GLASNIK MATEMATICKI
Vol. 45(65)(2010), 373 — 393

THE SMOOTH IRREDUCIBLE REPRESENTATIONS OF
U(2)

MANOUCHEHR MISAGHIAN
Prairie View A & M University, USA

ABSTRACT. In this paper we parametrize all smooth irreducible rep-
resentations of U (2), the compact unitary group in two variables.

1. INTRODUCTION AND NOTATION

Let E/F be a quadratic extension of local fields. If (W7, (,),) is a Hermit-
ian space over E and (Wa, (, ),) is a skew-Hermitian space over E, the unitary
groups G; = G (Wy) and Gy = G (W) form a reductive dual pair in Sp (W),

where W = Wy ®g W» has the symplectic form (,) = $Trg,p (m® (, )2)

over F' and © — Z is the non trivial element of Galois group I' = ' (E//F).
We consider the special case in which dimg W7 = 1, and dimgp W5y = 2. In
this case, G; = U (1), and Gy = U (2) are unitary groups in one and two
variables, respectively. The structure of U (1) is simple and its representa-
tions are all one dimensional and easy to find. The structure of U (2) is more
complicated and is the semidirect-product of two compact groups. Since our
group is compact, all its smooth irreducible representations are finite dimen-
sional. Although new methods and results for finding the representations of
p-adic groups were published recently ([12]), in this paper we will be using
the method used by Manderscheid ([5]) to construct the representations of
SLs, to parametrize the representations of U (2). Our motivation for find-
ing representations of U (2), in addition to its own interest, is that they are
needed to parametrize the theta correspondence for the reductive dual pair

U1),U(2)).

2010 Mathematics Subject Classification. 11F27, 20E99, 22E50.
Key words and phrases. Group of isometries, stabilizer, smooth representation,
induction.

373



374 M. MISAGHIAN

This paper consists of four sections. The first section is devoted to intro-
duction and notation. In the second section we describe the structure of U (2).
In the third section we find all representations of U (2) whose dimensions are
bigger than one. The final section consists of the description of all characters
(one-dimensional representations) of U (2). Besides characters, other finite-
dimensional representations will be described as fully induced representations
from characters of certain subgroups. This is given in Theorem 3.29. In The-
orems 4.5 and 4.6, we will formalize all the results obtained in sections 3 and
4.

To begin, let F' be a local p- field, where p is an odd prime integer number
and let w be the uniformizer of it. Let D be the unique (up to an isomorphism)
quaternion division algebra over F. Let 7 be a uniformizer of D such that
72 = w. Also let € be a unit in D such that € is a unit in F and er = —e.
For any x € D we can write:

T = X1 + To€ + X3 + T4€ET.
where z1, 9,23 and x4 are in F. For any x € D, x = x1 + x2€ + 237 + T4€T,
define = as follows:
T = XT1 — T2€ — L3T — T4ET.
Then x — T is an involution on D whose restriction to F is the non trivial
element of Galois group I' = I' (E/F'). We denote by v = vp,p the reduced
norm map and is defined as:
v(z) = zZ,
and by T'r = T'rp,r the reduced trace map and is defined as:
Tr(z) =z +Z.
For x € E, Trg r and vg,p are defined similarly:
TTE/F (:L') =r+7,
and
v(z) =vgr(z) = 2T.

Also let O = Op be the ring of integers of F' with maximal ideal P = Pp
generated by w, and k = kp the residue class field O/P with cardinality q.
Let vp (z) be the order of an element, x, in D. So for any = in D we can
write z = ur*?®) for some unit v in D. Let Op, Pp,and k =kp = Op/Pp
be the ring of integers, maximal ideal generated by 7, and residue class field
of D, respectively. We denote by D° the set of all traceless elements in D and
Ope = Op N D°. For any integer r, we define P, as follows:

P, =0pn" ={ar" |a € Op}.
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Also we define P[y. as Pf,o = OpoN Pf,. The norm one elements group of D,
denoted by D' is defined as follows:

D'={zeD|v(z)=1}.
For any positive integer r, D} is the following set:
D! ={zeD'|z=1+an", for somea € Op}.
Let E/F be a quadratic extension contained in D. Let vy be a generator of
E/F ,ie, E=F(y). We can and will take ¥ = ¢ when E/F is unramified
and v = m when E/F is ramified ([13]). Set W7 = E with the following

Hermitian form:

1
(1'7y)1 = ixya z,Yy € Ea

and set Wy = D with the following skew-Hermitian form:

1 _
(1'73/)2 = iTrD/E (')’l'y), T,y € Da

where T'rp is the trace map from D to E and is equal to the first coordinate
of z in F, i.e.,

Trp/g (x) =a, forany x € D,z = (a,b), and a,b € E.
One can show that:
TT‘ = TTE/F OTTD/E.
Now set W = W7 @ g Ws. Then W is isomorphic to Wy = D via a ® x — ax
(its inverse is © — 1 ® x) with the following skew-Hermitian form:

1
<l‘,y> = iTr(’Yl'g), l‘,yGDgW

For any = € D, let x = (a,b), where a and b in E are coordinates of x
in E.( note that D is a two dimensional vector space over E.) From here we
get T = (@, —b). We also denote by E' the norm one elements group of E,
El={zeFE|v(z)=1}.

2. STRUCTURE OF U (2)

While the structure of U(2) is well-known and is the semidirect-product
of compact groups D! and E! (]2]), we are giving its detailed structure here
in our notation.

Let all notations be as above and for simplicity for the rest of this paper we
assume that F/F is unramified (for ramified case see Remarks 2.14 and 3.15).
Thus we have E = F' (¢) and B = {1, 7} is a basis of D over E. Also note that
the skew-Hermitian space (W, (,)) is anisotropic space, i.e., (x,x) = 0 if and
only if z = 0, and the matrix of the skew-Hermitian form (,) in this basis, B,

is:
1 0
A_(O WQ).
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THEOREM 2.1. The group of isometries of (W, (,)), Ga, is given as fol-
lows:

27
GQ{(Z ig ¢ ) |a€EX,c€E,)\€E1,V(a)V(c)7r21}.

PROOF. Let g = ( Z d ) be an element of G5, where a, b, c and d are
in E. Then we must prove that:
(2.1) g Ag = A.
where g* = < g fi > and A is as in above. From equation (2.1) we also get:
(2.2) At =gA g,
. 1 1 0 o . 9
Now since A~! = 0 —x-2 ) multiplying equation (2.2) by —7* we get

o (7 e (7 Y)

From equations (2.1), (2.2) and( 2.3) we get:

via)—v(en® = 1,
ab—med = 0,
v(b) —v(d)n® = —x,
w*ea—db = 0,
v(d)—v(e)r? = 1,
v (a) —v(b) = 72

The above conditions lead to v (a) = v (d) and v (b) = v (c¢) 7*. From v (a) =
v(d) and equation v (a) — v (c) 72 = 1 we deduce that a # 0,d # 0. Because
if a = d = 0, then we must have —v (¢)7? =1, i.e v (cm) = 1, which is not
true. See ([7]). From here and 72¢a — db = 0 we get:

ﬁ:i:A,
d a
and )
%:&T—Q:)\,whenc#o.
Ifc=0,thenb=0and g= (8 2 with v (a) = v (d) = 1. For ¢ # 0 we
have d = \a, b = AMr?c¢and v (\) =1, v(a) —v(c)7? = 1. So



THE SMOOTH IRREDUCIBLE REPRESENTATIONS OF U (2) 377

27
Gg{(? ig ¢ ) |a€EX,c€E,)\€E1,1/(a)1/(0)7T21}.

O

PROPOSITION 2.2. The group E' is isomorphic to a subgroup of Go and
D! is isomorphic to a normal subgroup of Gs.

PROOF. Define f: E! — G5 by
_(10 1
f(A)(O )\),)\GE.

Then one can check that f is a one to one homomorphism from E! to Gs.
For the other part define f : D' — G5 by

w2b

a/ Y

where x = a+bm, a,b € E and v (x) = 1. Then for x = a+br and y = c+dn
in D! we have:

ro)=(

S

fzy) = f(ac+bdr®+ (ad+ be) )
B ac +bdr?®  (ad + be)
B (ad +be)  ac+ bdn?

(5 ) )
= f@)[fQ).

So f is a homomorphism. One can check that f is one to one. So we can

identify D' with its image, f(D'), in G2. To show D' is normal in Gg,

a Ar'e ) € Gy with a € EX,c €

c Aa

E.X€ Bt v(a)—v(c)m® =1, and v (z) — v (y)m® = 1. From here we get

detg = Mv(a) — Awv(e)n? = X, Since v(\) = 1,50 A™! = X and g7! =
a —m?e

—cA Aa
1 B a Mr’c x 7wy a j?TQE
gég<c Aa ><yx )(—c)\ Aa

_ T11 Ti12
T21 X22 ’

2
1et5<xﬂy)€D1andg<
T

. This gives us:
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where

r1 = av(a) — meya + mlayc — v (c) 7,

12 = M\ewlac — \rtéey 4+ \nlaay — \nlacz,

To1 = —axic+ a25\g — 7725\021] + acj\fc,

Ty = —nlzv(c)+ an’ye — mieya+ v (a) Z.
Now one can show that x99 = 777 and x91 = frI;?, ie.,

g g = < % ﬂ@) ) e D
Tz 21

THEOREM 2.3. G is semidirect product of D' and E', Gy = D'xE?!.

PROOF. This is well known, see e.g. [2], and Corollary 2.13 in this paper
in our notation. o

LEMMA 2.4. Let o : E* — Aut (W), be defined as follows:
X oy, for any \ € E,

where
ox: W —->W
is defined as:
ox (w) = ox (a+br) = a+ Abm,

for any w = a+br € W,a,b € E. Then \ — oy is an isomorphism of Elinto
the Aut (W). Further for any X € E', oy satisfies the following:

1. ox (w) = o (W) for any w e W,
2. ox(e)=¢e for anye € E,
3. oy is in the GLg (W) as well as in GLp (W).

PROOF. Let w = a + br and w’ = ¢ + dm be two elements in W, where
a,b,cand d are in E. Let A, X be in E'. Then:

ww' = ac+ bdr? + (ad + be) 7,
so by our definition we have:
ox (ww') = ac+bdr?® + \(ad + bé) w
= (a+ \b7) (¢ + Adn)
= ox(w)ox (w'),

ie., for any A € E', oy is a homomorphism of W. One can check that
ker oy = {1}. Also note that for any w’ = ¢+ dm € W, we have:

ox(c+Mdr) = c+dr=1',
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which shows that o is onto. Also we have:
o (w) = oxv(a+br)=a+ \Nbr
= ox(a+Nom) =oron (W),
i.e., oxx = oxoy. This shows that o is homomorphism. It is easy to check

that o is one to one. So ¢ is an imbedding. For the remaining statements we
have:

1. For any w = a+br € W and ) € E', we have:

ox(w) = ox(a—br)=a— Ibr =0y (w).

N

Any element e in F is in the form e 4 0, so oy (e) = e.
3. Let p € E. Then we have:
ox(w+pw') = ox(a+pc+ (b+ pd) )

= a+tpc+A(b+pd)w

= a+ A7+ p(c+ M)

= o (w) + poy (w').

So for any A € E', 0y is an E-linear map and hence an F-linear map
as well. As a linear map, o), is one to one, too.

O
LEMMA 2.5. For any A € E' and any 6 € D'. we have oy (§) € D*.
Proor. By Lemma 2.4 one has:
v(0x(0) = 0x(8)ox(8) = o (8) o (0)
= 0x(60) =or(1)=1.
O

COROLLARY 2.6. Let 0 : E' — Aut (Dl), be defined as follows:
X — oy, for any \ € B*,

where oy is as in Lemma 2.4, restricted to D' C D = W. Then o is an
imbedding.

LEMMA 2.7. Let A € E'. Then for all w € W we have:
(2.4) Trp/g(ox(w)) =Trp/p (w) = ox (T?‘D/E (w)) ,
and

(2.5) Tr(ox (w)) =Tr(w) = o) (Tr (w)).
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PROOF. We prove (2.5). (2.4) is the same. Write w = a + br. Then by
definition of T'r and part 2 of Lemma 2.4 we get:

Tr(ox(w)) = ox(w)+ox(w)=a+ \Nbr+a— \brw
= ata=w+w=Tr(w) =0x(Tr(w)).

LEMMA 2.8. For any A € E' we have o\ € Go and oy € Sp(W).

PROOF. Let w and w’ be two elements in W. Then by definition of (,),
and equation (2.4) in Lemma 2.7 we have:

(or (W), o5 (W), = %TTD/E (60/\ (w) ox (w’))
= %T?‘D/E (eox (w) o (0'))
_ %TTD/E (cox (wi')) = %TTD/E (cwd) = (w,w'), .

So o) € Ga2. The same computations and equation (2.5) in Lemma 2.7 give
the result o) € Sp (W). O

LEMMA 2.9. Let G = D' x E' be the set theoretic Cartesian product of
D! and E', and define the following operation on it:

(26) (5a )‘) * (5la )\I) - (UA (51) J, )‘/\l) )

for (8, \) and (§',X') € G. Then G is a group equal to the semidirect product of
D! x {1p1} 2 D! and {1p1} x E' 2 E! via 0 and we denote it by D'x, E'.

Proor. By Corollary 2.6 the action defined by equation (2.6) is well-
defined and (1,1) € G is its unit element. Further for any (4, \) € G, we
have:

(6,2) (03 (8) , A) = (5 (9) ,A) (8,) = (1,1).
So (6,\) ' = (o5 (6) ,A). On the other hand for any (5, \) € G we have:
(0,A) = (6,1) % (1, A),
and obviously we have:
D' x {1m}n{lpi} x E* = {(1,1)}.
o
REMARK 2.10. From now on we will write (0, A) (6’, \) for (0, A) % (6’, \').

LEMMA 2.11. There is a subgroup, say H, of Sp (W) such that D' x,E' =
H.
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PROOF. Define f : D'x,E' — Sp(W), (6,\) — f(s), where fis) is
given as follows:

feny W —=W, fen (w) = o (w)é.

Then f is a homomorphism because for any (5, \) and (§',\') € D! x,E!, and
any w € W we have:

fene W) = flay@san) (w) =oxx (w)ox (6') 0
= ox(on (w)d)d = fsn (on (w)d)
= fonferany (w).

This shows that f (3, ) f (6", N) = f((0,A) (6", N)). Now let (6,A) € ker f.
Then, for any w = a + br € W, we must prove that:

fen (w) = (a4 Abm) § = a + br.

This forces (6,\) = (1,1). Let (§,\) € D*x,E". Then for any w,w’ in W by
Lemma 2.4 and relations (2.4), (2.5) in Lemma 2.7 we have:

(o (). o ()) = {ox (w) 6,05 (') 8) = STr (cox (w) o (7))
- %Tr (m (w) 630y (w)) - %TT (€ox (w) o (@)

= %Tr (ox (eww)) = =Tr (eww) = (w, D) .

So fis.n) € Sp(W). Now set H ={fi5.n) € Sp(W) | (8,\) € D'x,E'}. O
PROPOSITION 2.12. Let all notations be as above. We have H =G5.

PrROOF. First note that for any f(5) € H we have f5) € G2, because
for any w,w’ in W by Lemma 2.4, and equation (2.4) in Lemma 2.7 we have:

(o (W), fon (W)
= (o (w) 8,0 () 8) = %TrD e (eoA (w) 6ox (@) 5)
_ %TTD e (eaA (w) 630y (w’)) - %TTD /2 (0 (ewn'))
1 _

= §TrD/E (eww') = (w,w) .

Now define F : H — G» as follows:

a Mr2b
f(f(&)\)) = ( Y )v
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where 6 = a4+ br € D! and A € E'. F is a homomorphism because, for
d=a+breD' and & =c+dr € D' and A\, N € E' we have:

F(fonfoay) = F(foresn)
ac + \bdn? AN 72 (Xad_Jr 1_76)
be+Aad AN (ac + Abdn?)

a M2b c Nrid
b A d Ne
= F(fion) F (feoran) -
Now let f(5.5) € ker F, where § = a + br € D' and A € E'. Then we have:

A2 1 0
)= (5 2’ )=(o 1)

This gives us § = A = 1, i.e., F is one to one. On the other hand for any

a Mr2b . .
Q= b \a € Go, if we take § = a + bw, then F (f((;,)\)) = (), which
shows that F is onto. |

COROLLARY 2.13. G2 = D'xE' = D'x,E' =U (2).

REMARK 2.14. If E/F is ramified then we may assume that £ = F().
Then B={1, ¢} will be a basis for D over E. So for any x € D we can write
x = a + eb for some a,b € E. In this case the bilinear forms (,); and (,) will
be redefined as follows:

1
(z,y), = §fy, forz,y e E

and
(x,y) = %Tr (rzy), forxz,ye€ D
Also for any A € E, oy will be given by
ox(z) =0ox(a+€b) =a+erb

for x = a+e€b € D, where a,b € E. The same argument as in unramified case
gives us that
U(2) = D'xE'~ D'x,FE*

3. REPRESENTATIONS OF U (2)

In this section we study certain subgroup because it will be used for the
induced representations in the main Theorem.

Let E be the unramified quadratic extension of F' contained in D specified
in previous sections. Let Op, Pg denote the ring of integers and maximal
ideal of E, respectively. We may and will assume that c (the uniformizer
of F') is the generator of Pg. Also for any integer r, Pg is defined as Pj =
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Opw” = Opn®" and E} = {z € E' |z =1+ aw", for some a € Og}. The
residue class field of E will be denoted by kg.

DEFINITION 3.1. Let x be a non trivial additive character of F. The
conductor of x is the smallest integer, n say, such that x is trivial on P™.
Alternatively we may say P™ is the conductor of x.

REMARK 3.2. Throughout this paper, x is a non-trivial additive character
of F' with the conductor 0 (O).

LEMMA 3.3. Let L1 and Lo be any two unramified quadratic extension of
F contained in D. Then there ezists a unit d € Op such that Ly = dL1d™".

PROOF. See [9, page 104.]. O

LEMMA 3.4. For any non zero element d € D, the map o — dad™" is an
isomorphism of Ope onto Opo.

ProoF. This is clear. O

REMARK 3.5. In what follows o € D° is an element with vp (o) = —n—1,
where n is a positive integer. Set r = [”TH], where [ ] is the greatest integer
part. We will identify D!x, {1z} with D! as a normal subgroup of U (2).

LEMMA 3.6. Define xo : D} — C* by :
Xa (h) = x (Tr(a(h—1))), h€ Dy.
Then Xo is a character of D} with conductor equal n.

PROOF. See [7]. O

DEFINITION 3.7. Let ¢ be any homomorphism on a subgroup H of a group
G. For any g € G set HY9) = gHg™" and define ¢? on it as follows:

¢ (h)=¢ (9 " hg), he H.
p9 is called the conjugation of ¢ by g.

LEMMA 3.8. Notation is as in Lemma 3.6. For any unit element d € Op,
Xa and Xfil,lad are the same characters of D}.

PROOF. Let § € DI Nd D!d~' = D}. Then we have:
X9-10d(8) = Xa-1aa (d710d) = x (Tr (d 'ad) (d~16d — 1))
X (Tr (@ a (5 = 1) d)) = x (Tr (@ (5 = 1)) = xa (8).

O

COROLLARY 3.9. Let L1 and Lo be any two unramified quadratic exten-
ston of F' contained in D. Then the characters of L1 and Lo can be identified
m a certain way.
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REMARK 3.10. On the basis of Lemmas 3.3 and 3.8, and for our purposes,

any unramified quadratic extension of F' contained in D might be taken equal
E.

LEMMA 3.11. Let o and r be as in Lemma 3.6. Let L = F («) be a qua-
dratic extension of F contained in D and set L'={x € L | v (z) = 1}. Then
there exist p € (Ll)A and p € (El)/\ such that o|1np1 = Xa|Linp: and
Y|E1nD! = Xa|E'nDL, Where ( )A is Pontryagin’s dual.

PROOF. See [7]. O

DEFINITION 3.12. Let o, v and L be as in Lemma 3.11. Set:

A
P () = {‘P € (Ll) | P|LinDL = Xa|leD;} )

and N
V(o) = {¢ € (El) | Y\prnpL = Xa\ElﬁDi}-

LEMMA 3.13. Let A € E', and let « € D° be an element with vp (a) =
—n — 1, where n is a positive even integer and set r = ["TH] Then for any

h € D}, we have xo (h) = xa (o (h)) if and only if X € E[ln,rﬂ].
2

ProoFr. Write h =1 4 z, for some 2 € P[,. Then we must prove that:
X (Tr(aox (x))) = x (T'r (az)) -

This is the same as (aoy (z) —ax) € Pp'. Now write + = ar” =
(a1 + agm) «", for some unit a € Op where a1, a2 € Og. Then we have:

(a1 4+ Aagm) ©", if r is even,
ox(z) =
(Aa1 + agm) ", if r is odd.
So from here when r is even we get:

(aoy (z) —ax) = a (A — 1) agr" .

Now note (aoy (z) —ax) € Pyt if and only if a (A —1)axn™ € Py, or
A-1)e Py " 1so

n—r n—r+1

(A—1) ePg*Hm()E:P,[J -l :P][E 1
This implies that A\ € E[ln,r+1]. If r is odd then:
2

(aox () —az) =a(A—=1)arn".

Now (aoy (z) — ax) € Pyt if and only if a (A — 1) a17” € Pyt or (A —1) €
P5~". Thus

n—7‘+1]

(A1) ePr A0y =P 21,
and this is the same as \ € E[I,L,,.H]. O
2
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THEOREM 3.14. Let a € D° be an element with vp (o) = —n — 1, where
n is a positive integer and r = [”TH] Then the stabilizer of X, St (Xa), in
U (2) is:
E'D!  x,E'  ifn is odd,
St (Xa) =
: L'D} ><10E[1r+1] if n is even.
=
PROOF. First suppose n is odd. Then L = F («) is unramified. So by
Remark 3.10 we may assume L = E. Now let g = (6, A) € U (2) where § € D'
and A\ € E' be an element of St (xa). Then g=' = (05 (6),A). Let h € D}.
Now we must prove that:

(3'7) Xa (g_lhg) = Xa (h) :
On the other hand we have:
(38) ghg = (03 (5).3) (1) 0N = (o3 (B a5 (5) 1) (5.1

(o5 (9) o5 (h) o5 (9) 1) = (o (6h9) 1)
By writing h = 1 + x, equation (3.7) becomes:

(3.9) x (Tr (acs (626))) = x (Tr (ax)).
Now since oy is E-linear equation (3.9) becomes as follows:
(3.10) x (Tr (aos (626))) = x (T'r (o5 (adzd))) .

Apply Lemma 2.7 to equation (3.10) to get;

X (Tr (aoy (626))) = x (Tr (adzd)) = x (Tr (ax)),
or
Xa (5h5) = Xa (h).
This last equality implies that 6 € E*D}_;. So g = (6,\) € E'D}_;x,E'.
Now suppose n is even. Then L = F'(«) is ramified. Apply Lemma 3.13
to equation (3.9) to get:

(3.11) Xa (05 (6h8)) = xa (05 (R)),
if and only if \ € E[l,.ﬂ]. On the other hand equation (3.11) forces that
2
5 € L'D}. So g = (3,)) € L' Dixo o, O
2

REMARK 3.15. In ramified case the stabilizer of xq, St (Xa), in U (2) is:

E'D!x,E! if n is even, and a € £
St(xa) =4 L'Dlx,E} if niseven, and a ¢ E
L'D! %, El | if n is odd.

LEMMA 3.16. Let notation be as in Definition 3.12.
1. For any ¢ € ® (o), define po : LD} — C* by pq (16) = ¢ (1) Xa ()
forl e L' and 6 € DL. Then ¢, is a well-defined character of L* D}.
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2. For any ¢ € U (), define 1y : E'DL — C* by 1, (ed) = 1 (€) Xa (9)
fore € E' and 6 € DL. Then 1, is a well-defined character of E'D].

PROOF. See [7]. O

LEMMA 3.17. Let o € D° be an element with vp (o) = —n — 1, where n
is a positive integer and set r = [”T'H]

1. Let n be odd. For any ¢ € ¥ () and any character & of E'define:
Y(ae) : B'DixgE" — CX,
by
P(ae) (@A) = Ya () E(A),

where g is as in Lemma 5.16.  Then ¢ is a character of
E'Dlx,E!.
2. Letn be even. For any ¢ € ® () and any character & of E[lT“] define:
=

Plag) : LlDixgE[l%] — CX%,
by
P(ae) (T, A) = pa () E(N),

where o is as in Lemma 3.16.  Then ¢ ¢) is a character of
L'Dlx,E}!

(=]
PROOF. 1. Let g = (z,\) and ¢’ = (2/,\) € E*D} x,E". Then:
99’ = (ox (@) 2, AX).
So we have:
(3-12) t(ai) (99') = Ya (ox (2") ) (AN) = P (0 (1)) Yo () £ (A) € (X))
Now note:
(3.13) ox (@) = (1,A) (2',1) (1,A).
and since {1} x,E! is in the St (xa), so by 3.13 we can rewrite 3.12
as follows:
Y (99) = Ya (@)t (2) (V) EN) = a () £ (A) Yha () € (X)

= Yoo (9) Ve (9)-

2. Same argument as in part 1 works in this part.
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LEMMA 3.18. Let n be a positive odd integer such that r = ”TH s even.
Set:

1+anr—17"

Then H,_1 is a subgroup of D}_, /DL with order |H,_1| = q>.

1— r—1
H_y = {h €Dl /D! h= 1T b e o}.

PROOF. See [7]. O
LEMMA 3.19. Let notation be as in Lemma 3.18. Set
D,.1=D}/D}H,_;.
Then ©,_1 is a subgroup of D} _,/D} and we have |D,_1| = q|D;/D}|.
PROOF. See [7]. O

LEMMA 3.20. Let Ef = F (1+ Pg) N E'. All other notations are as in
Lemma 3.18. For any A € Ef and h € H,_1 we have oy (h) € D,_1.

1

PROOF. Write A = b+en? whereb € O, e € Op, andlet h = 1=¢=—_D1 ¢

l14+an™1"n

H,_1. Then by expanding the fraction on the right hand side we have:
1—air™1 |

14+ainr—177"

= 1—2abn" "' — 2aen” + 2a%7% Y (mod PR).

(3.14) ox(h) =

Set = 1 — 2abr™ ' + 2(a+b)* 72"~V (mod P3). Then if r > 3 we can
rewrite 3.14 as follows:

ox(h) = p—2aen™ —2abr?=Y — 2p2722("=Y) (mod PPR)
(315) = u (1 - <2aﬁe — 2abjin™3 — 2b2[m(’”’3)) 7#“) (mod PR).
Now note that we have y € H,_y, and the rest of 3.15 is in the D} ,/D;
C D!/D}. So oy (h) € D,_1. If r = 2, then we have:
ox(h) = p—2b(a+b)r?
= p(l—2b(a+b)n?).
So again o) (h) € D1 = D,_1. O

COROLLARY 3.21. Notations are as in Lemmas 3.18, 3.20. Then
Ei®,_1x,E} is a subgroup of E*D}_, /DL x,E'.

PROOF. Arguing as in [7] and Lemma 3.20 yields the result. O

COROLLARY 3.22. Notations are as in Lemma 3.20 Let o € D° has order

vp (o) = —n— 1, where n is a positive odd integer such that r = ”TH s even.

Then for any X\ € E{ and h € H,_jwe have x4 (o5 (h)) = 1.
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PRrOOF. Using 3.14 in Lemma 3.20 and definition of y, we get:
Xa (oA () = x [Tra (f2ab7r“1 — 2aen”! 4 2a27r2(“1))]

X (f2abTra7rT*1) X (f2aT7’ae7rT+1) X <2a27r2(T*1)T7"a)
X (0)x (0) x (0) = 1.

O

LEMMA 3.23. Let a,n and r be as in Corollary 3.22. For any i € ¥ ()

and any character & of E'define:
D) : E1D,1x,Ef — CX,
by
i) (Thy N) = Yiaey (£,\), =€ ELDY/DL, he Hy1, € B

Then J(a,g) is a well-defined character of E1®, _1x,E7.

PROOF. Arguing as in [7] and Corollary 3.22 gives the result. O

If T is a group and I'; and T’y are subgroups of I write [I" : T'y] for the num-
ber of left T’y —cosets in T and [I'y : T' : T'3] for the number of (T'y, T'y) —double

cosets in I'. Arguing as in [7], and using Lemmas 3.18 and 3.19 one can prove
the following:
LEMMA 3.24. Let a,n and r be as in Corollary 3.22. Then:
[E'®,_1x,E} : BID}/DEx,E}] = q (£2).
[E'D,_1/Dix,E} : BI®, _1x,E}] = q ().
2 5] — 3.
[ElDi/D}lxgEl :ED! | /Dlx,E!: ElDi/D}lxgEl] =2q— 1.
[E1D!/Dix,E}: E'D!_ /D, E': EID}/Dix,El] = ¢? (452)°.
LEMMA 3.25. Let a,n and r be as in Corollary 3.22. For any ¢ € U ()
and any character & of E'set

Tty = Ind (ElDLl/D}LxUEll, BE'®, 1%, B}, w(a@) .

CL ok w o=

Then T(a,p.¢) is an irreducible representation of E*D}_, /D)X sE} having di-
mension q (%)

PROOF. One can show that the stabilizer of ¢, ¢) in E*D}_,/D}x, B}
is E1®,_1x,E}. Now the result follows from [1, Theorem (45.2)’]. a

LEMMA 3.26. Notation is as in Lemma 3.25. For any ¢ € ¥ («) and any
character € of E* let wza ¢) be the restriction of Y(a ¢ to the EiD!/Dlx,El
and set:

T£a7¢7§) =Ind (ElDr—l ><]0'E11) EllDa{/DrlzxaEll/lpza,f)) :
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Then T(Iombyg) s a direct sum of q (%1) copies of T(a,yp.¢)-

PROOF. Since 1;(&,5) = wza ¢) on the E{D}!/Dlx,FE{, so T(/a ».¢) 1S equiv-
alent to [EID,«_l ><1(,E11 : E%D%/D}INUEH copies of T(aup,e)- Now part 1 of
Lemma 3.24 implies the result. O

LEMMA 3.27. Let n be the character of the following representation:

Ind (E'D}_, /Dy x,E",E{D} /D) XcE{, ¥ (ayg)) -
Then ¢ = ﬁn is the character of an irreducible representation, say
o' (a,,€), of E'D}_,/D:x,E' whose restriction to EYD!_|/D:x,E} is
T(e,6)

PROOF. Let (,) denote the usual scalar product on L?(E*D}_, /Dx,E*').
By Lemma 3.24 and Mackey’s Theorem we get:

B 4 _ 4 s (q+1 2:

*(q
Since 7 (1) = ¢2 (%1)2, thus (1) = ¢ (%) So ( is the character of an irre-
ducible representation of E'D!_;/D}x,E" having dimension ¢ (£1). Call
this representation p’ (v, ¢, €). The multiplicity of p’ (o, 1, &) in T4 4.¢) is:

2 9
(€ Xrawe) = m(n’xﬂa,w,s)):m(Ren’IndXTm,w,s))
_ ﬁ [E'®,_1%,E} : E}D}/ D%, El]

()
= q :17
q(q+1) 2

where Xr, , ., Is the character of T(a,y,¢)- Now by Frobenius reciprocity, the

restriction of p’ (a,¥,€) to E*D}_, /D] x5 EL IS T p.¢)- a
LEMMA 3.28. For any positive integer r > 1 we have
(E'D}_1x,E") JE'D}_1x,{1} 2 E'.

PROOF. Define f : E1D! x,E' — E!' by f(x,e) = e, for any x €

E'D! | e € E'. Then one can show that f is an onto homomorphism with
ker f = E'D!_ %, {1}. n|

THEOREM 3.29. Let o € D° with vp (o) = —n — 1 where n is a positive
integer and r = [”T‘H]

1. Let n be even. For any ¢ € ® () and any character £ of E[l,.ﬂ] set:
2

Plao.e) = Ind (U (2), St (Xa) s P(ave)) -

Then p(a,p,¢) is an irreducible representation of U (2).
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2. Letn and r = [%H] be odd. Then we know ([7]) E'D}_,, and E'D}

r—1’
have the same characters. So for any v € ¥ («) and any character £
of E' set

Plawe) = Ind (U (2), 8t (Xa) (o)) -
Then pa,p.e) is an irreducible representation of U (2).

Let n be odd but r = ["TH} is even. For any v € U (a) and any

character &€ of E1, let p' (a,1,&) be as in Lemma 3.27. Set:
Plap,e) = Ind (U (2), 5t (Xa), o' (a, ¥, ).

Then pa,p.e) is an irreducible representation of U (2).

PROOF. 1. The result follows from [1, Theorem (45.2)"].
2. The result follows from [1, Theorem (45.2)"].
3. Since p’ (o, 9, ) is an extension of 7, ¢), S0 by [1, Theorem 51.7] and

Lemma 3.28 any irreducible component of the following representation
Ind (E'D;_x,E", E{ D} x5 {1}, T(a.yp.¢)) -
is equivalent to p’ (a, 1, &) ® v, for some character v of E. On the

other hand by [1, Theorem 38.5] we have p’ (o, 9, &) @y = p' (o, 9, 7).
Now apply Clifford Theorem.

4. CHARACTERS, ONE-DIMENSIONAL REPRESENTATIONS OF U (2)

In this section we parametrize all one-dimensional representations (char-
acters) of U (2). Further, we classify all smooth irreducible representations of

U(2).

LEMMA 4.1. The commutator group of U (2),[U (2),U (2)], is equal to
Dix, {1} = D}.

PRrROOF. Let x = (6,¢),y = (&,¢’) € U (2) where 6,8 € D!, and e, e’ €
E'. Then:

zyzlyt = (8,e)(8,¢€) (o2 (8) ,6_1) (oo () ,e'_l)
= (8'0e (8) 0c(8')6,1).

So zyz~ly~! € D!, and hence [U (2),U (2)] C D'*x,{1p:}. On the other
hand Lemma 4.2 below shows that U (2) / (D{ X, {1p1}) is abelian and this
implies that Dix, {1z} C [U (2),U (2)]. u|

LEMMA 4.2. U (2) / (Dix,{1p}) = (D'/D}) xoE", where the right
hand side is the external semidirect product via o.
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PROOF. Define f : U(2) — (D'/Di)x,E", by f(6,e) = (6Di,e).
Then f is a homomorphism because:
[(8.0)0.) = f(o.(8)dec) = (0. (5)) 6D}, ec'
= (6D1,e) (0'Dy,e’) = f(d,e) f(&',€).
f obviously is onto and one can check that ker f = Dix, {151} O

LEMMA 4.3. D' /D1 is a cyclic group of order q¢ + 1 and we will denote
i by figyi-

PROOF. See [7]. O

PROPOSITION 4.4. For any character of jig41, say n, and any character
§ of B,
Ne : pgr1 o BN — C*,
defined by
ne (2, A) =n(2)§(A),
is a character of U (2). Conversely any character of U (2) is in this form.
PROOF. Since p,+1 and E' are abelian it is easy to see that ¢ is a char-

acter of pg4+1x,E'. Now by inflation we can define n¢ on U (2). Conversely
let © be a character of U (2). Then for any z,y € U (2) we have:

Q (xyx_ly_l) =Q(x)Q(y)Q (x_l) Q (y_l) =1
ie., Q\Dixg{lEl} = 1. So Q is a character of pgr1x,E'. Let n =

Qluq+1xg{1E1} and £ = Q\{lDl}mEl‘ Then one can show that = 7.
O

THEOREM 4.5. Any irreducible representation of U (2) is either a char-
acter or is one of those determined by Theorem 3.29.

PROOF. Let p be an irreducible representation of U (2). Since the family
{Dlxs{1}} _, is a system of unity neighborhoods in D'x, {1} , there is a
least integer n > 1 such that the restriction of p to D} x, {1}, PIDL %, {1} 18
trivial. Now we have the following cases:

1. n = 1. Then the restriction of p to D}xa{lEl},plD%NU{lEl}, is
trivial.  So we can look at p as an irreducible representation of
U(2),/ (Dixg{lg}). But U(2),/ (Dix,{1g}) is abelian because
by Lemma 4.2 D}x, {1z} is the commutator group of U (2), so by
Proposition 4.4 p is a character of U (2).

2. n = 2k+1, k a positive integer > 1. Then p = p (a, ¥, §) where o € D°

. _ . 1 . .
with v (a) = —n — 1, 9 is a character of E' occurring in PlE s, {1}

and € is a character of E! occurring in Pl b, B
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3. n = 2k, k a positive integer > 1. Then p = p(a,¢,§) where
a € D° with v(a) = —n — 1, ¢ is a character of L' occurring in

PlLtsa, {1} where L = F' (a) and ¢ is a character of E[l,,ﬂ] occurring

2

m p‘{lDl}xf’Eir;l].

O

THEOREM 4.6. Irreducible representations of U (2) enjoy the following
equivalencies:

1. Any irreducible representations of U (2) determined by Theorem 3.29,
never is equivalent to a character.
Two characters Q1,9 of U (2) are equivalent if and only if Q1 = Qa.
3. Any two irreducible representations p1 = p1(a1,¥1,&1) and py =
p2 (o, 12,&2) of U (2) determined by Theorem 3.29 are equivalent if
and only if:
e {1 =&
o If Y14, is any irreducible representation of D' occurring in
P1D %, {1} and Yaa, is any irreducible representation of D' oc-
Curring in Papiy, {1y, then ¥ia, = Yaa, -

o

PrOOF. Parts 1 and 2 are clear. For last part of part 3, from [7] we
know that two irreducible representations p(a, ), and p(c/,¢’) of D! are
equivalent if and only if:

e they have same conductor, n,

e there exists g € D'such that o/ — gag™' € P;™" where r = [”T'H] ,

o o (e)=p(geg!) fore’ € ' = F(d/), and e € E = F(a),

o B/ =gEg 1.

This is because if we consider the restriction of p («, ¢), and p (¢, ¢’) to
D! where r = [241], then Clifford’s Theorem ([1]) gives the result. For more
detail see [7]. O
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