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Abstract. In this note, we improve upon results of Gyarmati,
Sárközy and Stewart from [9] and Bugeaud and Gyarmati from [3] con-
cerning the size of a subset A of {1, . . . ,N} such that the product of any
two distinct elements of A plus 1 is a perfect power. We also show that
the cardinality of such a set is uniformly bounded assuming the ABC-
conjecture, thus improving upon a result from [4].

1. Introduction

Write V for the set of all perfect powers; i.e., the set of all numbers of the
form xk with integers x ≥ 1 and k ≥ 2. In [9], subsets A of positive integers
such that aa′ + 1 is in V whenever a 6= a′ are in A were investigated. The
main result of [9] shows that such sets are not too “dense”:

Theorem 1.1. Let A be a subset of {1, . . . , N} with the property that
aa′ + 1 is in V whenever a 6= a′ are in A. Then there exists a constant N0

such that the inequality

(1) #A ≤ 340
(logN)2

log logN

holds whenever N > N0.

The proof of the above result ingeniously combines graph theoretical re-
sults with a “gap principle” from [8]. The above bound was slightly improved
to 177000(logN/ log logN)2 in [3]. The improvement in the result from [3] is
due to an improved gap principle which first appeared in [2]. In this note, we
improve upon the above estimates. Our result is the following.
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Theorem 1.2. Let A be as in the statement of the previous theorem.
Then the inequality

(2) #A �
(

logN

log logN

)3/2

holds for all sufficiently large values of N .

Under a strong technical coprimality condition, it is shown in [4] that the
bound (2) can be strengthened to 8000(logN/ log logN).

For every positive integer n we write N(n) =
∏

p|n p for the algebraic

radical of n. We recall the statement of the ABC-conjecture.

Conjecture 1.3. For every ε > 0 there exists a constant c = c(ε) such
that if A,B,C are nonzero integers with gcd(A,B) = 1 and A+B = C, then

max{|A|, |B|, |C|} ≤ c (N(ABC))1+ε .

Under the ABC-conjecture, in [4] it is shown that the bound (2) can be
improved to #A � log logN . Here, we improve this to #A = O(1) under the
same assumption.

Theorem 1.4. The ABC conjecture implies that if A satisfies the hy-
pothesis of Theorem 1.1, then #A is bounded by an absolute constant.

2. The Idea behind the Proofs

In principle, for both proofs, we follow the method from [9], but we use
a new ingredient. The method from [9] is roughly as follows. Let G be the
complete graph with vertex set A. Color each edge of G with π(log(N 2)/ log 2)
colors, where the edge aa′ is colored by a color p, a prime ≤ log(N 2)/ log 2, if
aa′+1 = xp holds for some positive integer x (note that aa′+1 ≤ N(N−1)+
1 ≤ N2). Using a result of Dujella [5] to the effect that Diophantine sets have
bounded cardinalities, as well as results of Túran et. al. [10, 11] concerning
upper bounds on the number of edges of graphs without four cycles or without
complete subgraphs with eight vertices, the authors of [9] show that if G has
too many edges (i.e., more than the number shown in the right hand side of
inequality (1)), then for large N there exists some y ∈ [1, N ] such that the
interval [y, y2] contains four members of A with the property that G has a
monochromatic cycle on those four vertices colored with a color p > 2, which
in turn contradicts a gap principle from [8]. The same graph theoretical
approach combined with Theorem 1 from [3] allows one to simply eliminate
the “slicing step” in which all four vertices where in an interval of the form
[y, y2] for some y, which results in an extra saving by a factor of log logN , as
in Theorem 3 from [3].

Our improvement in Theorem 1.2 stems from the following direction. We
show that there exists a positive computable constant α such that if we set
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p0 = bα(logN)3/4(log logN)1/4c, and if we change all the colors p > p0 to
one single color, which we will call the “large” color, then G cannot contain
a cycle of length four colored with the large color. This part of the proof
uses lower bounds for linear forms in logarithms of algebraic numbers. As
for Theorem 1.4, we show that under the ABC conjecture, one may take p0

to be absolute, after which we apply the main result from [2] and Ramsey’s
Theorem to conclude.

3. The “Large” Color

In this section, we prove the following lemma.

Lemma 3.1. There exists a computable positive constant α such that if
N is large, and if we set p0 = bα(logN)3/4(log logn)1/4c, then A does not
contain a subset with four elements {a1, a2, a3, a4} such that aiai+1 + 1 = xpi

i

holds for with integers xi > 1 and pi > p0 for i = 1, . . . , 4. Here, we make the
convention that a5 = a1.

Proof. Multiplying the relations

a1a2 = xp1

1 − 1 and a3a4 = xp3

3 − 1,

as well as
a2a3 = xp2

2 − 1 and a4a1 = xp4

4 − 1,

and identifying we get the equation

(xp1

1 − 1)(xp3

3 − 1) = (xp2

2 − 1)(xp4

4 − 1),

which can be rewritten as

(3) xp1

1 x
p3

3 − xp2

2 x
p4

4 = xp1

1 + xp3

3 − xp2

2 − xp4

4 .

One checks easily that the number appearing in both sides of the above equa-
tion is nonzero. Indeed, if it were equal to zero, we would then get

0 = xp1

1 + xp3

3 − xp2

2 − xp4

4 = a1a2 + a3a4 − a2a3 − a4a1 = (a1 − a3)(a2 − a4),

contradicting the fact that the ai’s are distinct. Let M = max{xpi

i : i =
1, . . . , 4}. Without loss of generality, we may assume that M = xp1

1 . From
(3), we get the estimate

Mxp3

3 |1− x−p1

1 xp2

2 x
−p3

3 xp4

4 | ≤ 4M,

which leads to

(4) p3 logx3 + log |1− x−p1

1 xp2

2 x
−p3

3 xp4

4 | ≤ log 4.

We now use a linear form in logarithms to bound the logarithmic term above.
Let p0 to be determined later and assume that pi ≥ p0 holds for all i = 1, . . . , 4.
Then xp0

i ≤ xpi

i ≤ 1 +N(N − 1) < N2, therefore logxi ≤ (2 logN)/p0 holds
for i = 1, 2, 4. Finally, it is clear that since xi ≥ 2, it follows that if we write
P = max{pi : i = 1, . . . , 4}, then P ≤ 2 logN/ log 2.
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A classical application of lower bounds for linear forms in logarithms of
algebraic numbers (see, for example, [1]) shows that there exists a computable
positive constant β such that

log |1− x−p1

1 xp2

2 x
−p3

3 x−p4

4 | > −β log(P )

4
∏

i=1

log(xi)

> −8β(logx3) log

(

2 logN

log 2

)(

logN

p0

)3

.(5)

Thus, writing γ = 9β, we get that if N is large enough then the inequality

(6) log |1− x−p1

1 xp2

2 x
−p3

3 x−p4

4 | > −γ logx3 log logN

(

logN

p0

)3

holds. Inserting inequality (6) into inequality (4), we get

logx3

(

p0 − γ log logN

(

logN

p0

)3
)

≤ log 4

and the above inequality is impossible for large N if

p0

2
> γ log logN

(

logN

p0

)3

.

This completes the proof of the lemma with the choice

p0 = bα(logN)3/4(log logN)1/4c
and α = (2γ + 1)1/4.

4. The Proof of Theorem 1.2

We put n = bδπ(p0)
2c+1, where p0 = p0(N) is defined in Lemma 3.1, and

we show that if δ is a sufficiently large constant then the inequality #A < n
holds once N is sufficiently large.

We write G for the graph whose vertices are the elements of A. We write
qi for the ith prime number and we color the edges of G with t = π(p0) + 1
colors C = {q1, . . . , qt,∞} as follows: if aa′ + 1 = xp holds with some integer
x > 1 and a prime p, we then assign to aa′ the color qi if p = qi for some
i = 1, . . . , t, and ∞ otherwise (if more such choices for i are possible, we pick
the smallest one). For each color c, we write bc for the number of edges of
color c in G. It is clear that

∑

c∈C
bc =

(

n

2

)

=
n(n− 1)

2
.

A result of Dujella from [5], shows that there does not exist a set with 8
elements such that the product of any two plus one is a square (see [6] for a
better result). In particular, the subgraph of G colored by the color c = 2
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does not contain a complete graph with 8 edges. Túran’s result from [11] (see
also the argument on the bottom of page 228 in [9]) implies that b2 ≤ 7n2/16,
therefore

∑

c∈C\{2}
bc ≥

n(n− 1)

2
− 7n2

16
>
n2

17

if n is large. Theorem 1 in [3] now shows that b3 ≤ 7.64n5/3 and that bc ≤
5.47n3/2 if c ∈ C\{2, 3,∞}. Finally, a result from [10] implies that if b∞ >
n3/2 then there exists a cycle of length four colored with the color ∞, which
contradicts Lemma 3.1. Hence,

n2

17
≤

∑

c∈C\{2}
bc ≤ n3/2(5.47(π(p0)− 2) + 1) + 7.64n5/3 < 6n3/2 + 8n5/3.

The above inequality implies that the inequality

π(p0) ≥
n1/2

17 · 7 >

√
δ

109
π(p0)

holds for large values of n (hence, of N), which is impossible once δ > 1092.

Remark 4.1. Since the constant β appearing in the lower bound (5) is
effectively computable, it follows that both the constant α from Lemma 3.1
and the constant implied in the inequality (2) are effectively computable as
well.

5. The proof of Theorem 1.4

Assume a1 < a2 < a3 ∈ A are such that a1a3 + 1 = uk and a2a3 + 1 = v`

hold with u, v, k, ` integers and both k, ` > 10. We then have the equation

a2u
k − a1v

` = a2 − a1.

Let d = gcd(a2u
k, a1v

`). Applying the ABC conjecture to the equation

a2u
k

d
− a1v

`

d
=
a2 − a1

d
,

we get

a2u
k

d
� N(a2a1u

kv`(a2 − a1))
1+ε � (a3

2uv)
1+ε

�
(

a3
2(a1a3)

1/k(a2a3)
1/`
)1+ε

� a
(3+1/k+1/`)(1+ε)
2 a

(1/k+1/`)(1+ε)
3 .

Setting ε = 1/10 and recalling that k, ` ≥ 11, we get (1/k + 1/`)(1 + ε) ≤
2/10 = 1/5, while (3 + 1/k + 1/`)(1 + ε) < 4. Furthermore, since d|a2 − a1,
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we get that a2 > d. We thus get

a3 < uk ≤ a2u
k

d
� a4

2a
2/5
3 ,

therefore
a
3/5
3 � a4

2,

leading to a3 � a7
2.

In particular, if a1 < a2 < a3 < a4 < a5 are five elements of A such that
aiaj + 1 = x

κij

ij holds with integers xij and κij > 10, then a5 � a7
4 � a49

3 �
a343
2 .

We now assume that a1 < a2 < a3 < a4 are in A such that

a1a2 = xk1
1 − 1 and a3a4 = xk3

3 − 1,

as well as
a2a3 = xk2

2 − 1 and a1a4 = xk4
4 − 1.

Arguing as in Section 3, we get

(7) xk1
1 x

k3
3 − xk2

2 x
k4
4 = xk1

1 + xk3
3 − xk2

2 − xk4
4 .

The argument used at equation (3) shows that the number appearing in either

side of equation (7) is not zero. We letD = gcd(xk1
1 x

k3
3 , x

k2
2 x

k4
4 ). We apply the

ABC conjecture to equation (7) with A = xk1
1 x

k3
3 /D, B = −xk2

2 x
k4
4 /D and

C = M/D, with M being the right hand side of (7). Note that |M | � xk3
3 .

We get

xk1
1 x

k3
3

D
�
(

x1x2x3x4
|M |
D

)1+ε

,

leading to

xk1
1 x

k3
3 � (x1x2x3x4x

k3
3 )1+ε

�
(

(a1a2)
1/k1(a2a3)

1/k3 (a3a4)
1/k3(a4a1)

1/k4

)1+ε

(xk3
3 )1+ε.

Assume that ki ≥ k0, where k0 will be determined later. We then get

a2
1 < a1a2 < xk1

1 � a
8(1+ε)/k0

4 (xk3
3 )ε � a

8(1+ε)/k0+2ε
4 .

We now choose ε = 1/800 and k0 = 3205 and note that 8(1 + ε)/k0 + 2ε <
1/200. Hence,

a2
1 � a

1/200
4 ,

therefore a4 � a400
1 .

Assume now that a1 < a2 < a3 < a4 < a5 are such that aiaj + 1 = x
kij

ij

hold with integers xij and kij ≥ k0. On the one hand, we saw that a5 � a343
2 .

On the other hand, we also saw that a5 � a400
2 . From those two inequalities

we conclude that a2 < η, where η is a constant.
We are now ready to prove that #A = O(1). We first eliminate from A

all the elements smaller than η. The above argument then shows that from
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the remaining elements there does not exist a subset of five such that the
product of any two plus one is a perfect power of exponent ≥ 3205.

Let t = π(3205) and let pi be the ith prime. We let G be the graph whose
vertices are the elements of A. We color the edges of G with the t+ 1 colors
p1, . . . , pt,∞ in such a way that if a, a′ are in A then we assign to aa′ the color
pi for some i ∈ {1, . . . , t} if aa′ + 1 = xpi holds with some positive integer x,
and ∞ otherwise (of course, if there are multiple choices for i, we can again
just pick the smallest one). We now recall that for every prime number p (see
[5, 6] for p = 2 and [2] for p > 2), there exists a positive integer mp such that
there does not exist a set Ap with mp elements such that the product of any
two plus 1 is a pth power. For example, it is known that we can take m2 = 6
and mp = 4 if p > 177.

Now let A be the value of the Ramsey number R(m2, . . . ,mpt
, 5; 2). Recall

that the Ramsey number R(n1, . . . , ns; 2) is the smallest positive integer R
such that no matter how we color the edges of the complete graph with R
vertices with the colors 1, 2, . . . , s, there exist i and a complete monochromatic
subgraph with ni vertices colored with color i. The fact that this number
exists is Ramsey’s Theorem (see, for example, Theorem 1 on page 3 of [7]).

It is now clear that #A < A. Indeed, if #A ≥ A, then either there
exist some prime number p ≤ pt and at least mp elements of A such that the
product of any two increased by 1 is a pth power, or there exist at least five
elements of A the product of any two of which increased by one is a kth power
with some k ≥ 3205, and both instances are impossible.
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