slower comparatively to the
module core reactions; cooperative/mutual catalysis
scheme must avoid internal competition among
components displaying similar functions (referring
to the same substrate or synthesis reactions); indi-
vidualized functions must be set to the components
into the cell; intermediate species levels and
allosteric regulation loops must be adjusted accord-
ingly to the GRN size; use variable cell-volume en-
vironment must be considered for an adequate rep-
resentation of the secondary connectivity effects
(cell ‘ballast’ and ‘inertia’). According to the inter-
mediate role and specific synthesis scheme, tempo-
ral hierarchy and event succession into the cell can
also be accounted for. In such large GRN models,
unconventional lumping rules are based on a modu-
lar representation combined with a sensitivity anal-
ysis to relate the GRN holistic properties to the
structure, function and efficiency of certain indivi-
dual modules to cope with perturbations.1,39

The difficulty to precise the very large number
of parameters in complex GRNs leads to inclusion
of lumped unstructured representations of rate ex-
pressions of power-law (S-system)40,41 or hyperbolic
type,42 explicitly accounting for the activator/re-
pressors influence on the individual operon activity.
Even if resulted fractional orders of reactions pro-
duce a biased representation of the real process,
promising practical implementations are reported,
being able to simulate cell system multi-stability,
bifurcations, oscillatory behaviour, and hyster-
esis.38,41 Various criteria to define the modular sys-
tem functional effectiveness have been defined (in
terms of stability, responsiveness, selectivity, ro-
bustness, efficiency)43 while multi-objective criteria
allow identification and optimization of GRNs (in
terms of gene connectivity, stability, redundancy,
robustness/low sensitivity vs. external noise and
high regulatory performance/response rate and
overshoot).1,44,45 Alternative lumped modular GRN
structures are discriminated based on the system
constraints, experimental observation, physical
meaning of lumped components and reactions.45

Lumped modular approach is also a common
approach in developing topological models for rep-
resenting GRN and metabolic networks. Thus, met-
abolic reaction modules are identified based on the
topological measures characterising the complex re-
action pathway graph: geodesic distance, graph ec-
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F i g . 1 – The bistable switch circuit of two gene regulatory
lumped modules designed by Salis & Kaznessis36,37 (up) in the
conventional representation of Yang et al.26 and Maria1

(down). Notations: P = promoter or protein, G = gene; O =
operators; I = inducer, R = repressor.



centricity, graph diameter (larger distance between
any two vertices), node centrality, robustness ca-
pacity, fragility vs. removal of certain nodes, and
modularity coefficient (i.e. the quality of the path
decomposition).46 In such a manner, efficient rules
to decompose metabolic network into functional
modules, based on the global connectivity indices,
have been reported.47 The same rules have been
successfully applied to analyse the hierarchical
structure of the GRN, for instance in E. coli48 or
yeast,49 pointing-out that most of the gene expres-
sions are regulated by two or more interacting feed
forwards loops or by even more complicated GRN
motifs together with TFs. The GRN presents a
multi-layer hierarchical structure inferring global
regulators with network motifs.

Case study 1: Linked regulatory modules
used to simulate protein synthesis

Protein synthesis regulation in living cells is a
very complex process ensuring a balanced and flex-
ible cell growth under a wide range of environmen-
tal conditions. The process is only partially under-
stood, but a multi-cascade control with negative
feedback loops seem to be the key elements of gene
expression (review of Maria1). The activity of en-
zymes that catalyse the synthesis is allosterically
regulated by means of positive or negative
‘effector’ molecules, via fast reversible ‘buffering’
reactions, while a cooperative binding of regulation
factors in a structured cascade regulation scheme
amplify the effect of a change/signal from inner cell
or from environment. Inter-connected proteins and
proteic complexes act as ‘nodes’ of a regulatory
network that provides a balanced response to per-
turbations, promotes a catalytically efficient se-
quence of reactions, ‘channels intermediate metabo-
lites’, and ensures vital basic functions of the cell
(as permease, polymerase, metabolase). Hierarchi-
cally structured regulatory networks adjust the met-
abolic synthesis to maintain homeostasis, i.e. the
quasi-invariance of key species concentrations (en-
zymes, proteins, metabolites), despite external per-
turbations (in nutrients and metabolites) or internal
cell changes. Feedback in gene transcription, meta-
bolic pathways, signal transduction and other spe-
cies interactions complete the cell regulatory mech-
anisms.

Among various alternatives used to model the
complex protein synthesis and GRNs, the modular
approach mentioned in the previous paragraph al-
lows reducing the model complexity by connecting
the GRN response to perturbations with the regula-
tory loops inside the sub-units (modules) and link-
ing elements (reaction, intermediates). Such mod-

ules are linked in chains, thus forming hierarchized
regulatory networks able to efficiently cope with
cell perturbations and to ensure the equilibrated
growth during the cell cycle.25,26 This approach
presents several advantages, allowing:1 i) the analy-
sis of individual modules (of limited types) and
check for their regulatory efficiency in conditions
that mimic the stationary and perturbed cell growth;
ii) investigation of module linking rules used to
build-up GRNs of optimised efficiency that ensure
system homeostasis and holistic properties (cell
functions) with a minimum consumption of meta-
bolic energy; iii) elaboration of whole-cell models,
accounting for separate cell sub-units and metabolic
functional modules, organized in structured simu-
lation platforms.

Cell regulatory modules are based on semi-au-
tonomous groups of reactions and species, i.e. func-
tional units generating the identifiable cell function.
Inherently, any model representation involves a
large number of simplifications and lumps in spe-
cies and reactions. In this category, several types of
mechanistic modules have been advanced for repre-
senting regulation of the gene expression pro-
cess.1,26–28 At a generic level, a regulatory module
must include the target protein (P) and its encoding
gene (G), the metabolite lumps involved in their
synthesis (MetP, MetG), regulatory effectors (R),
and other intermediates. Different degrees of sim-
plification are assumed, but the species and reaction
lumps must ensure the transcriptional and transla-
tional control of the P synthesis, a certain regula-
tory effectiveness vs. (internal & external) station-
ary and dynamic perturbations, minimum interme-
diate levels, system homeostasis, and proteic func-
tions. Optimization of such a regulator modules is
limited by the model structure. To manipulate easier
various types of modules, Yang et al.26 propose a
nomenclature of type [[ ( ) ; ; ( ) ],L R n L R ni i i1 1 1 � in-
cluding assembled regulatory units L R ni i i( ) . One
unit i is formed by the component Li (e.g. enzymes
or even genes G, P, M = mRNA, etc.) at which reg-
ulatory element acts, and ni = 0,1,2,… number of
‘effector’ species Ri (i.e. P, PP, PPPP, etc.) binding
the ‘catalyst’ Li of the regulated reaction. For in-
stance, in Fig. 2 the simplest G(P)1 module, de-
scribing regulation of the P/G pair synthesis, in-
cludes one binding step of ‘catalyst’ G with the
synthesis product P (which here play also the role
of ‘effector’). The intermediate species GP, pro-
duced by the rapid buffering reaction G + P � GP,
is inactive catalytically, while the mass conserva-

tion law is all time fulfilled, i.e. G Pi
i

( )
�

�
0

1

= con-

stant. As proved, the maximum regulatory effi-
ciency of the P-synthesis at steady-state (QSS, in-
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dex ‘s’) corresponds to [G]s/[G]total = 1/2, when the
maximum regulation sensitivity vs. perturbations in
[P]s is reached.27 Subsequent allosterically control
of G activity leading to inactive species [GPn], with
usually n �5, amplifies the regulatory efficiency
and performance index (P.I.) of the module, usually
with a 1.3–2 multiplicative factor for every new
added unit/buffering reaction. Such a representation
must also account for the protein concentration di-
minishment due to the cell-growth dilution effect,
but can also include the protein degradation by pro-
teolysis.

Among homeostatic regulatory modules, the
G(P)n units are less realistic but computationally at-
tractive when simulation of large systems are
required. The G(PP)n units represent better the
‘real’ regulatory loops in which multiple copies of
effectors bind to promoter site of the DNA. More-
over, the low-level of dimer PP, produced by rapid
reversible reactions, increases the system efficiency
at the expense of a low metabolic “effort”. Modules
of type [G(P)n;M(P)n�] (e.g. G(P)1;M(P)1 in Fig.
2), account for the two-step transcription/translation
cascade reactions, each of them controlled allosteri-
cally. The control in cascade amplifies the re-
sponse/stimuli ratio. Other regulatory modules, of
higher complexity, can also be approached (e.g.

G(PP)n;M(PP)n�, G(RR)n;M(RR)n�, etc.)
but the identification of parameters for
every module from the regulatory chain
leads to a power-law increase in the com-
putational effort.

When evaluating the regulatory effi-
ciency, beside the module complexity
(expressed as the number of involved
species ns and involved reactions nr), var-
ious quantitative measures have been
proposed in the literature:1 stationary reg-
ulation effectiveness vs. stationary per-
turbations of QSS; dynamic regulation
effectiveness vs. dynamic perturbations
of QSS; regulatory robustness; species
interconnectivity; QSS stability strength.
It is proved that regulatory performance
indices P.I. increase with the regulatory
scheme complexity (in the order G(P)n <
G(PP)n < G(P)n;M(P)n’ < …), and lin-
early increase with the number of
effectors in the allosteric control of the
catalyst activity at every cascade level.1

In order to exemplify application of
lumping rules to derive regulatory kinetic
modules and to investigate the lumping
effect on the module effectiveness, a vari-
able cell-volume model with continuous
variables has been adopted.1 The model
mass balance equations, conservation re-

lationships, and the isotonic osmolarity hypothesis
are presented in Table 1. The model parameters, i.e.
rate constants k and unobservable stationary con-
centrations ~c s, can be estimated from QSS mass
balance equations and by using non-conventional
estimators that optimise global cell regulatory prop-
erties, such as:1,44,45 maximum recovering rate after
a dynamic perturbation,26 smallest QSS sensitivity
to inner/external perturbations,28 stability strength
of QSS,28,50 oscillatory properties and system flexi-
bility.29,30 Maria1 proposes optimization of a mod-
ule P.I.-index to adjust ~c s of some intermediates un-
der restrictions of QSS mass balance (g c k( , )s �0),
catalyst conservation (active/inactive forms), iso-
tonic osmolarity and maximum regulator sensitivity
vs. perturbations (i.e. [L]active/[L]total =

1
2).27 Dissoci-

ation rate constants of catalytically inactive forms
in reversible buffering reactions have been adopted
at values much higher than the dilution rate (kdiss �
107 Ds).1,26

A hypothetical cell, similar to Escherichia coli,
has been considered in an equilibrated growth of
constant Log-growing rate Ds. Cell characteristics
and QSS species concentrations are presented in
Table 2. Environmental conditions are considered
constant over a cell cycle, with lumped nutrient
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F i g . 2 – Examples of lumped regulatory modules for protein P synthesis
(horizontal arrows indicate reactions; vertical arrows indicate catalytic ac-
tions; G = gene encoding P; M = mRNA; NutP, NutG = nutrients; MetP,
MetG = metabolites; GP, GPP, MP = catalytically inactive species; O =
DNA polymerase).
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T a b l e 1 – Variable cell-volume dynamic model and its basic hypotheses1
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Hypotheses:

– negligible inner-cell gradients;
– open cell system of uniform content;
– semi-permeable membrane, of negligible volume and resistance to nutrient diffusion, following the cell growing dynamics;
– constant osmotic pressure, ensuring the membrane integrity (�cyt = �env = constant);
– nutrient and overall environment concentration remain unchanged over a cell cycle;
– logarithmic growing rate of average Ds = ln(2)/tc; volume growth of V V D t� oe s ;
– homeostatic stationary growth of (dcj/d/t)s = gj(cs,k) = 0;
– perturbations in cell volume are induced by variations in species copynumbers under the isotonic osmolarity constraint:
V V n nj jperturb perturb� ( ) ( ).� �

T a b l e 2 – Nominal stationary conditions (index ‘s’) for the considered E. coli cell

Symbol Significance Value

vcyt,o initial cell (cytoplasma) volume 1.66 · 10–15 L

tc cell cycle period 100 min

Ds cell-volume stationary logarithmic growing rate ln(2)/100 min–1

cNutG,s nutrient for G-production (concentration in the environment) 3 · 106 nmol L–1

cNutP,s nutrient for P production (concentration in the environment) 3 · 108 nmol L–1

�jcMetPj,s
overall metabolite concentration for P-production; ( )

,
c

jMetP per modules
� (�jcMetPj,s

)/(no. of modules) 3 · 108 nmol L–1

�jcMetGj,s

overall metabolite concentration for G production (derived from the restriction:

c cj
j

j
j

, ,cyt

all

env

all

� �� ); ( )
,

c
jMetG per modules

� (�jcMetGj,s
)/(no. of modules) ~106 nmol L–1

cP1,s, c01,s protein P1 or lump O1 concentration (in module 1) 103 nmol L–1

cP2,s protein P2 concentration (in module 2) 102 nmol L–1

cG1s, cG2s gene G1 (in module 1) or G2 (in module 2) concentration 1
2 nmol L–1

cM1s, cM2s intermediate M1 (in module 1) or M2 (in module 2) concentration 1
2 nmol L–1

cGjPj,s, cGjPjPj,s concentration of catalytically inactive forms of Gj (in module j) 1
2 or 1

4 nmol L–1

cM1P1,s, cM2P2,s concentration of catalytically inactive forms of M1 (in module 1) or M2 (in module 2) 1
2 nmol L–1

cP1P1,s, cP2P2,s concentration of active parts of P1 or P2 dimers in buffering reactions 0.01 nmol L–1



concentrations of cNutG,s = 3 · 106 nmol L–1, cNutP,s =
3 · 108 nmol L–1. Because only a few individual
species are accounted in the model, the cell ‘ballast’
and ‘inertial’ effect are mimicked by adopting high
levels for metabolite concentrations, i.e. �

j
c

jMetP s,
=

3 · 108 nmol L–1; �
j
c

jMetG s,
� 106 nmol L–1.

In the regulatory modules, fast reversible buff-
ering and oligomerization reactions are responsible
for fast adjustment of the catalyst activity, interme-
diate levels, system optimization and its flexibility.
However, application of rigorous lumping rules
combined with model quasi-linearizations and
modal analysis for determining the system invariant
sub-spaces, QSSA applied to species with small re-
laxation times, assumptions of fast equilibrium or
pre-equilibrium reactions, all these conventional
model reduction strategies are not easy to be imple-
mented in the regulatory module cases due to the
systems high complexity. Besides, some intermedi-
ate species, of quickly adjustable low-concentra-
tions, cannot be eliminated from the mechanism
based on QSSA only when the module lumped
structure is not well defined, their production-con-
sumption rate being directly responsible for the dy-
namic and stationary regulatory characteristics,
synthesis path efficiency, but also for some meta-
bolic system global properties (such as an opti-
mised energetic balance when recovering from per-
turbed QSS). When lumped models of adjustable
complexity are checked, the intermediate optimal
levels result not from simple application of QSSA
but rather from conferring optimal characteristics to
the regulatory chain of the metabolic path. For in-
stance, one of the key elements in quick control of
the catalyst L activity is fulfilment at QSS of the
condition [L]active/[L]total =

1
2 and of a large sensitiv-

ity of this ratio vs. perturbations.27 Inactive forms
of the catalyst, of quickly adjustable levels, are
connected to the oligomeric intermediates and
effector species, of levels adjusted according to the
system global properties and to the proposed
lumping level.

Lumping in modelling the gene expression
must preserve the essential regulatory characteris-
tics even if an important loss of information on cer-
tain species and side-reactions dynamics is inher-
ent. Because the elementary reaction scheme and
stoichiometry are only partly known in cell regula-
tory schemes, application of species and reaction
lumping rules are rather based on the sensitivity of
the system P.I.s vs. module structure (i.e type and
number of effectors and cascade control levels) and
module interactions. Even if unknown (or unidenti-
fiable) parts of the mechanism are ignored and/or
included in the lumps, model reduction must pre-
serve an acceptable predictability for key-species
homeostatic levels, functions and cell systemic

properties (structural, functional, and temporal
hierarchy).

The gene expression can be represented by reg-
ulatory modules of variate complexity according to
the accepted trade-off between the model simplic-
ity, its estimability (vs. available information), com-
puting tractability and predictive quality. Simplified
models are desired when simulating complex regu-
latory networks including hundreds or thousands of
protein synthesis modules, but the increase of bias
from the real process characteristics can lead to an
unsatisfactory representation of the regulatory prop-
erties of the network. To exemplify how the lump-
ing is related to the individual module P.I.s, the
analysis starts with a simplified representation of
the gene expression, of the form [G(P)1;M(P)1;P(O)0]
(see Fig. 2), i.e. including one buffering reaction for
every control level. Because only one module is
analysed in the hypothetical cell, the protein P (i.e.
the product) is assumed to perform several func-
tions: the effector that dynamically adjust the cata-
lysts activity (G,M); the catalyst for synthesis of a
lump species O (polymerase) responsible for encod-
ing gene synthesis; the permease that catalyses the
import of NutG and NutP from environment; the
metabolase that converts nutrients into metabolites
MetG and MetP. The result is that G and P synthe-
ses are mutually autocatalytic. When coupling sev-
eral modules in a regulatory chain, individual pro-
teins exhibit different or similar functions contribut-
ing to gene expression optimization in an intercon-
nected reaction schema. Otherwise, uncooperative
and non-interacting module linking may lead to a
degenerated (not-viable) cell system.1

Even if the chosen regulatory module is of
very simplified form, successive application of a
lumping rule can lead to even more simplified mod-
ular structures, such as (Figure 2): [G(P)1;M(P)1]
(with P becoming polymerase); [G(PP)1] (with no
cascade control, but with a dimeric effector);
[G(P)2] (with P effector and two buffering reac-
tions); [G(P)1] (with P effector and one buffering
reaction). To determine the lumping effect on mod-
ule P.I., several effectiveness indices have been
evaluated under a specified QSS of Table 2, for a
hypothetical cell similar to E. coli (see also the re-
view on P.I.s of Maria1):

– dynamic efficiency vs. individual species, i.e.
the recovering time-constant �j necessary to species
j to return to its stationary cjs after a “standard” dy-
namic (impulse-like) perturbation; evaluation is
made by simulating the cj(t) recovering path until a
1% cjs tolerance is reached after a �10% cP1,s im-
pulse perturbation;

– overall dynamic efficiency of the module, i.e.
the average of species recovering times, AVG(�j);
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– the standard deviation of species recovering
times, i.e. STD(�j), related to the overall species
interconnectivity and mutual assistance/synchroni-
sation during the QSS recover;

– stationary efficiency vs. individual species, i.e.
the species cjs absolute sensitivity to cNutP,s changes
in the environment [ ( ) ];S c cj

jNutP NutP s� � � this

P.I., related to the module efficiency to cope with
stationary perturbations, is evaluated by solving the
stationary set of sensitivity equations derived from
differentiation of QSS mass balances:1

[ ] [ ] [ ] .� � � � � �g c c gs NutP s NutP sc c
 �0 (9)

By comparing the dynamic and stationary P.I.s
of each module of Fig. 2, it appears that an increase
in the module complexity leads to a diminishment
of �P1 (Fig. 3 and 6), revealing better regulatory ef-
ficiency of the cascade control for the P-synthesis.
When only an individual module is analysed, is
more difficult to ensure species connectivity and
their quick recovering in a non-scattered (mu-
tual-assisted) way. Thus, by keeping only two buff-
ering reactions, the overall dynamic-P.I. declines
with the increase of ns due to the increase in the
AVG(�j) and STD(�j). Oppositely, the stationary-P.I.

seems to be less affected by the increase in module
complexity, as revealed by the quasi-uniform s jNutP
in Fig. 6.

In fact, the superiority of complex vs. lumped
regulatory schemes concerning realized P.I.s can be
proved when linking P-synthesis modules in regula-
tory chains, placed in a variable cell volume to
which all species contribute. The link strategy en-
sures the whole system homeostasis, optimum regu-
latory properties of the whole chain, and distinct
functions for each protein in the cell (see the link-
ing rules presented in the ‘Lumped GRN models’
paragraph). The cooperative link assumes that each
protein performs a certain function in the profit of
one or several modules, avoiding internal competi-
tion among components displaying similar func-
tions. For instance, in a two-module system P1 is a
permease and metabolase, while P2 is a polymer-
ase. In a hypothetic three-module chain,1 P1 and P3
are permeases and metabolases for respectively
NutG and NutP import, while P2 is kept as a poly-
merase. The same rule can be applied to every
added module, leading to a large modular chain to
be included in the cell regulatory network. The su-
periority of complex regulatory modules, that in-
cludes efficient regulatory units and a cascade con-
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F i g . 3 – Comparative cell components recover after a dynamic (impulse) perturbation in [P]s for modules
G(P)1 (curves 1), G(P)2 (curves 2), G(PP)1 (curves 3), G(P)1;M(P)1 (curves 4), G(P)1;M(P)1;P(O)0
(curves 5). The –10 % impulse perturbation in [P]s = 1000 nmol L–1 was applied at t = 0.



trol, can be simply exemplified by comparing two
linked modules [G1(P1P1)1 + G2(P2P2)1] vs. the
[G1(P1)1 + G2(P2)1] system. As proved by Maria1,
the use of dimeric PP as transcription factors in-
stead of simple P is closer to real situation and im-
proves P.I.s due to their adjustable low-levels in
buffering reactions. The result is improvement in
�P1 and STD(�j) with 15%, and in AVG(�j) with
26 %.1 Similarly, the cooperative link of two mod-
ules [G1(P1)2 + G2(P2)2], compared to the link
[G1(P1P1)1 + G2(P2P2)1] proves that, in spite of
two buffering reactions in the G(P)2 unit, the use of
PP dimmers in one buffering reaction unit G(PP)1
leads to better dynamic-P.I., i.e. lower �P1 AVG(�j)

and STD(�j)(see results from Fig. 4 and 7). The sta-
tionary-P.I. (S j

NutP) are practically unchanged, while

the module complexity is comparable (ns = 12 and
nr = 8 for both systems). The low-concentrations of
the oligomeric effectors (of type PP, PPP, …) are
determined not by a QSSA but from optimising the
global properties of the overall modular regulatory
chain.

When the cooperative link is realized by us-
ing more complex structures, as for instance
[G1(P1)1;M1(P1)1 + G2(P2)1;M2(P2)1] account-
ing for a cascade control (ns = 14), an improvement
in P.I.s is expected. Indeed, by comparing this as-
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F i g . 4 – (Up) Examples of two-coupled regulatory modules. (Down) Cell components recover after a –10 %
impulse perturbation in [P1]s = 1000 nmol L–1 applied at t = 0 for coupled [G1(P1)2] + [G2(P2)2]
(curves 1) comparatively to the coupled [G1(P1P1)1] + [G2(P2P2)1] (curves 2).



sembly to the [G1(P1)1 + G2(P2)1] system (ns =
10) in Figures 5 and 8, it appears that, in spite of a
considerable increase in model complexity, �j is
lower for all species (except P1), the species inter-
connectivity index STD(�j) is better (i.e. a low
value), while QSS-resistance to external perturba-
tions are practically unchanged (i.e. the S j

NutP sen-
sitivities). The identified rate constants of the
lumped models are larger than of the extended ones
due to the lumped parallel reactions. For instance,
AVG(k) = 3.47 · 10–6 and STD(k) = 3.45 · 10–6 for

module G(P)1, are larger comparatively to AVG(k)
= 2.31 · 10–6 and STD(k) = 3.26 · 10–6 for module
G(P)1;M(P)1;P(O)0 (not accounting for fast buffer-
ing reactions). Complex regulatory schemes dem-
onstrate superior P.I.s in spite of involvement of
more species and reactions. The increased difficulty
in synchronizing species response during recover-
ing after a perturbation in QSS is compensated by
an increased mutual assistance, and increased sys-
tem flexibility. These are offered by a larger num-
ber of intermediates of quickly adjustable levels, by
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F i g . 5 – (Up) Examples of two-coupled regulatory modules. (Down) Cell components recover after a –10 %
impulse perturbation in [P1]s = 1000 nmol l–1 applied at t = 0 for coupled [G1(P1)1] + [G2(P2)1]
(curves 1) comparatively to the coupled [G1(P1)1;M1(P1)1] + [G2(P2)1;M2(P2)1] (curves 2).



a larger number of effectors at several control levels
disposed in cascade, and by an increased number of
buffering reactions in the allosteric control of the
catalyst activity.1,26,28

The model reduction cost in representing cell
regulatory modules is a loss of information on cer-
tain intermediates and side (buffering) reactions,
but also an altered capability to represent the ‘real’
properties of the modular chain under stationary or
dynamic perturbations. By re-allocating species
functions to a fewer number of components in the
module, a reduced possibility to include some inter-
mediates exhibits a lower system flexibility, robust-
ness, and possibility to represent the cell-content in-
ertial effect in “smoothing” perturbations from the
environment (see discussion of Maria1). Conse-
quently, a combination of sensitivity analysis of the
complex GRN properties vs. the characteristics and
size of lumped modules can successfully replace

the classical theoretical lumping rule, difficult to be
applied to large cell dynamic models.

Case study 2: Lumped dynamic models
for drug release in human plasma

Modern drugs are designed to realize a “pro-
grammed” release of active principles (ligands) in
human plasma from a macromolecular support
structure, leading to a long-lasting active-drug con-
centration to the receptor. The successive drug-ligand
release process involves chain reactions but also
parallel (isomerisation) processes, all making the
whole choreography to be complex and difficult to
model. However, an increased knowledge of the in-
trinsic reactions and establishment of direct rela-
tions between the elementary kinetics and the
drug-ligand/macromolecular-support structure are
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F i g . 6 – Comparative species recovering times (�j, min) and
stationary sensitivities (sNutP

j ) for individual modules: G(P)1
(ns = 5), G(P)2 (ns = 6), G(PP)1 (ns = 6), G(P)1;M(P)1 (ns = 7),
G(P)1;M(P)1;P(O)0 (ns = 8) [s c cNutP

j
j NutP s� ( )� � = species j

stationary level sensitivity to NutP; �j = species j recovering
time to QSS, with a 1% tolerance, after a �10% cPI,s impulse
perturbation; AVG= average of �j (min); STD = standard devi-
ation of �j (min); sNutP

j < 0 for all represented species; �MetG =
�MetP � 0; species PP and O are not included in the bar-plots].

F i g . 7 – Comparative species recovering times (�j, min)
and stationary sensitivities (sNutP

j ) for coupled modules
G1(P1)2+G2(P2)2 (ns = 12) and G1(P1P1)1+G2(P2P2)1
(ns = 12) [s c cNutP

j
j NutP s� ( )� � = species j stationary level sen-

sitivity to NutP; �j = species j recovering time to QSS, with a
1% tolerance, after a �10% cPI,s impulse perturbation; AVG =
average of �j (min); STD = standard deviation of �j (min); sNutP

j

< 0 for all represented species; �MetG = �MetP � 0; species P1P1
and P2P2 are not included in the bar-plots].



essential aspects to better “design” the release ki-
netics according to a desired scenario. On the other
hand, an apparent (observable and identifiable) ki-
netics, accounting for only few observed species
lumps is ineffective to reveal intrinsic effects. By
applying a suitable lumping analysis to an extended
reaction scheme, the links between apparent and in-
trinsic rate and equilibrium constants can be estab-
lished, revealing unobservable intrinsic characteris-
tics of the process.

To exemplify the lumping analysis, the
drug-release process studied by Zhang et al.31 and
analysed by Maria32 has been approached. The four
hydrophobic dansyl-ligand (L) groups, attached to
the support by disulphide bonds (-S-S-), are succes-
sively released from a macromolecular dendritic
support (based on melamine) in a reducing syn-
thetic medium (including a DTTr agent) that mim-
ics the human plasma conditions. The DTTr medi-
ates the thiol-disulphide exchange, leading to a free

thiol on the dendrimeric-support, a free drug-ligand
LSH, and the oxidized DTTo (Fig. 9). After each
ligand release, a more reduced dendrimer and more
hydrophobic environment will alter the release rate
of other ligands from the support. Experiments
have been repeated under variate environmental
conditions, by using various dendrimeric supports
and number of ligands, thus allowing evaluation of
the drug release comparative effectiveness.32

The ligand-release process depends on a large
number of variables, including a drug structure,
ligand and support nature, environmental character-
istics and release conditions (pH, reducing agent
properties). In order to experimentally identify the
release intermediates for various drug-supports, a
low-reducing medium has been checked, leading to
a longer release time (ca. 6000–7200 min). Starting
from a four-ligands dendritic structure (denoted by
A in Fig. 9), a large number of stereoisomers have
been identified during the release process, including
3, 2 or 1 SL-groups attached to the support-mole-
cule. Even if cyclic isomers have not been ob-
served, it is quite impossible to record consistent ki-
netic data on each isomer dynamics during the pro-
cess. As a consequence, a reduced model account-
ing for only four reversible reactions and five
lumps ( � , � , � , � , � ,A B C D E Fig. 9) has been proposed and
the apparent forward and reverse reaction rates
(kij,kji; i,j = � �A E� ) together with the apparent equi-
librium constants (Kij, i,j = � �A E� ) have been esti-
mated (Fig. 10). It is to observe that apparent equi-
librium constants present quasi-uniform values,
with a slight tendency to increase as the dendri-
meric support contains less coupled ligands. Such
an unexpected result is in contradiction with inde-
pendent observations that release rate is faster as
less ligands are attached to the support. Such a re-
sult indicates that the apparent model (not account-
ing for the support free surface) is imperfect and
can not be used to develop quantitative relation-
ships between support-ligand structure and intrinsic
release kinetics.

To decipher the real mechanism, the lumping
analysis starts from a proposed extended (intrinsic)
reaction path involving 16 conformational isomeric
intermediates: A, B1, B2, B3, B4, C1, C2, C3, C4,
C5, C6, D1, D2, D3, D4, E (Fig. 9). Assuming only
pseudo-first order reactions (with quasi-constant
[DTTr], [DTTo], [LSH]), the extended schema stoi-
chiometric matrix accounts for 64 reactions and 16
species, resulted from including all reversible release
reactions among all dendritic isomers. The stoichio-
metric analysis identifies 15 independent reactions,
15 independent species, and two steady-state inva-
riant relationships of molecular species conserva-
tion.32
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F i g . 8 – Comparative species recovering times (�j, min) and
stationary sensitivities (sNutP

j ) for coupled modules G1(P1)1+G2(P2)1
(ns = 10) and G1(P1)1;M1(P1)1+G2(P2)1;M2(P2)1 (ns = 14)
[s c cNutP

j
j NutP s� ( )� � = species j stationary level sensitivity to

NutP; �j = species j recovering time to QSS, with a 1% toler-
ance, after a � 10% cPI,s impulse perturbation; AVG= average
of �j, (min); STD= standard deviation of �j, (min); sNutP

j < 0 for
all represented species; �MetG = �MetP � 0].



By applying the exact model lumping method-
ology, described below eq. (6), the invariant
sub-spaces of the system are checked among JT eigen-
vectors corresponding to the smallest JT eigen-
values. Species lumps are also selected based on
their physical significance and observability. For
simplification, one considers quasi-equal rate con-
stants for synthesis of stereoisomers with the same
number of ligands (i.e. kABi = kAB, kBiA = kBA, kBiCj =
kBC, kCjBi = kCB, kCjD1 = kCD, kD1Cj = kDC, kD1E = kDE,
kED1 = kED), and all rate constants in JT are set to 1
(because the “intrinsic” rate constants are àpriori
unknown). Such a strategy leads to build-up only
five observable lumps: � ;A A� � ;B B B B B� 
 
 
1 2 3 4
�C�C1+C2+C3+C4+C5+C6; �D�D1+D2+D3+D4;
�E�E. The lumping matrix M5·16 allows to reduce
the reaction system Jacobian matrix JT from a
[16·16] size to �J MJ M

T T� 
 of dimension [5·5].
The exact lumping is check by the equality of JT

and �J
T eigenvalues.

The next analysis step consists of determining
quantitative link-relations among kinetic terms of
the extended and reduced models, by comparing the
analytical expressions of the �J

T elements with the
identified reduced Jacobian of the apparent rate
model. The identified links are:

k k� � ;
AB AB� 4 k k� � ;

BA BA�

K k k K� � � � � � ;
AB AB BA AB� � 4

k k� � ;
BC BC�3 k k� � ;

CB CB�2

K k k K� � � � � � ;
BC BC CB BC� �3 2

(10)
k k� � ;
CD CD�2 k k� � ;

DC DC�3

K k k K� � � � � � ;
CD CD DC CD� �2 3

k k� � ;
DE DE� k k� � ;

ED ED� 4

K k k K� � � � � � .
DE DE ED DE� �1 4

By comparing the obtained rate constants in
Fig. 10, it is to observe that apparent ones are
larger, by including all parallel reversible reactions
of each release step and the loss in system diversity
(and entropy). On the other hand, the intrinsic equi-
librium constants for every release step are much
smaller than the lumped equilibrium constants at
the beginning of the process (the first and second
drug-ligand release; Fig. 10) and much larger at the
end of the process (the third and the fourth ligand
release from the dendrimeric support). Such a result
cannot be deduced from the experimental data di-
rectly, and only the numerical lumping analysis can
reveal how the successive release equilibriums are
favoured by the release progress. Such a conclusion
is important for the correct interpretation of the
drug ligand-macromolecule bond liability, correctly
suggesting that dansyl groups exchange faster as
the macromolecular architecture of the drug-sup-
port becomes less sterically hindered.31
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F i g . 9 – Chain reactions for successive ligand (L) release from a dendrimeric drug support structure in a reducing environment.
Kinetic schema accounts for all reversible release reactions for each dendritic stereoisomer (i.e. a total of 64 reactions
involving 16 species).32



As a conclusion, application of the lumping
analysis to reduce an extended kinetic model pres-
ents the advantage of derivation of lumping func-
tions, which connect the apparent (observable) cha-
racteristics of the reduced model to the ‘intrinsic’
(unobservable) properties. The loss of information
on steps and intermediates can be compensated if an
exact or approximate lumping matrix can be formu-
lated from the liniarized system Jacobian invariants.

Conclusions

Lumping rules are valuable tools to model
complex (bio)chemical reacting systems when pro-
cess low observability, identifiability and estima-
bility are present. Exemplification in the case of
modelling the protein synthesis regulatory dynam-
ics reveals how various lumping degrees can be in-
vestigated, with the aim of making the modular rep-
resentation more computationally tractable. How-
ever, a continuous model simplification, by replac-
ing species and reactions with few lumps, not only
leads to the loss of information on reaction interme-
diates, species functions, and side-reaction charac-
teristics, but also to diminishment of model predic-
tion capability on the modular chain regulatory
characteristics under stationary and dynamic pertur-
bations. An overadvanced model lumping for high
sensitive and fast cell processes is proved to have a
negative effect, leading to an unrealistic representa-
tion of regulatory P.I. and species inter-connectivi-
ties, to an altered/unsynchronized dynamic respon-
se to perturbations, and to a less flexible / adaptive
cell system.

Application of rigorous lumping rules, such as
QSSA, pre-equilibrium assumptions, model quasi-
-linearizations, invariant system sub-space identifi-
cation to model living cell systems is more difficult,
due to the analysed system high complexity, lack of
knowledge of the regulatory network, process ele-
mentary steps, species functions and inter-connec-
tivities. The lumping analysis is rather focused on
principal component and sensitivity analysis of in-
dividual modules and on the whole-model construc-
tion predictive properties (e.g. network regulatory
efficiency, flexibility, degree of inter-connectivity,
etc.). Application of lumping rules to metabolic
processes must account for physical significance,
species interactions and systemic properties of the
metabolic pathway, than to only separation of com-
ponents and reactions based on the time-constant
scale.

Importance of individual fast equilibriums and
intermediates has to be separately checked, and ap-
proximate lumping in system variables has to be
based on slow sub-spaces presenting the acceptable
loss of information about the system dynamics.
However, some intermediate species, of quickly ad-
justable low-concentrations, cannot be eliminated
by simple QSSA applied to lumped model of ad-
justable complexity, their optimal levels resulting
from dynamic and stationary optimal regulatory
characteristics, synthesis path efficiency, and some
global properties of the metabolic system. Model
reduction by including in lumps the unknown or
unidentifiable parts of the metabolic mechanism,
must preserve an acceptable predictability for

370 G. MARIA, Application of Lumping Analysis in Modelling the Living Systems – …, Chem. Biochem. Eng. Q. 20 (4) 353–373 (2006)

F i g . 1 0 – Estimated apparent and intrinsic rate (k) and
equilibrium (K) constants for the successive drug release pro-
cess (units are in min and mmol L–1).



key-species homeostatic levels, functions, and cell
systemic properties (structural, functional, and
temporal hierarchy).

Application of a successive lumping strategy
starting from an extended model presents the ad-
vantage of better understanding of the intrinsic pro-
cess dynamics under continuous environmental
changes, of the importance of intermediate species
and steps, species inter-connectivities, structural
and functional hierarchy, multi-cascade control with
adjustable intermediate levels and multiple effectors
in feedback loops. In such a manner, a trade-off be-
tween reduced model simplicity and its predictive
quality can be better realized.

When the lumped model components are fully
observable, derivation of a reduced and identifiable
kinetic model from an extended reaction path, by
using a stoichiometric analysis, a lumping strategy,
and identifiable species lumps, is of high interest
both from theoretical and practical reasons. This is
exemplified for the case of modelling the “pro-
grammed” release of active drug-principles (ligands)
in human plasma from a macromolecular support.
The systematic approach leads to evaluate “intrin-
sic” constants from the estimated apparent rate con-
stants, allowing a deep interpretation of reaction steps,
thermodynamic limitations, and relations between
drug-support structure and release characteristics.

In general, derivation of relations between ap-
parent and extended model structures is of high in-
terest for a process correct interpretation and to
characterise relative importance of various reaction
steps. The apparent steps tend to compensate the
loss in system diversity introduced by the lumping
rule and cannot fully describe the real interactions
among reaction intermediates. Because the apparent
parameters (identified from experimental data)
present values smaller or larger than those corre-
sponding to elementary steps, physical meaning of
lumps can also play important role in choosing the
most suitable lumping route from the large number
offered by the theoretical analysis.

In conclusion, when large cell dynamic models
are developed, application of unconventional lump-
ing strategies are recommended by combining suit-
able system modularisation (in functional sub-units)
with application of the sensitivity analysis to relate
metabolic network holistic properties (hierarchic
organization and regulatory efficiency) to the indi-
vidual module properties. When reduced reaction
pathways are analysed, application of theoretical
(exact) lumping rules lead to the possibility to di-
rectly relate the apparent (observable) model pa-
rameters to the intrinsic process characteristics, thus
exhibiting a detailed and correct process inter-
pretation.
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N o m e n c l a t u r e

Bi – species i global sensitivity measure
c – species concentration vector
D – cell-content dilution rate (i.e. cell-volume loga-

rithmic growing rate)
f,g,h – model function vectors
h – lumping function vector
I – identity matrix
J f c�� � – system Jacobian matrix
k – rate coefficient vector
K – equilibrium constant
M – linear lumping matrix
n,ni – number of runs, or number of species Oi

(effectors)
nr – number of reactions
ns – number of species
np – number of parameters
nj – species j, amount of substance (moles)
p – dynamic model parameters
r – species reaction rate vector
R – universal gas constant
s – vector of species, or reaction sensitivities
S – species or reaction sensitivity matrix
Sg,j – species j global sensitivity
t – time
tc – cell cycle period
T – absolute temperature
u – gene transcription factors
v – vector of cell external variables (inputs, stimuli)
V – cell volume
x – state variable vector, or independent variable

vector

� �X x� j
– eigenvectors

G r e e k s

� – Hoerl factor
� – difference operator

i – i-th eigenvalue
� – osmotic pressure
�2 – experimental error variance
�j – species j recovering time, or characteristic-time
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I n d e x

cyt – cytoplasma
diss – dissociation
env – environment
max – maximum
min – minimum
0 – initial
perturb – perturbed
s – (quasi-)steady-state

S u p e r s c i p t s

+ – psudo-inverse
^ – lumped
~ – unobservable

A b b r e v i a t i o n s

AVG – average
DTTr, DTTo – reduced or oxidized forms of the DTT

(dithiothreitol)
G – gene (DNA)
GRN– genetic regulatory network
L – ligand, or species at which regulatory element

acts
M – mRNA
Met – metabolite
Nut – nutrient
nmol L–1– nano-molar (i.e. 10-9 mol L–1 concentration)
P – protein
O – effector species, or polymerase
O – order of magnitude
PCA – principal component analysis
PCR – principal component regression
P.I. – regulatory performance index
R – repressor
RSA – ridge selection analysis
QSS – quasi-steady-state
QSSA – quasi-steady-state approximation
Re – real part
STD – standard deviation
TF – transcription factor
size(.) – vector dimension
[.] – concentration
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