$\begin{array}{c} \textbf{BIPLANES} \ (56,11,2) \ \textbf{WITH A FIXED-POINT-FREE} \\ \textbf{INVOLUTORY AUTOMORPHISM} \end{array}$ MARIO ESSERT AND LJUBO MARANGUNIĆ University of Zagreb, Croatia ABSTRACT. The aim of this article is to prove that exactly four biplanes with parameters (56,11,2) admit a fixed-point-free action of an involutory automorphism. These are: Hall's biplane B_{20} , Salwach and Mezzaroba's biplane B_{22} , Denniston's biplane B_{24} and Denniston's biplane B_{26} . #### 1. Introduction and preliminaries A biplane with parameters (56, 11, 2) is a symmetric design having 56 points and lines, each line consisting of 11 points, each point lying on 11 lines, each two lines intersecting in 2 points and each pair of points lying on 2 lines. Five different biplanes with parameters (56, 11, 2) were discovered until 1985. These biplanes are known in literature and denoted by B_{20} , B_{22} , B_{24} , B_{26} and the Janko-Tran van Trung biplane, which we shall denote by J-T (see [8] and [5]). The existence of them all was proved using the computer and assuming additionally an action of an automorphism group $G \leq Aut\mathcal{D}$. Until now, it has been unknown whether there exists a biplane for (56, 11, 2) allowing an action of a nontrivial automorphism group and not isomorphic to one of the already listed ones. The only remaining possibility is the case of an involution acting fixed-point-freely on such a biplane. The reason why this case has not been solved before lies in the combinatorial expansion that arises during the construction, which is by a multiple larger than in any other case. If $G \leq Aut\mathcal{D}$ is an automorphism group of the biplane \mathcal{D} for (56, 11, 2) and if p is a prime divisor of |G|, then it holds: $$p \in \{2, 3, 5, 7, 11\}$$. $^{2000\} Mathematics\ Subject\ Classification.\ 05B05.$ Key words and phrases. Biplane, design, automorphism group, orbit, orbit structure. All the cases for p > 2 can easily be solved using the program by V. Ćepulić described in [2]. The following results came out, which V. Ćepulić hasn't published yet: p = 11, no biplane; p = 7, the biplane B_{20} ; p = 5, the biplane B_{20} ; p = 3, the biplanes B_{20} , B_{22} , B_{26} , J-T. For p = 2, all possibilities for which an involution acts with F > 0 fixed points have already been examined. Using the known bounds for the number of fixed points and lines $$1 + \frac{k-1}{\lambda} \le F \le k + \sqrt{k-\lambda}, \ F \ne 0,$$ by putting k = 11, $\lambda = 2$ in it, one gets $$F \in \{6, 8, 10, 12, 14\}$$. The case F=6 produces the biplanes B_{20} , B_{22} , B_{24} and J-T, what can be found in [7]. Other cases have been solved again by the program by V. Ćepulić with the following outcome. The case F=8 gives all the 5 known biplanes, the cases F=10 and F=12 fail, while the case F=14 gives biplanes B_{20} , B_{22} and B_{24} . The last case has been published in [3], and the other cases haven't been published yet. From the short summary presented above, it is clear that the solution of the case F=0, together with a publication of the cases solved by V. Ćepulić, completes the classification of all biplanes $\mathcal{D}(56,11,2)$ with nontrivial automorphism groups. For all the details considering the constructions and classifications mentioned above the reader is referred to the forthcoming paper [4]. Hence, it is our intention now to construct all designs \mathcal{D} with the parameter triple (56,11,2), which admit an involutory automorphism ρ acting without any fixed points and lines. We shall use the fundamental construction idea introduced by Janko and Tran van Trung in [6]. At first we shall build all possible orbit structures \mathcal{S} of \mathcal{D} admitting such a ρ . After that we shall build the biplanes themselves by "indexing" the "big points" of \mathcal{S} . # 2. Construction of orbit structures for a fixed-point-free involution First we introduce some notation. The automorphism group $\langle \rho \rangle$ has 28 orbits on the set of points of \mathcal{D} . We denote these orbits and their points by: $$\mathcal{P}_1 \equiv \{1_0, 1_1\}, \dots, \mathcal{P}_i \equiv \{j_0, j_1\}, \dots, \mathcal{P}_{28} \equiv \{28_0, 28_1\},$$ and ρ maps j_s onto $j_{(s+1)(mod 2)}$ for every $1 \leq j \leq 28$. The $\langle \rho \rangle$ - orbits of lines of \mathcal{D} we denote by: $$\mathcal{B}_1 \equiv \{x_1, x_1 \rho\}, \dots, \mathcal{B}_i \equiv \{x_i, x_i \rho\}, \dots, \mathcal{B}_{28} \equiv \{x_{28}, x_{28} \rho\}.$$ Let us consider the form of any line of \mathcal{D} in terms of the number of occurrences of symbols for $\langle \rho \rangle$ - orbits. We refer to the well-known formulae for the multiplicities of orbit symbols when a group of prime order p acts fixed-point-freely. If μ_{ij} is the number of occurrences of an orbit symbol j on any line from \mathcal{B}_i , we have (1) $$\sum_{j=1}^{28} \mu_{ij}(\mu_{ij} - 1) = \lambda(p-1) = 2 \cdot (2-1) = 2, \qquad 1 \le i \le 28.$$ Since k = 11, this means that on each line there is one orbit symbol which occurs twice, and nine orbit symbols which occur once. If μ_{ij} and μ_{rj} are the numbers of occurrences of an orbit symbol j on two representatives of distinct $\langle \rho \rangle$ - orbits \mathcal{B}_i and \mathcal{B}_r then it holds (2) $$\sum_{j=1}^{28} \mu_{ij} \mu_{rj} = \lambda p = 2 \cdot 2 = 4, \qquad 1 \le i, r \le 28, \ i \ne r.$$ We say briefly that the "game product" of two lines from distinct $\langle \rho \rangle$ orbits is equal to 4. DEFINITION 1. We call the 28×28 matrix $S = [\mu_{ij}]$, satisfying conditions (1) and (2), the multiplicity matrix (or orbit structure) of \mathcal{D} for $\langle \rho \rangle$. Dualizing our arguments we obtain: LEMMA 2. A multiplicity matrix $S = [\mu_{ij}]$ of $\mathcal{D}(56, 11, 2)$ for a fixed-point-free involution ρ consists of 28 rows $$\hat{x}_1, \hat{x}_2, \dots, \hat{x}_{28}$$ and 28 columns $1, 2, \ldots, 28$. Every of them consists of one entry equal to 2, nine 1's and eighteen 0's, satisfying: (3) $$\sum_{r=1}^{28} \mu_{ir} \mu_{jr} = \sum_{t=1}^{28} \mu_{ti} \mu_{tj} = 4, \qquad 1 \le i, j \le 28, \ i \ne j.$$ For two orbit structures $S_1 = [\mu'_{ij}]$ and $S_2 = [\mu''_{ij}]$, an isomorphism σ from S_1 onto S_2 is a bijection which maps rows of S_1 onto rows of S_2 , and columns of S_1 onto columns of S_2 , preserving the entries: $\mu''_{\sigma(i)\sigma(j)} = \mu'_{ij}$. Next we define a precedence relation for rows of orbit structures, and then for orbit structures themselves. DEFINITION 3. Suppose that there is given an order among the columns of S. For two rows $\hat{x} = [\mu_{ij}]_i$ and $\hat{y} = [\mu'_{ij}]_i$ we define that \hat{x} precedes \hat{y} , $\hat{x} \leq \hat{y}$, if there is some r, $1 \leq r < 28$, such that $\mu_{ij} = \mu'_{ij}$ for j < r and $\mu_{ir} > \mu'_{ir}$. As usual, $\hat{x} \prec \hat{y}$ will stand for $\hat{x} \leq \hat{y}$ and $\hat{x} \neq \hat{y}$. DEFINITION 4. Let S_1 and S_2 be two orbit structures of \mathcal{D} for $\langle \rho \rangle$. We define that S_1 precedes S_2 , $S_1 \leq S_2$, if S_1 precedes S_2 in terms of rows precedence. $S_1 \prec S_2$ will stand for $S_1 \leq S_2$ and $S_1 \neq S_2$. Now we sketch our algorithm for constructing all orbit structures S of D for $\langle \rho \rangle$ (see also [1]). We produce the structures by building up the rectangular schemes level by level. The *i*-th layer of S, denoted $\hat{x}^{(i)}$, consists of all possible rows with one entry equal to 2, nine entries equal to 1, and the remaining eighteen entries being 0. We can easily compute the number of possibilities for $\hat{x}^{(i)}$: $$N_i = |\hat{x}^{(i)}| = \frac{28!}{18!9!} = 131\,231\,000, \qquad i = 1, 2, \dots, 28.$$ A partial orbit structure of l-th level, denoted by $\mathcal{S}(l)$, is any matrix with l rows from $\hat{x}^{(i)}$, $i=1,2,\ldots,l$, satisfying the consistence condition (3) for rows, and not violating the consistence condition (3) for columns. Let $\mathcal{S}^{(l)}$ be the set of all possible partial structures $\mathcal{S}(l)$, $\mathcal{S}(1)=[211111111100000000000000000000]$ being obviously the only member of $\mathcal{S}^{(1)}$. We construct $\mathcal{S}^{(l)}$ from $\mathcal{S}^{(l-1)}$, $2 \leq l \leq 28$, in the following way. For each partial orbit structure $\mathcal{S}(l-1) \in \mathcal{S}^{(l-1)}$ we exhaust all 131 231 000 possibilities for the l-th level, by generating the corresponding rows $[\mu_{lr}]_l$ in the lexicographical order defined above. For a particular $[\mu_{lr}]_l$, after testing the condition (3), we include $$\mathcal{S}(l) = S(l-1) \cup [\mu_{lr}]_l$$ into $\mathcal{S}^{(l)}$, if it cannot be eliminated by finding some automorphism σ such that a scheme $\mathcal{S}(l)\sigma$ precedes $\mathcal{S}(l)$. If $\mathcal{S}(l)\sigma \prec \mathcal{S}(l)$ in terms of the precedence of partial schemes considered as parts of the whole orbit structures \mathcal{S} , $\mathcal{S}(l)$ is omitted. In this way, we ensure the elimination of a lot of isomorphic orbit structures, retaining only those among them which are the first in terms of the defined precedence. At the end of this procedure $\mathcal{S}^{(28)}$ will be the set of all possible orbit structures for our particular problem. Applying the algorithm we have obtained as the only solutions (up to isomorphism) ten orbit structures: $S_1 - S_{10}$. This result has been achieved after nearly 4000 hours of continuous computing on a computer "DynatechDCS – 1/320". The greatest number of schemes we have gotten on level 12, where we have counted approximately 80 000 000 (not necessarily non-isomorphic) schemes. Below we enclose all the 10 solutions. #### 3. Final results Applying the first step of our algorithm we have found all possible solutions for \mathcal{S} . In the following, we shall write every orbit structure $\mathcal{S} = [\mu_{jr}]$ as a set of 28 orbit lines $\hat{x}_j = [\mu_{jr}]_j$, $j = 1, \ldots, 28$, represented as sequences of their k = 11 "big points". If $\mu_{jr_0} = 2$ and $\mu_{jr_i} = 1$ for $i = 1, 2, \ldots, 9$, then we write $$\hat{x}_j \equiv r_0 r_0 r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9 \,,$$ the numbers $r_0, r_1, \ldots, r_9 \in \{1, 2, \ldots, 28\}$ being the "big points" of \mathcal{S} . Now we try to construct the biplanes by "indexing" \mathcal{S} , e.g. supporting its big points with appropriate indices from $\{0, 1\}$. We give a brief description of our algorithm. Let $S = [\mu_{jr}]$ be the orbit structure under consideration. For the j-th row of S we construct lines x_j from the line orbit \mathcal{B}_j , by supplying the orbit numbers of \hat{x}_j with indices from $\{0,1\}$. For x_j' , x_j'' corresponding to the same \hat{x}_j we define: x_j' precedes x_j'' , $x_j' \prec x_j''$, if the sequence of indices of big points corresponding to x_j' precedes that of x_j'' lexicographically. Among two lines of the orbit \mathcal{B}_j we take out as its representative the first in terms of the defined precedence, thus obtaining \tilde{x}_j - the canonical form of x_j . In the following we identify \tilde{x}_j with x_j and call it the canonical line. The set of all j-th level canonical lines we denote $x^{(j)}$. After finding $x^{(j)}$, we build the partial designs. A partial design of j-th level, denoted by Δ_j , consists of j canonical lines which satisfy the design conditions. By $\mathcal{D}^{(j)}$ we denote the set of j-th level partial designs Δ_j which we construct in our procedure, $\Delta_1 \equiv 1_0 1_1 2_0 3_0 4_0 5_0 6_0 7_0 8_0 9_0 10_0$ being obviously the only member of $\mathcal{D}^{(1)}$. For two partial designs Δ'_j and Δ''_j we say that Δ'_j precedes Δ''_j , $\Delta'_j \prec \Delta''_j$, if there exists some $q, q \leq j$, such that: (i) corresponding i-th level canonical lines of Δ'_j and Δ''_j coincide for $1 \leq i < q$, and (ii) q-th level canonical line of Δ'_j precedes that of Δ''_j . We construct $\mathcal{D}^{(j)}$ from $\mathcal{D}^{(j-1)}$, $2 \leq j \leq 28$, in the following way. To each partial design $\Delta_{j-1} \in \mathcal{D}^{(j-1)}$ we join all possible j-th level canonical lines x_j which intersect each line of Δ_{j-1} in exactly two points. In such a way we obtain one by one potential partial designs $\Delta_j = \Delta_{j-1} \cup x_j$ of the j-th level. Now, we include Δ_j into $\mathcal{D}^{(j)}$ if it cannot be eliminated by finding some automorphism σ such that $\Delta_j \sigma \prec \Delta_j$ in terms of the precedence of partial designs. At the end of this procedure, $\mathcal{D}^{(28)}$ will be the set of all possible biplanes with the orbit structure \mathcal{S} , admitting the action of the given involution ρ . The described procedure has been carried out by computer as well, the computing time being only 20 minutes. It has turned out that among 10 orbit structures S_1 - S_{10} only five of them can be supplied by indices. Namely, we have obtained the following biplanes: The first appearances of the obtained biplanes are enclosed below. We shall write down only the 28 line orbit representatives. The remaining 28 lines one can get by changing all the indices of these representatives modulo 2. We were able to identify the resulting biplanes as B_{20} , B_{22} , B_{24} or B_{26} using their chain representations (see [8] for details). ### BIPLANE B_{20} | 1_0 | 1_1 | 2_0 | 3_0 | 4_0 | 5_0 | 6_0 | 7_0 | 80 | 9_0 | 10_{0} | |-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | 1_0 | 2_0 | 2_1 | 11_{0} | 12_{0} | 13_{0} | 14_{0} | 15_{0} | 16_{0} | 17_{0} | 18_{0} | | 1_0 | 3_0 | 3_1 | 11_{1} | 12_{0} | 13_{1} | 19_{0} | 20_{0} | 21_{0} | 22_{0} | 23_{0} | | 1_0 | 4_0 | 4_1 | 11_{1} | 14_{1} | 15_{0} | 19_{1} | 20_{1} | 24_{0} | 25_{0} | 26_{0} | | 1_0 | 5_0 | 5_1 | 11_{0} | 16_{1} | 17_{1} | 21_{1} | 22_{0} | 24_{0} | 25_{1} | 27_{0} | | 1_0 | 6_0 | 6_1 | 12_{1} | 14_{0} | 16_{1} | 19_{1} | 21_{0} | 26_{1} | 27_{1} | 28_{0} | | 1_0 | 7_0 | 7_1 | 12_{1} | 15_{1} | 18_{0} | 22_{1} | 23_{0} | 24_{1} | 26_{0} | 27_{0} | | 1_0 | 80 | 81 | 13_{0} | 15_{1} | 17_{1} | 19_{0} | 23_{1} | 25_{0} | 27_{1} | 28_{1} | | 1_0 | 9_0 | 9_1 | 13_{1} | 16_{0} | 18_{1} | 20_{1} | 22_{1} | 25_{1} | 26_{1} | 28_{1} | | 1_0 | 10_{0} | 10_{1} | 14_{1} | 17_{0} | 18_{1} | 20_{0} | 21_{1} | 23_{1} | 24_{1} | 28_{0} | | 2_0 | 3_1 | 4_1 | 5_0 | 11_{1} | 18_{0} | 23_{1} | 26_{1} | 27_{0} | 28_{0} | 28_{1} | | 2_0 | 3_0 | 6_1 | 7_1 | 12_{1} | 17_{0} | 20_{0} | 24_{0} | 25_{0} | 25_{1} | 28_{1} | | 2_0 | 3_1 | 8_{0} | 9_1 | 13_{1} | 14_{0} | 21_{1} | 24_{0} | 24_{1} | 26_{0} | 27_{1} | | 2_0 | 4_1 | 6_0 | 10_{1} | 13_{0} | 14_{1} | 22_{0} | 22_{1} | 23_{0} | 25_{1} | 27_{1} | | 2_0 | 4_0 | 7_1 | 8_1 | 15_{1} | 16_{0} | 20_{1} | 21_{0} | 21_{1} | 22_{0} | 28_{0} | | 2_0 | 5_1 | 6_1 | 9_0 | 15_{0} | 16_{1} | 19_{0} | 20_{1} | 23_{0} | 23_{1} | 24_{1} | | 2_0 | 5_1 | 8_1 | 10_{0} | 12_{0} | 17_{1} | 19_{1} | 20_{0} | 22_{1} | 26_{0} | 26_{1} | | 2_0 | 7_0 | 9_1 | 10_{1} | 11_{0} | 18_{1} | 19_{0} | 19_{1} | 21_{0} | 25_{0} | 27_{0} | | 3_0 | 4_1 | 6_1 | 80 | 16_{0} | 17_{1} | 18_{0} | 18_{1} | 19_{1} | 22_{0} | 24_{1} | | 3_0 | 4_1 | 9_1 | 10_{0} | 12_{0} | 15_{1} | 16_{1} | 17_{0} | 20_{1} | 27_{0} | 27_{1} | | 3_0 | 5_1 | 6_0 | 10_{1} | 13_{1} | 15_{0} | 15_{1} | 18_{0} | 21_{1} | 25_{0} | 26_{1} | | 3_0 | 5_0 | 7_1 | 9_1 | 14_{0} | 14_{1} | 15_{0} | 17_{1} | 19_{0} | 22_{1} | 28_{0} | | 3_0 | 7_0 | 81 | 10_{1} | 11_{1} | 14_{0} | 16_{0} | 16_{1} | 23_{1} | 25_{1} | 26_{0} | | 4_0 | 5_0 | 7_1 | 10_{1} | 12_{0} | 13_{0} | 13_{1} | 16_{1} | 19_{1} | 24_{1} | 28_{1} | | 4_0 | 5_1 | 8_{0} | 9_1 | 12_{0} | 12_{1} | 14_{1} | 18_{0} | 21_{0} | 23_{1} | 25_{1} | | 4_0 | 6_1 | 7_0 | 9_1 | 11_{1} | 13_{0} | 17_{0} | 17_{1} | 21_{1} | 23_{0} | 26_{1} | | 5_0 | 6_1 | 7_0 | 81 | 11_0 | 13_{1} | 14_1 | 18_{0} | 20_{0} | 20_{1} | 27_{1} | | 6_0 | 8_1 | 9_{1} | 10_{0} | 11_{0} | 11_{1} | 12_{1} | 15_{0} | 22_{0} | 24_{1} | 28_{1} | ## BIPLANE B_{22} | 10
10
10
10
10
10
10
10
10
20
20
20
20
20 | $ \begin{array}{c} 1_1 \\ 2_0 \\ 3_0 \\ 4_0 \\ 5_0 \\ 6_0 \\ 7_0 \\ 8_0 \\ 9_0 \\ 10_0 \\ 3_1 \\ 3_0 \\ 3_1 \\ 4_1 \\ 5_0 \\ 5_0 \\ \end{array} $ | 20
21
31
41
51
61
71
81
91
101
40
61
81
71 | 3_0 11_0 11_1 11_1 11_0 12_1 12_1 13_0 13_1 14_1 5_1 7_1 9_0 8_0 10_0 9_1 | 4_0 12_0 12_0 14_1 16_1 14_0 15_1 15_1 15_1 12_1 13_1 15_1 12_0 13_0 | 5 ₀ 13 ₀ 13 ₁ 15 ₀ 17 ₁ 16 ₁ 18 ₀ 17 ₁ 18 ₁ 18 ₀ 17 ₀ 14 ₀ 16 ₀ 17 ₁ 16 ₁ | 6_0 14_0 19_0 19_1 21_1 19_1 22_1 19_0 20_1 20_0 23_1 20_0 21_1 20_1 19_0 | 7_0 15_0 20_0 20_1 22_0 21_0 23_1 22_1 21_1 26_1 24_0 21_0 20_0 20_1 | 8_0 16_0 21_0 24_0 24_0 26_1 24_1 25_0 25_1 21_1 22_1 23_0 21_0 | 9_0 17_0 22_0 25_0 25_1 27_1 26_0 27_1 26_1 24_1 28_0 25_1 26_0 22_0 27_0 23_1 25_1 | 10_0 18_0 23_0 26_0 27_0 28_0 27_0 28_1 28_1 28_1 28_1 28_1 24_1 24_1 | |--|---|---|---|--|--|---|--|---|---|---| | 2_0 2_0 2_0 2_0 | $ \begin{array}{c} 3_0 \\ 3_1 \\ 4_1 \\ 4_1 \end{array} $ | $6_1 \\ 8_1 \\ 7_1 \\ 9_1$ | $7_1 \\ 9_0 \\ 8_0 \\ 10_0$ | 12_1 13_1 15_1 12_0 | 17_0 14_0 16_0 17_1 | 20_0 21_1 20_1 19_1 | 24_0 24_0 21_0 20_0 | 25_0 24_1 21_1 22_1 | 25_1 26_0 22_0 27_0 | 28_1 27_1 28_0 27_1 | #### BIPLANE B_{24} | 1_0 | 1_1 | 2_0 | 3_0 | 4_0 | 5_0 | 6_0 | 7_0 | 80 | 9_0 | 10_{0} | |----------------|------------------|--------------------|------------------|------------------|------------------|------------------|------------------|--------------|------------------|--------------| | 1_0 | 2_{0}^{1} | $\frac{20}{21}$ | 11_{0} | 12_{0} | 13_{0} | 14_{0} | 15_{0} | 16_{0} | 17_{0} | 18_{0} | | 10 | $\frac{-0}{3_0}$ | 3_{1} | 11_{1} | 12_{0} | 13_{1} | 19_{0} | 20_{0} | 21_{0} | 22_{0} | 23_{0} | | 10 | 4_0 | 4_1 | 11_{1} | 14_{1} | 15_{0} | 19_{1} | 20_{1} | 24_{0} | 25_{0} | 26_0 | | 10 | $\frac{-5}{50}$ | $\overline{5}_{1}$ | 11_{0} | 161 | 17_{1} | 21_{1} | 22_{0} | 24_{0} | 25_{1} | 27_{0} | | 1_0 | 6_0 | 6_1 | 12_{1} | 14_{0} | 16_{1} | 19_{1} | 21_{0} | 26_{1} | 27_{1} | 280 | | 1_0 | 7_{0} | 7_1 | 12_{1} | 15_{1} | 18_{0} | 22_{1} | 23_{0} | 24_{1} | 26_{0} | 27_{0} | | 1_0 | 80 | 81 | 13_0 | 15_{1} | 17_{1} | 19_{0} | 23_{1} | 25_{0} | 27_{1} | 28_{1} | | 10 | 9_{0} | 9_{1}^{1} | 13_{1} | 16_{0} | 181 | 20_{1} | 22_{1} | 25_{1} | 26_{1} | 28_{1} | | 10 | 10_{0} | 10_{1} | 14_{1} | 17_{0} | 181 | 20_{0} | 21_{1} | 23_{1} | 24_{1} | 28_{0} | | 2_0 | 3_1 | 4_{0} | $\overline{5_1}$ | 11_{1} | 180 | 23_{1} | 26_{1}^{1} | 27_{0} | 28_{0}^{1} | 28_{1} | | $\frac{1}{20}$ | 3_0 | 6_{1} | 7_1 | 12_{0} | 17_{1} | 20_{1} | 24_{1} | 25_{0} | 25_{1} | 28_{0} | | 2_0 | 3_1 | 81 | 90 | 13_{1}° | 14_{0} | 21_{1} | 24_{0}^{1} | 24_{1} | 26_{0} | 27_{1} | | 2_0 | 4_1 | 7_1 | 80 | 15_{0}^{1} | 16_{1}° | 20_{0}^{1} | 21_{0}° | 21_{1}^{1} | 22_{1}° | 28_{1}^{1} | | 2_0 | 4_1 | 9_{1}^{1} | 10_{0} | 12_{1}° | 17_{0}^{1} | 19_{0}° | 201 | 22_{0}^{1} | 27_{0}^{1} | 27_{1}^{1} | | 2_0 | 5_0 | 6_{1} | 9_{1} | 15_{1} | 16_{0} | 19_{1} | 20_{0} | 23_{0} | 23_{1} | 24_{0} | | 2_0 | 5_1 | 7_0 | 10_{1} | 13_{0} | 18_{1} | 19_{0} | 19_{1} | 21_{0} | 25_{1} | 26_{0} | | 2_0 | 6_0 | 81 | 10_{1} | 11_{0}° | 14_{1} | 22_{0}° | 22_{1} | 23_{0} | 25_{0} | 26_{1} | | 3_0 | 4_0 | 6_1 | 81 | 16_{1} | 17_{0} | 18_{0} | 18_{1} | 19_{0} | 22_{1} | 24_{0} | | 3_0 | 4_1 | 7_0 | 10_{1} | 13_{1} | 14_{0} | 16_{0} | 16_{1} | 23_{1} | 25_{0} | 27_{0} | | 3_0 | 5_1 | 7_1 | 9_0 | 14_{0} | 14_{1} | 15_{1} | 17_{0} | 19_{1} | 22_{0} | 28_{1} | | 3_0 | 5_1 | 8_{1} | 10_{0} | 12_{1} | 15_{0} | 16_{0} | 17_{1} | 20_{0} | 26_{0} | 26_{1} | | 3_0 | 6_0 | 9_1 | 10_{1} | 11_{1} | 15_{0} | 15_{1} | 18_{0} | 21_{1} | 25_{1} | 27_{1} | | 4_0 | 5_0 | 6_1 | 10_{1} | 12_{1} | 13_{0} | 13_{1} | 15_{0} | 22_{0} | 24_{1} | 28_{1} | | 4_0 | 5_1 | 80 | 9_{1} | 12_{0} | 12_{1} | 14_{0} | 18_{1} | 21_{1} | 23_{0} | 25_{0} | | 4_0 | 6_0 | 7_1 | 9_1 | 11_{0} | 13_{1} | 17_{0} | 17_{1} | 21_{0} | 23_{1} | 26_{0} | | 5_0 | 6_0 | 7_1 | 81 | 11_{1} | 13_{0} | 14_{0} | 18_{1} | 20_{0} | 20_{1} | 27_{0} | | 7_0 | 8_1 | 9_1 | 10_{0} | 11_{0} | 11_{1} | 12_{0} | 16_{1} | 19_{1} | 24_{1} | 28_{1} | | | | | | | | | | | | | ### BIPLANE B_{26} $\frac{3_0}{11_0}$ $9_0 \\ 17_0$ 10_{0} 2_0 4_0 12_0 12_1 5_0 13_0 13_1 1_0 1_1 6_0 7_0 80 2_{1} 3_{1} 4_{1} 15_{0} $18_0 \\ 23_0$ 1_0 1_0 $\begin{array}{c} 2_0 \\ 3_0 \\ 4_0 \\ 5_1 \\ 5_0 \\ 7_1 \\ 7_0 \\ 9_0 \\ 3_0 \\ 3_1 \\ 4_1 \\ 4_0 \\ 4_1 \\ 4_1 \\ 4_0 \\ 6_0 \\ 8_1 \\ 5_0 \\ 7_0 \end{array}$ 14_{0} 16_{0} 11_0 19_{0} 20_{0} 21_{1} 22_{0}° 14_{1} 16₁ 17₁ 18₁ 16₀ 17₁ 20_{1} $\frac{1}{2}$ 10 24_0 26_1 26_1 $15_0 \\ 12_0$ $25_0 \\ 27_0$ 19_{1} 10 6_0 6_1 11_1 19_0 20_1 $\frac{1}{24_0}$ 24_{1} 1_0 15₁ 13₁ 17₀ 22_{0} 22_{1} 280 1_0 14_0 22_{1} 20_{0} $\frac{1}{25}$ 25_{1} 23_{1} $26_0 \\ 27_1$ 27_{1} $11_1\\14_1$ 1_0 $\begin{array}{c} 8_0 \\ 8_1 \\ 10_0 \\ 10_1 \\ 5_1 \\ 5_0 \\ 7_1 \\ 6_0 \\ 6_1 \\ 7_0 \\ 8_0 \\ 9_0 \\ 5_0 \\ 6_1 \end{array}$ 21_{1} 28_{0} 25_1 21₁ 23₁ 24₀ 23₁ 20₁ 12_{1} 13_{0} 18₁ 16₁ 15₁ 14₁ 27_0 26_0 $18_0 \\ 15_1$ 19_{1} 28_{1} 1_0 $\begin{array}{c} 1_0 \\ 2_0 \\ 2_0 \\ 2_0 \\ 2_0 \\ 2_0 \\ 2_0 \\ 3_0 \\ 3_0 \\ 3_0 \\ 3_0 \\ 4_0 \\ 4_0 \end{array}$ $\begin{array}{c} 23_0 \\ 21_1 \\ 19_0 \\ 20_0 \\ 20_1 \\ 21_1 \\ 19_0 \\ 19_1 \end{array}$ $\begin{array}{c} 24_1 \\ 25_0 \\ 25_0 \\ 24_1 \\ 25_1 \\ 23_0 \\ 22_1 \\ 22_0 \end{array}$ 28_{1} 28₀ 26₀ 26₁ 26₀ $\frac{1}{28_1}$ 7_1 9_1 10_0 11_0 27_{0} $14_0 \\ 16_1$ $\frac{1}{27}$ 18_0 12_1 15_0 17_0 18_1 17_1 23_0 22_0 19_1 8_{1} 10_{1} 10_{1} 12_0 28_{0} $\frac{1}{27}$ $27_0 \\ 26_1$ 11_1 13_1 28_{1} $8_1 \\ 9_1$ 24_1 16_0 21_0 23_1 20_0 16_1 14_1 24_0 27_1 27_0 25_{1} 28_{1} 13_{0} 21_{0} 22_{1} 9_1 12_{0} 16_{0} 17_{1} 22_0 13_{0} 13_{1} 18_{0} 24_{1} 28_{0} $9_1 \\ 7_1$ $\begin{array}{c} 8_1 \\ 6_1 \\ 10_0 \\ 5_1 \\ 7_1 \\ 7_1 \end{array}$ 15_{1} 21_0 26_{0} 26_{1} 11_1 17_{0} 18_{0} 25_{1} 25_{0} 16_{1} 17_{0} 23_{1} 15_0 18_{1} 19_{0} $15_0 \\ 17_1$ 10_{1} 24_{1} 12_{1} 14_{0} 17_{1} 22_{1} 23_{1} 23_{0} 25_1 10_1 11_0 13_{1} 18_{0} 20_1 9_1 11_0 12_{0} 14_1 18_{1} 22_{1} 24_{1} $\frac{60}{71}$ 5₀ 5₀ 10_1 12_{1} 13_{0} 14_{1} 16_{0} 21_{0} 21_{1} 26_{1} $9_0 \\ 10_1$ 12_0 13_{1} 15_0 15_{1} 19_{1} 20_0 27_0 11_{0} 11_1 14_{0} 16_{1} 19_{1} Hence the following theorem has been proved. THEOREM 1. Let \mathcal{D} be a biplane with parameters (56,11,2) admitting an involutory automorphism acting fixed-point-freely. Then \mathcal{D} is isomorphic to one of the following four known biplanes: Hall's biplane B_{20} , Salwach and Mezzaroba's biplane B_{22} , Denniston's biplane B_{24} , or Denniston's biplane B_{26} . #### References - [1] V. Ćepulić, A Symmetric Block Design (45, 12, 3) with automorphisms of Order 5, Ars Combinatoria 37 (1994), 33-48. - [2] V. Ćepulić and M. Essert, Biplanes and their automorphisms, Studia Sci. Math. Hungar. 24 (1989), 437-446. - [3] V. Ćepulić and M. Essert, Biplanes (56,11,2) with involutory automorphism fixing 14 points, Glasnik Mat. 31(51) (1996), 25-38. - [4] V. Ćepulić and Lj. Marangunić, Biplanes (56,11,2) with nontrivial automorphisms, preprint. - [5] Z. Janko and Tran van Trung, A new biplane of order 9 with a small automorphism group, Math. Institut Heidelberg, Heidelberg, 1985. - [6] Z. Janko and Tran van Trung, Construction of a new symmetric block design for (78, 22, 6) with the help of tactical decompositions, J. Combin. Theory Ser. A 40 (1985), 451-455. - [7] Lj. Marangunić, Biplanes (56,11,2) with involutory collineation fixing 6 points, J. Combin. Theory Ser. A 54 (1990), 149-163. - [8] Th.C.J. Salwach and J.A. Mezzaroba, The four known biplanes with k=11, Internat. J. Math. Math. Sci. 2 (1979), 251-260. #### M Eccor Faculty of Mechanical Engineering and Naval Architecture University of Zagreb I. Lučića 1 10000 Zagreb Croatia E-mail: messert@fsb.hr #### Lj. Marangunić Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 10000 Zagreb Croatia $E ext{-}mail: ljubo.marangunic@fer.hr}$ Received: 9.1.2004. Revised: 14.4.2004.