ON SQUARES OF IRREDUCIBLE CHARACTERS

EMMANUEL ZHMUD
Kharkiv State University, Ukraine

Abstract. We study the finite groups G with a faithful irreducible character whose square is a linear combination of algebraically conjugate irreducible characters of G. In conclusion, we offer another proof of one theorem of Isaacs-Zisser.

There are a few papers treating the finite groups possessing an irreducible character whose powers are linear combinations of appropriate irreducible characters, for example, [BC] and [IZ]. Our note is inspired by these two papers, especially, the second one.

In what follows, G is a finite group. We use standard notation of finite group theory (see [BZ]). Recall that if $\chi \in \text{Irr}(G)$, then the generalized character $\chi^{(2)}$ (see [BZ, Chapter 4]) is defined as follows:

$$\chi^{(2)}(g) = \chi(g^2) \quad (g \in G).$$

Next, $\text{Char}(G)$ denotes the set of characters of a group G and, if θ is a generalized character of G, then

$$\text{Irr}(\theta) = \{ \chi \in \text{Irr}(G) \mid \langle \theta, \chi \rangle \neq 0 \}.$$

The quasikernel $Z(\chi)$ of $\chi \in \text{Char}(G)$ is defined as follows:

$$Z(\chi) = \{ g \in G \mid |\chi(g)| = \chi(1) \}.$$

It is known that $Z(\chi)$ is a normal subgroup of G containing $\ker(\chi)$ and $Z(G/\ker(\chi)) \leq Z(\chi)/\ker(\chi)$ with equality if, in addition, $\chi \in \text{Irr}(G)$. In what follows, we use freely results stated in this paragraph.

2010 Mathematics Subject Classification. 20C15.

Key words and phrases. Generalized character, algebraic conjugate, irreducible characters, quasikernel, exterior power.

Professor Zhmud (1918–2007) died in 29 December 2007. This note was prepared by Y. Berkovich, based on a letter dated March 14, 2000.
Let $\chi \in \text{Irr}(G)$. It is known that
\begin{equation}
\text{(1)} \quad \text{Irr}(\chi^{(2)}) \subseteq \text{Irr}(\chi^2).
\end{equation}
Indeed, $\chi^{(2)} = \chi^2 - 2\Lambda^2\chi$ (see formula (22) in [BZ, §4.6]) so it suffices to show that $\text{Irr}(\Lambda^2\chi) \subseteq \text{Irr}(\chi^2)$. Next, $\chi^2 = \Lambda^2\chi + \theta$, where θ is the exterior square of χ (see [BZ, Lemma 4.16, formula (17)]) so $\text{Irr}(\Lambda^2\chi) \subseteq \text{Irr}(\chi^2)$, as desired. Therefore, if $\text{Irr}(\chi^2) = \{\psi_1, \ldots, \psi_n\}$ and
\begin{equation}
\text{(2)} \quad \chi^2 = \sum_{j=1}^n a_j\psi_j, \text{ where all } a_j \text{ are positive integers},
\end{equation}
then, by (1), we have
\begin{equation}
\text{(3)} \quad \chi^{(2)} = \sum_{j=1}^n b_j\psi_j, \text{ where all } b_j \text{ are integers}.
\end{equation}
Set
\begin{equation}
\text{(4)} \quad a = a_1 + \cdots + a_n, \quad b = b_1 + \cdots + b_n.
\end{equation}

Let ϵ be a $|G|$-th primitive root of 1, $G = \text{Gal}(Q(\epsilon)/Q)$, where Q is the field of rational numbers. The group G acts in the natural way on the set $\text{Irr}(G)$ as follows: if $\chi \in \text{Irr}(G)$ and $\sigma \in G$, then $(\sigma\chi)(g) = \sigma(\chi(g))$ for all $g \in G$ (see [BZ, Chapter 3]). Characters $\psi, \psi' \in \text{Irr}(G)$ are said to be algebraically conjugate if $\psi' = \sigma\psi$ for some $\sigma \in G$. In that case, as it is easy to check, $\psi(1) = \psi'(1)$, $\ker(\psi) = \ker(\psi')$ and $\text{Z}(\psi) = \text{Z}(\psi')$.\footnote{Let us prove the second equality. Take $g \in \ker(\psi)$. We have $\psi'(g) = \sigma(\psi(g)) = \sigma(\psi(1)) = \psi(1)$ so $\ker(\psi) \leq \ker(\psi')$. Since $\sigma^{-1} \in G$, the reverse inclusion holds as well.}

Definition 1. A group G with an irreducible character χ possesses a property \mathcal{A}, if it satisfies the following conditions:
\begin{itemize}
\item[(A1)] $|G|$ is even.
\item[(A2)] χ is faithful.
\item[(A3)] $n \geq 2$ and $\psi_j \ (j = 1, \ldots, n)$ are algebraically conjugate with $\psi = \psi_1$ (see decomposition (2)), i.e., $\psi_j = \sigma_j\psi$ for some $\sigma_j \in G \ (j = 1, \ldots, n)$.
\item[(A4)] χ and ψ_1, \ldots, ψ_n satisfy (2) and (3).
\end{itemize}

Our main result is the following

Theorem 2. If the group G satisfies condition \mathcal{A}, then the following assertions hold (here, as in part (A3) of the definition, $\psi = \psi_1$):
\begin{itemize}
\item[(a)] G is nonabelian and $\chi(1) > 1$.
\item[(b)] G has only one involution u.
\item[(c)] $\ker(\psi) = \langle u \rangle$.
\item[(d)] $\text{Z}(\psi)$ is abelian.
\item[(e)] $\text{Sylow } 2\text{-subgroups of } G$ are cyclic.
\end{itemize}
(f) \(G = P \cdot N \), a semidirect product, where \(P \in \text{Syl}_2(G) \) and \(\{1\} < N \triangleleft G \).

(g) \(\chi(1) = \psi(1) \) and \(b = 1 \).

(h) \(\chi_N \in \text{Irr}(N) \).

(i) All \((\psi_j)_N \) are irreducible and nonreal for \(j = 1, \ldots, n \).

(j) If \(w \in G \) with \(\alpha(w) = 8 \), then \(\psi(w) = m\sqrt{-1} \), where \(m \) is an integer dividing \(\chi(1) \).

Proof. (a) It follows from (2) and (4) that \(\chi(1)^2 = a\psi(1) \) so \(\chi(1) > 1 \) since \(a \geq n > 1 \). Therefore, \(G \) is nonabelian.

(b) Let \(u \) be an involution in \(G \). Since \(\psi(u) \) is a rational integer, it follows that \(\psi_j(u) = \psi(u) \) since the \(\psi_j \)'s are algebraically conjugate. Therefore, \(\chi(\psi(u) = b\psi(u) \) (see (3) and (4)). Since \(\chi(\psi(u) = \chi(u^2) = \chi(1) \), we get

\[
\chi(1) = b\psi(u). \tag{5}
\]

On the other hand, \(\chi(1) = \chi(\psi(u) = b\psi(1) \) so, taking into account that \(b \neq 0 \), we get \(\psi(u) = \psi(1) \), by (5), i.e., \(u \in \ker(\psi) = \ker(\psi_j) \) for \(j = 1, \ldots, n \). Therefore, it follows from (2) that \(\ker(\chi^2) = \ker(\psi) \) so \(u \in \ker(\chi^2) \), i.e., \(\chi(u)^2 = \chi(1)^2 \). In that case, \(\chi(u) = \pm \chi(1) \), and we obtain

\[
\chi(u) = -\chi(1) \tag{6}
\]

since our character \(\chi \) is faithful. It follows that \(u \in \text{Z}(\chi) = \text{Z}(G) \) since \(\chi \) is faithful, i.e., \(\text{Z}(G) \) contains all involutions of \(G \). Since \(\text{Z}(G) \) is cyclic (\(\chi \) is faithful), we conclude that \(u \) is the unique involution in \(G \), and (b) is proven.

(c) As we have proved in (b) (see the sentence after formula (5)), \(u \in \ker(\psi) \). It suffices to show that \(u \) is the unique nonidentity element of \(\ker(\psi) \).

Take \(x \in \ker(\psi)^G \). Then \(\psi_j(x) = \psi(1) \) for all \(j \) so, by (2), \(x \in \ker(\chi^2) \) so that, again by (2), we have

\[
\chi(1)^2 = \chi(x)^2 = a\psi(1), \quad \text{and hence} \quad \chi(x) = -\chi(1)
\]

since \(\chi \) is faithful. In particular, \(x \in \text{Z}(\chi) \) so that \(\chi(x^2) = \chi(1) \) and \(x^2 \in \ker(\chi) = \{1\} \), i.e., \(x \) is an involution. It follows from this and (b), that \(x = u \).

Thus \(\ker(\psi) = \{1, u\} = \langle u \rangle \), as required.

(d) It follows from (c), that \(\text{Z}(\psi) \) is abelian since \(\text{Z}(\psi)/\ker(\psi) \) is cyclic (in view of irreducibility of \(\psi \)) and \(|\ker(\psi)| = 2 \).

(e) Let \(P \in \text{Syl}_2(G) \). By (b), \(P \) is either cyclic or generalized quaternion. Assume, by way of contradiction, that \(P \) is generalized quaternion. Take in \(P \) an element \(v \) of order 4. Then, by (b),

\[
v^2 = u. \tag{7}
\]

Let \(j \in \{1, \ldots, n\} \). Then, by (A2), \(\psi_j = \sigma_j\psi \) so that \(\psi_j(v) = (\sigma_j\psi)(v) = \sigma_j(\psi(v)) \). We have \(\sigma_j(\epsilon) = \epsilon^{\nu_j} \) for some rational integer \(\nu_j \) such that \(\text{GCD}(\nu_j, |G|) = 1 \) (recall that \(\epsilon \) is the primitive \(|G| \)-th root of 1 chosen above); then \(\nu_j \) is odd in view of (A1). Setting \(\nu_j = 2\lambda_j + 1 \) and taking into account
that $\psi(v)$ is a sum of powers of ϵ, we get

$$\psi_j(v) = \sigma_j(\psi(v)) = \psi(v^{\epsilon_j}) = \psi(v^{2^{\lambda_j+1}}) = \psi(u^{\lambda_j}v) = \psi(v)$$

since $u \in \ker(\psi)$, by (c). Thus

(8) $$\psi_j(v) = \psi(v) \quad (j = 1, \ldots, n).$$

Then, by (6), (8), (3) and (4), we obtain

$$-\chi(1) = \chi(u) = \chi(v^2) = \chi^{(2)}(v) = \sum_{j=1}^{n} b_j \psi_j(v) = b \psi(v).$$

On the other hand, $\chi(1) = \chi^{(2)}(1) = b \psi(1)$ so $\psi(v) = -\psi(1)$. It follows from this and (8), that

(9) $$\psi_j(v) = -\psi(1) \quad (j = 1, \ldots, n).$$

It follows from (9) that, if T is a representation of G affording the character ψ_j, then $T(v) = -I_{\psi(1)}$, where $I_{\psi(1)}$ is a $\psi(1) \times \psi(1)$ identity matrix. Therefore, by (2), we get

$$\chi(v^2) = \sum_{j=1}^{n} a_j \psi_j(v) = -a \psi(1) = -\chi(1)^2,$$

and we conclude that

(10) $$\chi(v) = ci\chi(1),$$

where $c = \pm 1$ and $i = \sqrt{-1}$. It follows from $|\chi(v)| = \chi(1)$ that $v \in Z(\chi) = Z(G)$, a contradiction, since the center of P, which is a generalized quaternion group, has order 2. Thus, $P \in \text{Syl}_2(G)$ is cyclic.

(f) By (e), G is 2-nilpotent so $G = P \cdot N$, and $N > \{1\}$ since G is nonabelian.

(g) Since $G/N \cong P$ is cyclic, then χ is not ramified over N (Burnside; see [BZ, Exercise 7 in Chapter 7]) so we get the following Clifford decomposition:

(11) $$\chi_N = \sum_{k=1}^{l} \phi_k.$$

It follows from (11) that

(12) $$\chi^{(2)}_N = \sum_{k=1}^{l} \phi_k^{(2)}.$$
Since $|N|$ is odd, it follows that $\phi_k^{(2)}$ are distinct irreducible characters of N for all k, and $(\chi^{(2)})_N$ is a character of N. By (9), we have

$$(\chi^{(2)})_N = \sum_{j=1}^{n} b_j (\psi_j)_N.$$

Let $\phi_1 = \phi$. Since

$$1 = \langle (\chi^{(2)})_N, \phi^{(2)} \rangle = \sum_{j=1}^{n} b_j \langle (\psi_j)_N, \phi^{(2)} \rangle,$$

we get $\langle (\psi_s)_N, \phi^{(2)} \rangle \neq 0$ for some $s \in \{1, \ldots, n\}$. This means that $\phi^{(2)} \in \text{Irr}(\psi_s)_N$. By Clifford’s theorem, $\text{Irr}(\psi_s)_N$ is a G-orbit of $\phi^{(2)}$, i.e.,

$$\text{Irr}(\psi_s)_N = \{\phi_1^{(2)}, \ldots, \phi_i^{(2)}\},$$

where $\phi_1 = \phi$.

We conclude that $(\psi_s)_N = \sum_{k=1}^{t} \phi_k^{(2)}$ so, by (12), $(\chi^{(2)})_N = (\psi_s)_N$. It follows, in particular, that $\chi(1) = \psi_s(1) = \psi(1)$. Since $\chi(1) = \chi^{(2)}(1) = b\psi(1)$, we get $b = 1$, completing the proof.

(h) It follows from (2) and (3) that

$$\chi^2 - \chi^{(2)} = \sum_{j=1}^{n} (a_j - b_j)\psi_j.$$

Since

$$\frac{1}{2}(\chi^2 - \chi^{(2)}) = \Lambda^2 \chi \in \text{Char}(G)$$

(see formula (22) in [BZ, §4.6]), we get $a_j \equiv b_j \pmod{2}$ for $j = 1, \ldots, n$. Summing up all j, one obtains $a \equiv b \pmod{2}$ so a is odd since $b = 1$, by (g). As we have noticed in the proof of (a), $\chi(1)^2 = a\psi(1)$. Therefore, since $\chi(1) = \psi(1)$, by (g), we have $\chi(1) = a$, and hence $\chi(1)$ is odd. It follows from (11) that $l = |\text{Irr}(\chi_N)| = |G : I_G(\phi)|$, where $I_G(\phi)$ is the inertia group of ϕ in G, and $\chi(1) = l\phi(1)$ so l is odd. Since $I_G(\phi) \supseteq N$ and $|G : N| = |P|$ is a power of 2, we get $l = 1$, i.e., $\chi_N \in \text{Irr}(N)$, proving (h).

(i) Since $l = 1$, there exists $s \in \{1, \ldots, n\}$ such that $(\psi_s)_N = \phi^{(2)} \in \text{Irr}(N)$. Since all ψ_j are algebraically conjugate, we get $(\psi_j)_N \in \text{Irr}(N)$. If $(\psi_j)_N$ is real for some j, it is the principal character 1_G of G since $|N|$ is odd. It follows that $\psi(1) = \psi_j(1) = 1$. Then, by (g), $\chi(1) = 1$, a contradiction. Thus, all ψ_j are not real.

(j) Let $w \in G$ be of order 8. Setting $v = w^2$, we get $o(v) = 4$. By (b), $v^2 = u$. It follows from (10) that $c_i \chi(1) = \chi(v) = \chi(w^2) = \chi^{(2)}(w)$ so, in view

Indeed, assume that $\phi_i^{(2)} = \phi_j^{(3)}$. Then, for $x \in N$ we have $\phi_i(x^2) = \phi_i^{(2)}(x) = \phi_j^{(2)}(x^2)$, and so $\phi_i = \phi_j$ since $\{x^2 \mid x \in N\} = N$. This proves the first assertion. Now the second assertion is obvious.
of (9), we get

\[\sum_{j=1}^{n} b_j \psi_j(w) = \chi^{(2)}(w) = ci\chi(1) \]

(here \(i = \sqrt{-1} \)). Recall, that \(\psi_j(w) = \psi(w^\nu_j) \), where \(\nu_j \) is odd integer (see the proof of (e)). It follows from \(o(w) = 8 \) that \(\nu_j \in \{1, 3, 5, 7\} \). Since \(u \in \text{ker}(\psi) \) and \(\psi(v) = -\psi(1) \) (see (9)), we have (consider a representation of \(G \) affording the character \(\psi \); see two line after formula (9))

\[
\begin{align*}
\psi(w^3) &= \psi(vw) = -\psi(w), \\
\psi(w^5) &= \psi(uw) = \psi(w), \\
\psi(w^7) &= \psi(uvw) = -\psi(w).
\end{align*}
\]

Thus, \(\psi_j(w) \in \{\psi(w), -\psi(w)\} \). Setting \(\psi_j(w) = c_j \psi(1) \), where \(c_j = \pm 1 \), one can rewrite (13) in the form

\[ci\chi(1) = d\psi(w), \]

where \(d = \sum_{j=1}^{n} b_j c_j \) is a rational integer. Note that \(\overline{\psi(w)} = \psi(w^{-1}) = \psi(w^7) = -\psi(w) \).

Therefore, \(\psi(w) = im \), where \(m \) is a real number. Now, (14) yields \(\chi(1) = cdm \). Therefore, \(m = c \cdot \frac{\chi(1)}{d} \) is rational. Since \(m = -i\psi(w) \) is an algebraic integer, it follows that \(m \) is a rational integer so \(m \) divides \(\chi(1) \).

This completes the proof of our theorem.

Now we are ready to offer another proof of the following

Theorem 3 (Isaacs-Zisser [IZ]). Let \(G > \{1\} \) be a group and suppose that there is a faithful \(\chi \in \text{Irr}(G) \) such that

\[\chi^2 = a\psi + b\tilde{\psi}, \]

where \(a, b \) are positive integers and \(\psi, \tilde{\psi} \in \text{Irr}(G) \). Then \(G \) is a direct product of a cyclic 2-group of order not exceeding 4 and a group of odd order.

Proof. Since \(\psi_1 = \psi \) and \(\psi_2 = \tilde{\psi} \) are algebraically conjugate, one can apply Theorem 2 to our group \(G \). By that theorem, \(P \) is cyclic. It remains to prove that \(|P| \leq 4 \) and \(P \) is normal in \(G \). We claim that \(|\text{Irr}(\chi^{(2)})| = 1 \) (recall that \(\chi^{(2)} : x \mapsto \chi(x^2) \)). Otherwise, \(\chi^{(2)} = b_1\psi_1 + b_2\psi_2 \), where \(b_1, b_2 \) are nonzero rational integers. It follows that

\[(\chi^{(2)})_N = b_1(\psi_1)_N + b_2(\psi_2)_N \]

(recall that \((\chi^{(2)})_N, (\psi_1)_N, (\psi_2)_N \) are irreducible, by Theorem 2(h,i)). We have \((\chi^{(2)})_N = (\psi_s)_N \) for some \(s \in \{1, 2\} \) (see the proof of Theorem 2(g)). Using this and the equality \(b_1 + b_2 = 1 \), we get \((\psi_1)_N = (\psi_2)_N \). It follows that \((\psi_1)_N = (\psi_1)_N \), i.e., character \((\psi_1)_N \) is real, contrary to Theorem 2(i). Thus,
one of numbers \(b_1, b_2\) equals 0 so our claim is proven, i.e., \(\chi^{(2)} \in \{\psi_1, \psi_2\}\). Assume, for definiteness, that \(\chi^{(2)} = \psi_1\). Thus,
\[
\chi^2 = a_1\psi_1 + a_2\psi_2 \quad \text{and} \quad \chi^{(2)} = \psi_1.
\]
As above, set \(\psi = \psi_1\). Assume that \(|P| > 4\). Take in \(P\) an element \(w\) of order 8. Set \(v = w^2\). Then, by (10),
\[
\psi(w) = \chi^{(2)}(w) = \chi(v) = ci\chi(1), \quad \text{where} \ c = \pm 1.
\]
Since \(\chi\) and \(\psi\) have the same degree, we get \(\psi(w) = ci\psi(1)\) so \(|\psi(w)| = \psi(1)|\) whence \(w \in Z(\psi)\). Let \(H \in \text{Syl}_2(Z(\psi))\); then \(H\) is normal in \(G\) so \(HN = H \times N\) and \(w\) centralizes \(N\). Since \(w\) centralizes \(P \in \text{Syl}_2(G)\), by Theorem 2(e), we see that \(w \in Z(G)\) since \(G = P \cdot N\), and so \(|\chi(w)| = \chi(1)|\). Then equalities
\[
\psi_2(w) = \psi_1(w) = -\psi(w) \quad \text{and} \quad |\psi(w)| = \chi(1)
\]
imply
\[
\chi(1)^2 = |\chi(w)|^2 = |a_1\psi(w) + a_2\psi_2(w)| = |(a_1 - a_2)\psi(w)| = |a_1 - a_2||\psi(w)| = |a_1 - a_2|\chi(1).
\]
Hence \(\chi(1) = |a_1 - a_2|\). On the other hand, \(\chi(1) = a = a_1 + a_2\). Thus \(a_1 + a_2 = |a_1 - a_2|\), a contradiction since \(a_1, a_2 > 0\). Thus \(|P| \leq 4\).

Let us prove that the subgroup \(P\) is normal in \(G\). In view of Theorem 2(b), one may assume that \(|P| = 4\) and \(P = \langle \psi \rangle\). Then, by (9), \(\psi(v) = -\psi(1)|\) so \(v \in Z(\psi)\) and hence \(P \leq Z(\psi)\). Since \(P\) is characteristic in \(Z(\psi)\) (indeed, \(P\) is a Sylow 2-subgroup of the abelian group \(Z(\psi)\); see Theorem 2(d)), it follows that \(P\) is normal in \(G\), and the proof is complete.

Acknowledgements.
We are indebted to the referee for useful remarks.

References

Received: 2.12.2009.