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BIPLANES (56,11,2) WITH A FIXED-POINT-FREE
INVOLUTORY AUTOMORPHISM

MARIO ESSERT AND LJUBO MARANGUNIC
University of Zagreb, Croatia

ABSTRACT. The aim of this article is to prove that exactly four
biplanes with parameters (56,11,2) admit a fixed-point-free action of an
involutory automorphism. These are: Hall’s biplane Bag, Salwach and
Mezzaroba’s biplane B22, Denniston’s biplane B24 and Denniston’s biplane
Bog.

1. INTRODUCTION AND PRELIMINARIES

A biplane with parameters (56,11,2) is a symmetric design having 56
points and lines, each line consisting of 11 points, each point lying on 11 lines,
each two lines intersecting in 2 points and each pair of points lying on 2 lines.
Five different biplanes with parameters (56,11, 2) were discovered until 1985.
These biplanes are known in literature and denoted by Bsg, Baa, Bag, Beg and
the Janko-Tran van Trung biplane, which we shall denote by J-T (see [8] and
[5]). The existence of them all was proved using the computer and assuming
additionally an action of an automorphism group G < AutD. Until now, it
has been unknown whether there exists a biplane for (56,11, 2) allowing an
action of a nontrivial automorphism group and not isomorphic to one of the
already listed ones. The only remaining possibility is the case of an involution
acting fixed-point-freely on such a biplane. The reason why this case has not
been solved before lies in the combinatorial expansion that arises during the
construction, which is by a multiple larger than in any other case.

If G < AutD is an automorphism group of the biplane D for (56,11,2)
and if p is a prime divisor of |G|, then it holds:

pe{2,3,57,11}.
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All the cases for p > 2 can easily be solved using the program by V. Cepulié
described in [2]. The following results came out, which V. Cepuli¢ hasn’t
published yet:

p=11, no biplane;

p=7, the biplane Bag;
p=D5, the biplane Bag;
p=3, the biplanes Bag, Ba2, Bag, J-T.

For p = 2, all possibilities for which an involution acts with F' > 0 fixed points
have already been examined. Using the known bounds for the number of fixed
points and lines

k-1
1+—/\ <F<k+VvVk—A, F#0,
by putting £ = 11, A = 2 in it, one gets
F €{6,8,10,12,14}.

The case F' = 6 produces the biplanes Bsg, Bs2, Bas and J-T, what can be
found in [7]. Other cases have been solved again by the program by V. Cepuli¢
with the following outcome. The case F' = 8 gives all the 5 known biplanes,
the cases F' = 10 and F' = 12 fail, while the case F' = 14 gives biplanes Boy,
Bss and Bag. The last case has been published in [3], and the other cases
haven’t been published yet.

From the short summary presented above, it is clear that the solution
of the case F' = 0, together with a publication of the cases solved by V.
Cepulié7 completes the classification of all biplanes D(56, 11, 2) with nontrivial
automorphism groups. For all the details considering the constructions and
classifications mentioned above the reader is referred to the forthcoming paper
[4].

Hence, it is our intention now to construct all designs D with the pa-
rameter triple (56, 11,2), which admit an involutory automorphism p acting
without any fixed points and lines. We shall use the fundamental construction
idea introduced by Janko and Tran van Trung in [6]. At first we shall build
all possible orbit structures S of D admitting such a p. After that we shall
build the biplanes themselves by ”indexing” the ”big points” of S.

2. CONSTRUCTION OF ORBIT STRUCTURES FOR A FIXED-POINT-FREE
INVOLUTION

First we introduce some notation. The automorphism group (p) has 28
orbits on the set of points of D. We denote these orbits and their points by:

7)1 = {107 11}7 v 77)] = {j07j1}7 oo 7P28 = {2807281}7
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and p maps js onto jis41)(mod2) for every 1 < j <28. The (p)- orbits of lines
of D we denote by:

By = {z1,z1p},...,Bi = {xi,zip}, ..., Bag = {w2s, 28p}.

Let us consider the form of any line of D in terms of the number of
occurrences of symbols for (p) - orbits. We refer to the well-known formulae
for the multiplicities of orbit symbols when a group of prime order p acts
fixed-point-freely. If y;; is the number of occurrences of an orbit symbol j on
any line from B;, we have

28
1) >y - =Ap-1)=2-2-1)=2, 1<i<®.
j=1

Since k = 11, this means that on each line there is one orbit symbol which
occurs twice, and nine orbit symbols which occur once.

If pi;; and 5 are the numbers of occurrences of an orbit symbol j on two
representatives of distinet (p) - orbits B; and B, then it holds

28
(2) D ey =Ap=2-2=4, 1<i,r<28, i#r.

Jj=1

We say briefly that the ”game product” of two lines from distinct (p)-
orbits is equal to 4.

DEFINITION 1. We call the 28 x 28 matriz S = [pi5], satisfying conditions
(1) and (2), the multiplicity matriz (or orbit structure) of D for (p).

Dualizing our arguments we obtain:

LEMMA 2. A multiplicity matrizc S = [u,;] of D(56,11,2) for a fized-
point-free involution p consists of 28 rows

T1,T2,...,T28

and 28 columns 1,2,...,28. Every of them consists of one entry equal to 2,
nine 1's and eighteen 0's, satisfying:

28 28
(3) > wisge =Y puipn; =4, 1<i,j <28, i#j.
r=1 t=1

For two orbit structures S1 = [u;;] and S = [1f};], an isomorphism o from
S1 onto & is a bijection which maps rows of S§; onto rows of S, and columns
of & onto columns of Sy, preserving the entries: ug(i)g(j) = ,ugj. Next we
define a precedence relation for rows of orbit structures, and then for orbit

structures themselves.
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DEFINITION 3. Suppose that there is given an order among the columns
of §. For two rows & = [p;;]i and § = [u;;]; we define that & precedes g,
Z 2 g, if there is some v, 1 < r < 28, such that p;; = ng for j < r and
Wir > . As usual, & < § will stand for & < g and & # .

DEFINITION 4. Let 81 and Sz be two orbit structures of D for (p). We
define that S1 precedes Sa, 81 = Sa, if S1 precedes S in terms of rows prece-
dence. 81 < Sy will stand for S; =X Sy and S1 # Ss.

Now we sketch our algorithm for constructing all orbit structures S of D
for (p) (see also [1]). We produce the structures by building up the rectangular
schemes level by level. The i-th layer of S, denoted Z(?), consists of all possible
rows with one entry equal to 2, nine entries equal to 1, and the remaining
eighteen entries being 0. We can easily compute the number of possibilities
for #(:

(i 28! _
N; = |29] = Tagr = 181231000, i=1,2,...,28.

A partial orbit structure of l-th level, denoted by S(I), is any ma-
trix with [ rows from (), i = 1,2,...,1, satisfying the consistence con-
dition (3) for rows, and not violating the consistence condition (3) for
columns. Let S®) be the set of all possible partial structures S(1), S(1) =
[2111111111000000000000000000] being obviously the only member of S,
We construct S® from S¢—D | 2 < < 28, in the following way. For each par-
tial orbit structure S(I—1) € SU=1 we exhaust all 131 231 000 possibilities for
the [-th level, by generating the corresponding rows [p;,]; in the lexicograph-
ical order defined above. For a particular [u;];, after testing the condition
(3), we include

S(l) =S —=1) U [pr]:

into S®, if it cannot be eliminated by finding some automorphism o such
that a scheme S(I)o precedes S(1). If S(1)o < S(1) in terms of the precedence
of partial schemes considered as parts of the whole orbit structures S, S(1) is
omitted. In this way, we ensure the elimination of a lot of isomorphic orbit
structures, retaining only those among them which are the first in terms of
the defined precedence. At the end of this procedure S8 will be the set of
all possible orbit structures for our particular problem.

Applying the algorithm we have obtained as the only solutions (up
to isomorphism) ten orbit structures: S; — Si1p. This result has been
achieved after nearly 4000 hours of continuous computing on a computer
” DynatechDC'S — 1/320”. The greatest number of schemes we have gotten
on level 12, where we have counted approximately 80000 000 (not necessarily
non-isomorphic) schemes. Below we enclose all the 10 solutions.
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STRUCTURE S
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1002000000110100001000011110
1000200000100011000110011001
1000020000010011000001100111
1000002000001100100101010101
1000000200001100010010101011
1000000020000010111100101100
1000000002000001111011010010
0111100000000000200010100111
0111010000000000020101011001
0110001100000002001100001110
0101001100000020001011110000
0100110010000200001111000010
0100110001002000001000111100
0100001011200000000001101011
0100000111020000000110010101
0011000011001111001000000002
0010101010011010010000010020
0010100101100110010001000200
0010011001010110100010002000
0010010110100101100000120000
0001101001010101010100200000
0001100110011001100002001000
0001011010101001010020000100
0001010101101010100200000010
0000111100110000112000000001

STRUCTURE S3
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1002000000100110001100011100
1000200000100001100011011010
1000020000010101001010000111
1000002000010010010001110110
1000000200001010101000101011
1000000020001001010101001101
1000000002000100110110110001
0111100000100000010000100112
0110011000010000100100012001
0110000110001100000010020110
0101010001001100000002101010
0101001100000011000121000001
0100110010000011001100210000
0100100101010000101101000200
0100001011100000012010001010
0011010100000001121001010000
0011000011010011100100000020
0010110001001020010010001100
0010101010000210101001000001
0010001101100102000000101100
0001101001012001001000010001
0001100110020100010010101000
0001011010101000200010100100
0000111100101100010200000010
0000010111210010000001010001

STRUCTURE Sz
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1002000000100110001100011100
1000200000100001100011011010
1000020000010101001010000111
1000002000010010010001110110
1000000200001010101000101011
1000000020001001010101001101
1000000002000100110110110001
0111100000100000010000100112
0110011000010000100100012001
0110000110001100000010020110
0101001100000011000121000001
0101000011010000101101000020
0100110010000011001100210000
0100101001001000012010001100
0100010101100100000002101100
0011010100000001121001010000
0011001001001102000000101010
0010101010000210101001000001
0010100101010011100100000200
0010010011100020010010001010
0001110001012010000001010001
0001100110020100010010101000
0001011010101000200010100100
0000111100101100010200000010
0000001111210001001000010001

STRUCTURE Sy
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1002000000110100001000011110
1000200000001011000110011100
1000020000001000110001111010
1000001100100011000101000021
1000001100010000110010100201
1000000011000210000011110001
1000000011000001112100001001
0111001000000010100011002001
0111000100000001010100120001
0110110000001100001000000112
0101000020001000010111000110
0100100110010010001000201010
0100100101100000101002010100
0100011001100100000200101100
0100011001010001001020010010
0011000002001011100000100110
0010101010010100200100010010
0010100101100100020010001010
0010011010100020011000010100
0010010110010102000001001100
0001110010200001100010100001
0001110001020010010101000001
0001102000001101011001100000
0001010200001110101110000000
0000001111112000000000011001
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STRUCTURE S5
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1002000000100110001100011100
1000200000100001100011011010
1000020000010100010010110110
1000001100010001011000102001
1000001100002000100100010111
1000000011000100111002000101
1000000011000021000110100011
0111100000100000010000100112
0110011000000011001001020001
0110000200000110000011001110
0101010010001000101020001001
0101000002011000000001111010
0100101001010001001110000200
0100100110000100101100210000
0100011010100000010201001010
0011001010010101101000000020
0011000101000001120110010000
0010110001001201000100001001
0010100020011010010000011100
0010011001100010200000101100
0001110100020010100101000001
0001102000001110010011100000
0001010110101002000001100100
0000110101101010012000000010
0000001111210100000010010001

STRUCTURE S7
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1002000000000111001110011000
1000110000110000101000020110
1000110000000110010102000101
1000001100101001000001002110
1000001100000100200110100011
1000000011010000021010001011
1000000011001011000000210101
0110101000100010000010011002
0110100010000200001000101110
0110001001000001010200010110
0101010100020000000100101101
0101010001100010000011100020
0101001001001000102001000101
0100100200000001011011110000
0100010020001000100111011000
0011100010010002100001000011
0011010100002100010000010011
0011000110100010110010000200
0010021000000011111000101000
0010000102010110100001011000
0001200001101000110100101000
0001002010110100010001110000
0000111001011101000020000100
0000101110011020001100000010
0000010111200101001100000001

STRUCTURE Sg
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1002000000100110001100011100
1000110000110100000010010021
1000110000000001112001001001
1000001100010001100101000210
1000001100000020010011110001
1000000011002001000010011101
1000000011000100110100201010
0111100000000000200010110101
0110101000000011000110002010
0110000020000110001001000111
0101100001001000010102010010
0101000200011000001000101011
0100011010010001001100120000
0100011001200000000001101101
0100010101000100011120000100
0011020000001011010000100110
0011001001010101010100000002
0010100110110000020000011100
0010011100001200100001011000
0010000102100011101000010010
0001100110100102000011100000
0001010011020010100011001000
0001002010101000111010000010
0000201001011110001000100100
0000110110101010100200000001

STRUCTURE Sy
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1001100000200100001000011110
1001010000000120000111010001
1000101000000002101110001001
1000010100010000021001001101
1000001100001010100100100210
1000000011010100100000211001
1000000011001001010011010020
0111001000000010010010102010
0110110000000001010100120100
0110001100100000100001010012
0101001010000101001002100100
0101000101010000101020010100
0100110001001010002000100011
0100100101010100000201001010
0100010020101000000110001101
0011100010020011000000000111
0011010010000100211100000010
0010101001001200010010000101
0010010002100011100001001100
0010000210001111001000011000
0002000101101001010100100001
0001111000012000100001011000
0000200110100010110011100000
0000021100110101000010100010
0000002011110010011100010000
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STRUCTURE Sy
2111111111000000000000000000
1200000000111111110000000000
1020000000111000001111100000
1001100000200100001000011110
1001010000000120000111010001
1000101000000002101110001001
1000010100010001010101000210
1000001100001100100000210101
1000000011010010100010101020
1000000011001000021001011001
0111001000000010010100102100
0110110000000001010010120010
0110010100100000100001001012
0101001010000101001002100010
0101000101001000101200010010
0100110001010010002000100101
0100100101001100000021001100
0100001020110000000110010101
0011100010002011000000000111
0011010010000100211010000100
0010101001010200010100000011
0010001002100011100001010100
0010000210010111001000011000
0002000101110001010010100001
0001111000021000100001011000
0000200110100010110101100000
0000020011101101000100101000
0000012100101010011010000010

STRUCTURE S1o
2111111111000000000000000000
1200000000111111110000000000
1011000000210000001111100000
1011000000001110001000021100
1000110000110001000000011021
1000110000001000201110000101
1000001100010001010101001200
1000001100000210000110100011
1000000011001010100002101010
1000000011000001021010110001
0120100000000010010011000111
0110101000000001100100211000
0101010010000010011200001010
0101000200000001101011010010
0101000110101000000000101102
0100101001010100002001001001
0100020010010100000011110100
0100001002101000000110010110
0011010001001102000101000001
0010011100012000011000100010
0010010101100100110010002000
0010001020100101101000000110
0010000111020010100100010001
0002100001010100110000100110
0001101010011011000020001000
0001012000100010110001010001
0000200110101100010101010000
0000110101100021001000100100

3. FINAL RESULTS

Applying the first step of our algorithm we have found all possible solu-
tions for S. In the following, we shall write every orbit structure S = [p;,] as
a set of 28 orbit lines &; = [u;r];, 7 = 1,...,28, represented as sequences of
their k = 11 ”big points”. If p;r, =2 and pj,, =1fori=1,2,...,9, then we
write

Tj = rororireT3rarsTeTITSTY
the numbers ro,r1,...,r9 € {1,2,...,28} being the ”big points” of S. Now
we try to construct the biplanes by ”indexing” S, e.g. supporting its big
points with appropriate indices from {0, 1}. We give a brief description of our
algorithm.

Let & = [u;r] be the orbit structure under consideration. For the j-th
row of S we construct lines x; from the line orbit Bj, by supplying the orbit
numbers of #; with indices from {0, 1}. For 2%, #/ corresponding to the same
#; we define: 2, precedes 7/, 2/, < x/, if the sequence of indices of big points
corresponding to gc; precedes that of x;' lexicographically. Among two lines of
the orbit B; we take out as its representative the first in terms of the defined
precedence, thus obtaining &; - the canonical form of z;. In the following we
identify Z; with x; and call it the canonical line. The set of all j-th level
canonical lines we denote (7).

After finding 2(7), we build the partial designs. A partial design of j-
th level, denoted by Aj, consists of j canonical lines which satisfy the design
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conditions. By DY) we denote the set of j-th level partial designs A j which we
construct in our procedure, A; = 1911203040506070809910¢ being obviously
the only member of D). For two partial designs A’ and A we say that
A’ precedes A7, A < A7, if there exists some ¢, ¢ < j, such that: (i)
corresponding i-th level canonical lines of A’ and A’ coincide for 1 <i < g,
and (i) g-th level canonical line of A’ precedes that of A’

We construct DY) from DU, 2 < j < 28, in the following way. To
each partial design A;_; € DU we join all possible j-th level canonical
lines =; which intersect each line of A;_; in exactly two points. In such a
way we obtain one by one potential partial designs A; = A;_; U x; of the
j-th level. Now, we include A; into DY) if it cannot be eliminated by finding
some automorphism o such that Ajo < A; in terms of the precedence of
partial designs. At the end of this procedure, D*8) will be the set of all
possible biplanes with the orbit structure S, admitting the action of the given
involution p.

The described procedure has been carried out by computer as well, the
computing time being only 20 minutes. It has turned out that among 10 orbit
structures S1-Syp only five of them can be supplied by indices. Namely, we
have obtained the following biplanes:

(S1) none (Sg) mnonme

(S2) Baa (2 copies), Bag (2 copies)  (S7) Baz (1 copy), Bag (3 copies)
(S3) Bag (2 copies), Baa (2 copies)  (Ss) none

(S4) none (S9) mnonme

(S5) Bas (2 copies) (S10) Baa (16 copies)

The first appearances of the obtained biplanes are enclosed below. We
shall write down only the 28 line orbit representatives. The remaining 28 lines
one can get by changing all the indices of these representatives modulo 2. We
were able to identify the resulting biplanes as By, Bos, Bay or Bag using their
chain representations (see [8] for details).
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BIPLANE Byg

4o
129
129
14,
161
140
151
151
1609
170

50
130
13,
150
171
164
180
171

60
140
190
19¢
21,
19,
227
190

BIPLANE Bj;

4o
12¢
129
144
164

50
130
134
150

6o
149
190
19,
214
19,
221
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60 8o 91 10,

BIPLANE
49 50

129 139
129 131
14, 159
161 171
149 164
15;1 189
151 171
160 181
179  18;
11; 189
129 174
131 149
150 161
12, 179
151 169
130 184
110 144
161 170
131 149
149 144
12; 159
11, 159
127 139
129 124
119 134
11, 139
110 114

BIPLANE

40 50

129 13p
12, 134
1509 161
120 17y
151 181
131 169
170 17y
18p 181
151 161
119 151
149 144
161 18¢
120 124
11, 159
131 170
169 18;
130 17y
129 169
130 131
11;  15:
150 161
12, 149
119 133
119 129
12;  13p
129 13;
119 114

MARANGUNIC

Hence the following theorem has been proved.
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THEOREM 1. Let D be a biplane with parameters (56,11,2) admitting
an involutory automorphism acting fized-point-freely. Then D is isomorphic
to one of the following four known biplanes: Hall’s biplane Bogy, Salwach and
Mezzaroba’s biplane Bas, Denniston’s biplane Bay, or Denniston’s biplane Bag.
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