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Abstract. A connection between maximal sets of pairwise non-
commuting elements and coverings of a finite group by proper subgroups is
established. This allows us to study coverings of groups by few proper sub-
groups. The p-groups without p + 2 pairwise non-commuting elements are
classified. We also prove that if a p-group admits an irredundant covering

by p + 2 subgroups, then p = 2. Some related topics are also discussed.

1. Introduction

In what follows all groups are finite and p is a prime.
We say that a group G is covered by proper subgroups A1, . . . , An if

(1.1) G = A1 ∪ · · · ∪ An.

We have, in (1.1), G > {1} and n > 1. A group is covered by its proper
subgroups if and only if it is not cyclic. Every noncyclic group is covered by
(proper) cyclic subgroups. A group is not covered by two proper subgroups.
Covering (1.1) is said to be irredundant if every proper subset of the set
{A1, . . . , An} does not cover G. In what follows, we assume that (1.1) is an
irredundant covering of G by proper subgroups.

Remark 1.1. If, in (1.1), |A1| ≥ · · · ≥ |An|, then |G| ≤ |A1|n− (n− 1) <
n|A1|, and hence |G : A1| < n. A more general situation is considered in the
following theorem of B. H. Neumann ([N]): If an arbitrary (finite or infinite)
group G is covered by n cosets H1x1, . . . , Hnxn (H1, . . . , Hn ≤ G), then at
least one subgroup Hi has index ≤ n in G, and this estimate is best possible
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(Neumann’s theorem is obvious for finite G, however, for infinite groups it is
a fairly deep result).

Let M be a maximal subset (with respect to inclusion) of pairwise non-
commuting elements of a nonabelian group G. We denote the set of all such
subsets by Λ(G). Write

γ(G) = max {|M| | M ∈ Λ(G)}.

For an abelian group G, we set γ(G) = 1. If H is a subgroup of G, then
γ(H) ≤ γ(G). Recall that two groups G and G1 are lattice isomorphic if
there is a bijective mapping φ of the set of subgroups of G onto the set of
subgroups of G1 such that, provided F, H ≤ G, then (F ∩ H)φ = Fφ ∩ Hφ

and 〈F, H〉φ = 〈Fφ, Hφ〉. If groups G and G1 are lattice isomorphic, then the
inequality γ(G) 6= γ(G1) is possible owing to the fact that some nonabelian
groups are lattice isomorphic to abelian groups (indeed, there exist nonabelian
modular groups which are lattice isomorphic to abelian groups).

Let Γ1 be the set of all maximal subgroups of G.
As Lemma 1.3(a) shows, if M ∈ Λ(G), then G =

⋃

x∈M CG(x) and this
covering is irredundant.

Every nonabelian group contains three pairwise non-commuting elements
(this follows from Lemma 1.3(a)). For p-groups one can prove a stronger
result.

Lemma 1.2. Let G be a nonabelian p-group. Then

(a) If G is minimal nonabelian, then γ(G) = p + 1.
(b) γ(G) ≥ p + 1.

Proof. (a) We have d(G) = 2. Since all maximal subgroups of G are
abelian, any two non-commuting elements of G are contained in distinct max-
imal subgroups of G. Therefore, γ(G) ≤ p + 1. If Γ1 = {M1, . . . , Mp+1} and
xi ∈ Mi − Φ(G), then, for i 6= j, 〈xi, xj〉 = G is nonabelian, so xixj 6= xjxi.
Thus, x1, . . . , xp+1 are pairwise non-commuting elements so γ(G) ≥ p + 1,
completing the proof.

(b) Let H be a minimal nonabelian subgroup of G. Then γ(H) = p + 1,
by (a), and so γ(G) ≥ γ(H) = p + 1.

The following lemma establishes a connection between members of the
set Λ(G) with some irredundant coverings of a nonabelian group G. Part (b)
of this lemma also shows that members of Λ(G) of cardinality γ(G) have a
special property.

Lemma 1.3. Let G be a nonabelian group and M ∈ Λ(G). Then

(a) We have

(1.2)
⋃

x∈M

CG(x ) = G.
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If N ⊆ M1 ∈ Λ(G) and
⋃

x∈N CG(x) = G, then N = M1; in particu-
lar, (1.2) is an irredundant covering.

(b) Suppose, in addition, that |M| = γ(G). If x ∈ M, then the subgroup
〈G −

⋃

y∈M−{x} CG(y)〉 is abelian.

Proof. (a) Assume that there is g ∈ G −
⋃

x∈M CG(x). Since M ⊂
M ∪ {g}, it follows from maximality of M that gx = xg for some x ∈ M;
then g ∈ CG(x), contrary to the choice of g. Thus,

⋃

x∈M CG(x) = G.
Now assume that there is u ∈ M such that

⋃

x∈M−{u} CG(x) = G. Then

there is v ∈ M−{u} such that u ∈ CG(v), so that u, v are distinct commuting
members of the set M, a contradiction. Thus, the covering

⋃

x∈M CG(x) = G
is irredundant.

(b) Given x ∈ M, set D = G−
⋃

y∈M−{x} CG(y). Assume that there are

noncommuting u, v ∈ D. By the choice, every element of the set M−{x} does
not commute with u and v. It follows that the set (M−{x})∪{u, v} ⊆ M2 ∈
Λ(G), a contradiction since |M2| > |M| = γ(G). Thus, any two elements of
the set D commute so the subgroup 〈D〉 is abelian.

It follows from Lemma 1.3(a) that if H < G is such that γ(H) = γ(G)
and M = {x1, . . . , xγ(G)} ∈ Λ(H), then there are i 6= j with CG(xi) 6≤ H and

CG(xj) 6≤ H . Indeed, there is i such that CG(xi) 6≤ H since
⋃γ(G)

k=1 CG((xk) =
G > H (Lemma 1.3(a)). If for all j 6= i we have CG(xj) ≤ H , then H ∪
CG(xi) = G, which is impossible since H and CG(xj) are non-incident so
cannot cover G.

There are dozens of papers devoted to irredundant coverings of groups
(without finiteness assumption); see MathSciNet and [Bh]. I state some results
from those papers that are mentioned in [Bh]. Let σ(G) be a minimal number
n such that G is covered by n proper subgroups. As we have noticed, σ(G) ≥ 3.
As Scorza (see [Z]) has showed, σ(G) = 3 if and only if there is N ⊳ G such
that G/N is a four-group. The groups G satisfying σ(G) ∈ {4, 5, 6} are also
described (see, for example, [C]). On the other hand, it is proved in [T]
that σ(G) 6= 7. In contrast, in this note we consider irredundant coverings
by n subgroups such that inequality n > σ(G) is possible. For noncyclic p-
groups G, we have σ(G) = p + 1 always. In the same time, in investigation of
irredundant coverings of p-groups we meet a number of deep problems, and
our note is not more than an introduction in this fascinating topic.

In the following section we study the p-groups containing a maximal sub-
set (with respect to inclusion) of pairwise non-commuting elements of cardi-
nality p+1. Some related results are also established and discussed. Next, we
study the p-groups which are covered by ≤ 2p proper subgroups. It is proved
that if a p-group G admits an irredundant covering by p + 2 subgroup, then
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p = 2. We also consider coverings of nonnilpotent groups by few proper sub-
groups. Minimal nonabelian and minimal nonnilpotent groups play a crucial
role in what follows.

2. p-groups

A noncyclic p-group G admits an irredundant covering by p + 1 maximal
subgroups (indeed, if T ⊳ G is such that G/T is abelian of type (p, p), then
p + 1 maximal subgroups of G containing T , cover G). Moreover, Lemma 2.1
shows that if a p-group G is covered by p + 1 proper subgroups A1, . . . , Ap+1,

then |G :
⋂p+1

i=1 Ai| = p2, i.e., all Ai are maximal in G.
Lemma 2.1 is known; it is proved to make our exposition self contained.
For X ⊆ G, we write X# = X − {1}

Lemma 2.1. Suppose that a noncyclic p-group G of order pm is covered
by n proper subgroups A1, . . . , An as in (1.1). Then

(a) n ≥ p + 1.

(b) If n = p+1, then covering (1.1) is irredundant and |G :
⋂p+1

i=1 Ai| = p2.
In particular, all the Ai’s are maximal in G.

Proof. (a) If n ≤ p, then

|
n
∑

i=1

A#
i | ≤ p(pm−1 − 1) = pm − p < |G#|,

which is a contradiction.
(b) Now let n = p + 1. Then the covering (1.1) is irredundant, by (a).

First assume that A1, . . . , Ap+1 are maximal in G; then |Ai ∩Aj | = pm−2 for
i 6= j. We have

(2.1) G = Ap+1 ∪

(

p
⋃

i=1

(Ai − Ap+1)

)

.

Since Ai −Aj = Ai − (Ai ∩Aj) for i 6= j, the right-hand side of (2.1) contains
at most

pm−1 + p(pm−1 − pm−2) = pm = |G|

elements so (2.1) is a partition of G. It follows that Ai∩Ap+1 = Aj∩Ap+1 and
(Ai−Ap+1)∩(Aj −Ap+1) = ∅ for all distinct i, j < p+1 (indeed, one can take

in (2.1), Aj , j 6= i, instead of Ap+1). We conclude that
⋂p+1

i=1 Ai = A1 ∩Ap+1

has index p2 in G.
It follows from the above computation (see the displayed formula after

(2.1)) that, in fact, all subgroups A1, . . . , Ap+1 must be maximal in G (oth-

erwise, we obtain |
⋃p+1

i=1 Ai| < |G|).1

1For another, longer proof, due to M. Roitman, see [B2, Remark 3.5].
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It follows from Lemmas 1.3 and 2.1 that if G is a nonabelian p-group,
then γ(G) ≥ p + 1. In Theorem 2.3(b), the p-groups G with γ(G) = p + 1 are
classified.

Lemma 2.2. Let H be a minimal nonabelian subgroup of a p-group G.
Then the intersection Λ(H)∩Λ(G) is not empty if and only if G = H∗CG(H);
in that case, Λ(H) ⊆ Λ(G).

Proof. (i) Let M ∈ Λ(H) and suppose that M ∈ Λ(G); then |M| = p+1
(Lemma 1.2(a)). By hypothesis and Lemma 1.3(a), G =

⋃

x∈M CG(x) so, by

Lemma 2.1(b), |G :
⋂

x∈M CG(x)| = p2. Since
⋂

x∈M CG(x) = CG(M) and
〈M〉 = H , we get CG(H) = CG(M). Since CG(H) ∩ H = Z(H) has index
p2 = |G : CG(M)| in H , we get G = H ∗ CG(H), by the product formula. In
particular, H is G-invariant.

(ii) Now suppose that an (arbitrary) p-group G = H ∗ CG(H), where
H is minimal nonabelian, and let M = {x1, . . . , xp+1} ∈ Λ(H). Then G =
H ∗ CG(H) ⊆

⋃

x∈M CG(x), so M ∈ Λ(G), by Lemmas 1.3(a) and 2.1(a).

Thus, Λ(H) ⊆ Λ(G).2

If M is a subset of a group G, then CG(M) =
⋂

x∈M CG(x).

Theorem 2.3. Let G be a nonabelian p-group.

(a) If M ∈ Λ(G) has cardinality p+1, then |G : CG(x)| = p for all x ∈ M
and |G : CG(M)| = p2.

(b) γ(G) = p + 1 if and only if G = HZ(G), where H is an arbitrary
minimal nonabelian subgroup of G, H ∩Z(G) = Z(H). If, in addition,
G is of exponent p, then G = H × E, where H is nonabelian of order
p3 and E is abelian.

Proof. Given M ∈ Λ(G), we have G =
⋃

x∈M CG(x), and this covering
is irredundant (Lemma 1.3(a)).

(a) follows from Lemma 2.1(b).
(b) Suppose that γ(G) = p+1. Let H ≤ G be minimal nonabelian. Then

M ∈ Λ(H) has cardinality p + 1 (Lemma 1.2(a)) so that M ∈ Λ(G). By
Lemma 2.2, G = H ∗ CG(H) (central product).

We claim that CG(H) = Z(G). It suffices to show that CG(H) is abelian.
Assume that this is false. Then CG(H) contains two non-commuting elements
b, b1. Let M = {a1, . . . , ap+1} ∈ Λ(H). Take a ∈ L − {Z(H) ∪ {a1}}, where
L is an (abelian) maximal subgroup of H containing a1 (such a exists since
|L − Z(H)| > 1). Then, since [ab, ai] = [a, ai] 6= 1 for i > 1 (indeed, for i > 1,
the subgroup 〈a, ai〉 = H is nonabelian), we obtain {ab, a2, . . . , ap+1} ∈ Λ(G).
Note, that [ab, ab1] = [b, b1] 6= 1 and, for i > 1, we have [ab1, ai] = [a, ai] 6= 1.

2We do not assert that here, in the case under consideration, γ(G) = γ(H) (however,
this equality holds, by Theorem 2.3(b)).
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It follows that p + 2(> γ(G)) elements ab, ab1, a2, . . . , ap+1 are pairwise non-
commuting, a contradiction. Thus, CG(H) is abelian so coincides with Z(G).

Let us show that for our group G = HZ(G) we have γ(G) < p + 2
(by Lemma 2.2(b), Λ(H) ⊆ Λ(G), but our assertion is stronger). Indeed,
assume that g1, . . . , gp+2 ∈ G are pairwise non-commuting. Then gi = hizi,
where hi ∈ H , zi ∈ Z(G) (i = 1, 2, . . . , p + 2). Let i 6= j. Then [hi, hj ] =
[hizi, hjzj ] = [gi, gj ] 6= 1 so the minimal nonabelian p-group H contains p + 2
pairwise non-commuting elements h1, . . . , hp+2, contrary to Lemma 1.2(a).

Now suppose that G = HZ(G) is of exponent p (here H is of order p3 as
minimal nonabelian group of exponent p, and Z(G) is elementary abelian).
In that case, H ∩ Z(G) = Z(H) is of order p so Z(G) = Z(H)×E, where E is
elementary abelian. Then G = H × E, and this completes the proof of (b).

Theorem 2.3(b), in particular, classifies the nonabelian p-groups possess-
ing exactly p +1 distinct centralizers of noncentral elements (note that paper
[P] yields an estimate of |G : Z(G)| is terms of γ(G)).

Proposition 2.4. The following assertions for a nonabelian p-group G
are equivalent:

(a) If H ≤ G is minimal nonabelian, then Λ(H) ⊆ Λ(G).
(b) G = (B1 ∗ · · · ∗ Bk)Z(G), where B1, . . . , Bk are minimal nonabelian.

Proof. (a) ⇒ (b): We proceed by induction on |G|. Let B1 ≤ G be
minimal nonabelian. Then G = B1 ∗ CG(B1), by Lemma 2.2. If CG(B1) is
abelian, we are done. If CG(B1) is nonabelian, the result follows by induction
applied to CG(B1) since Z(CG(B1)) = Z(G).

(b) ⇒ (a): Let G be as in (b) and H ≤ G minimal nonabelian. Since
|G′| = p, then, by [B1, Lemma 4.3(a)], we obtain G = H ∗CG(H) so Λ(H) ⊆
Λ(G), by Lemma 2.2.

Remark 2.5. The argument in part (ii) of the proof of Lemma 2.2 shows
that if H is a nonabelian subgroup of an arbitrary group G = H ∗ CG(H),
then Λ(H) ⊆ Λ(G).

3. Nonnilpotent groups

In this section G is a nonnilpotent group.
Let p be a prime divisor of |G| such that G has no normal p-complement.

Then there is in G a minimal nonnilpotent subgroup H = Q · P , where
P = H ′ ∈ Sylp(H) and Q ∈ Sylq(H) is cyclic (this follows from Frobenius’
normal p-complement theorem; see, for example, [I, Theorem 9.18]). We have
|P | = pb+c, where b is the order of p (mod q) and pc = |P ∩ Z(H)| (see [BZ,
Lemma 11.2]). In that case, there are in H exactly pb Sylow q-subgroups, say

Q1 = 〈x1〉, . . . , Qpb = 〈xpb 〉.
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Then x1, . . . , xpb are pairwise non-commuting elements (indeed, if i 6= j, then
〈xi, xj〉 is nonnilpotent so coincides with H : it has two distinct Sylow q-
subgroups Qi and Qj). If {y1, . . . , ys} is a maximal subset of pairwise non-
commuting elements of P , then y1, . . . , ys, x1, . . . , xpb is a maximal subset
(with respect to inclusion) of pairwise non-commuting elements of H of car-
dinality pb + s ≥ p + 1 (note that s = 1 if and only if P is abelian). Thus,
γ(G) ≥ γ(H) = pb + s ≥ pb + 1.

Theorem 3.1. Let G be a nonabelian group and p a prime divisor of |G|.

(a) If G has no normal p-complement, then γ(G) ≥ p + 1. If, in addition,
p is the minimal prime divisor of |G|, then γ(G) ≥ p2 + 1.

(b) Suppose that G has a normal p-complement however a Sylow p-
subgroup is not a direct factor of G. Then γ(G) ≥ p+2. If, in addition,
γ(G) = p + 2, then either p = 2 and q = 3 or p is a Mersenne prime.

(c) If G = P × A, where P is nonabelian, A is abelian and γ(G) < p + 2,
then P is such as in Theorem 2.3(b).

Proof. (a) was proved in the paragraph, preceding the theorem.
(b) Now assume that G has a normal p-complement H but P ∈ Sylp(G)

is not a direct factor of G. It follows that the p-solvable group G contains a
nonnilpotent subgroup PQ, where Q ∈ Sylq(H); then Q = PQ ∩ H ⊳ PQ. In
that case, PQ contains a minimal nonnilpotent subgroup F = P1Q1, where
P1 ∈ Sylp(F ) is cyclic and Q1 = F ′ ∈ Sylq(F ). Then |Q1| = qβ+c, where β is
the order of q (mod p) and qc = |Q1 ∩ Z(F )|. As above, there is M ∈ Λ(F )
of cardinality ≥ qβ + 1. Since qβ ≥ p + 1, we get |M| ≥ p + 2. Now assume
that |M| = p + 2; then qβ = p + 1 so either p = 2 and q = 3 or q = 2 and p is
a Mersenne prime.

(c) now follows from Remark 2.5 and Theorem 2.3(b).

Proposition 3.2. Let p be a minimal prime divisor of the order of a group

G and let G =
⋃p+1

i=1 Ai be an irredundant covering. Then |G :
⋂p+1

i=1 Ai| = p2.
In particular, |G : Ai| = p for i = 1, . . . , p + 1.

Proof. It follows from Remark 1.1 that, if p is the minimal prime divisor
of a group G, then it is not covered by p proper subgroups. One may assume
that |A1| ≥ · · · ≥ |An|. Then, by Remark 1.1, we have |G : A1| < p + 1 so
that |G : A1| = p and A1 ⊳ G.

First assume that all Ai are maximal in G. Set |G| = g, |G : Ai| = ki,
i = 2, . . . , p + 1. Note, that ki ≥ p for all i. We have

(3.1) G = A1 ∪

(

p+1
⋃

i=2

(Ai − A1)

)

.
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Since Ai−A1 = Ai−(Ai∩A1) and |Ai : (Ai∩A1)| = p so |G : (Ai∩A1)| = pki

for i > 1, so obtain

|Ai − A1| =
g

ki

−
g

pki

=
g

ki

(

1 −
1

p

)

.

The right-hand side of (3.1) contains v elements, where

v ≤
g

p
+

(

1 −
1

p

) p+1
∑

i=2

g

ki

≤
g

p
+

(

1 −
1

p

) p+1
∑

i=2

g

p
=

g

p
+

g

p

(

1 −
1

p

)

p = g.

Since v = g, it follows that (3.1) is a partition of G and ki = p for all i; in

that case, |G :
⋂p+1

i=1 Ai| = p2.
Now let Ai ≤ Bi < G, where Bi are maximal in G for all i. Then

G =
⋃p+1

i=1 Bi is an irredundant covering of G, by the first sentence of the
proof, and so |G : Bi| = p for all i, by the previous paragraph. If some
Ai < Bi, then, taking in (3.1), Aj = Bj for j 6= i, we get a contradiction.

Thus, Bi = Ai for all i and so |G :
⋂p+1

i=1 Ai| = p2, by the previous paragraph.

Lemma 2.1(b) is a partial case of Proposition 3.2.
Let G be a non-p-nilpotent group. Then, using Theorem 3.1, one can

show the following results:

(a) If p = 2, then γ(G) ≥ 5.
(b) If p > 2, then γ(G) ≥ p + 1.
(c) If p > 2 is a minimal prime divisor of |G|, then γ(G) ≥ p3 + 1.

4. On the number of maximal subgroups appearing in some

coverings of p-groups

In this section we consider irredundant coverings of a p-group by k proper
subgroups, where p + 1 < k ≤ 2p.

It is impossible to avoid some repetitions in computations (otherwise, the
proofs will be unreadable).

Remark 4.1. We claim that, if a p-group G is neither cyclic nor Q8, it
admits an irredundant covering by 2p subgroups. Indeed, let T ⊳ G be such
that G/T is abelian of type (p, p). Let A1/T, . . . , Ap+1/T be all subgroups of

order p in G/T . Then G =
⋃p+1

i=1 Ai is an irredundant covering. Since G is
neither cyclic nor isomorphic to Q8, one may assume that A1 is noncyclic (here
we use [B1, Theorem 1.2] which implies that if a p-group contains > p cyclic
subgroups of index p, it is ∼= Q8). In that case, there is in T an A1-invariant
subgroup T0 such that A1/T0 is abelian of type (p, p). Let T = T1, T2, . . . , Tp+1

be all maximal subgroups of A1 containing T0. Then G is covered by 2p
subgroups A2, . . . , Ap+1, T2, . . . , Tp+1, and this covering is irredundant.
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Theorem 4.2. If a p-group G admits an irredundant covering by p + 2
subgroups A1, . . . , Ap+2, then

(a) If p > 2, then at least p + 1 of the Ai’s are maximal in G.
(b) If p = 2, then at least two of the Ai’s are maximal in G.

Proof. Let |A1| ≥ · · · ≥ |Ap+2| and |G| = pn. By Remark 1.1, |G :
A1| = p. Assume that |G : Ap+1| > p. Set |G| = pn. Then

pn = |

p+2
⋃

i=1

Ai| ≤ |A1| +

p
∑

i=2

|Ai − A1| +

p+2
∑

i=p+1

|Ai − A1|

= pn−1 + (p − 1)(pn−1 − pn−2) + 2(pn−2 − pn−3)

= pn − pn−3(p2 − 3p + 2) = pn − pn−3(p − 1)(p − 2).

If p > 2, then pn ≤ pn−pn−3(p−1)(p−2) < pn, which is a contradiction.
Thus, if p > 2, then at least p+1 subgroups Ai’s are maximal in G, completing
this case.

Now let p = 2 and assume that |A2| < 2n−1. Then

2n = |
4
∑

i=1

Ai| ≤ |A1|+
4
∑

i=2

|Ai −A1| = 2n−1 +3(2n−2−2n−3) = 7 ·2n−3 < 2n,

a contradiction. Thus, if p = 2, then at least two Ai’s are maximal in G.

Let G =
⋃4

i=1 Ai be an irredundant covering of a 2-group that is not two-
generator, |A1| ≥ |A2| ≥ |A3| ≥ |A4|; then A1, A2 ∈ Γ1 (Theorem 4.2(b)). We
claim that if |G : A3| = 2, then |G : A4| = 2 so all Ai are maximal in G. We
have

(4.1) G = A1 ∪ (A2 − A1) ∪ (A3 − A1 − A2) ∪ (A4 − A1).

Assume that |G : A4| > 2. We have |G : (A1 ∩ A2 ∩ A3)| = 23 (Lemma 2.1).
Therefore,

|A3 − A1 − A2| = 2n−1 − 2 · 2n−2 + 2n−3 = 2n−3.

It follows that the right-hand side of formula (4.1) contains v elements, where

v ≤ 2n−1 + (2n−1 − 2n−2) + 2n−3 + (2n−3 − 2n−4) < 2n,

which is a contradiction. Thus, either exactly two or four of the Ai’s are
maximal in G.

Let G be a 2-group that is not generated by two elements. We claim that

then G admits an irredundant covering G =
⋃4

i=1 Ai, where Ai ∈ Γ1 for all i.
Without loss of generality, one may assume that Φ(G) = {1}. Let A1, A2 ∈ Γ1

be distinct, and set T = A1 ∩A2. Let T < A3 ∈ Γ1 −{A1, A2} and let S < T
be of index 2; then A3/S ∼= E4. Let T/S, T1/S, T2/S < A3/S be of index
2. Since G/Ti

∼= E4, there is B1, B2 ∈ Γ1 − {A3} such that Bi ∩ A3 = Ti,
i = 1, 2. Since A3 is a subset of the set A1∪B1∪B2 (indeed, A3 = T ∪T1∪T2
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is a subset of A1 ∪ B1 ∪ B2), it follows that G = A1 ∪ A2 ∪ B1 ∪ B2 is a
covering (indeed, G = A1 ∪ A2 ∪ A3 is a subset of A1 ∪ A2 ∪ B1 ∪ B2). Since
the intersection of any three distinct elements of the set {A1, A2, B1, B2} has
index 23 in G, our covering is irredundant (Lemma 2.1(b)).

Similarly, if p > 2 and a p-group G is not generated by two elements, then
it admits an irredundant covering by 2p maximal subgroups.

Lemma 4.3. Suppose that A, B, C, D are pairwise distinct maximal sub-
groups of a p-group G of order pn such that |G : (A ∩ B ∩ C)| = p3. Then

(4.2) |A ∪ B ∪ C| = 3pn−1 − 3pn−2 + pn−3,

(4.3) |D − (A ∪ B ∪ C)| ≤ pn−1 − 3pn−2 + 3pn−3 − pn−4.

Proof. Note that if distinct U, V < G are maximal, then |G : (U ∩V )| =
p2. By the inclusion-exclusion identity [H, formula (2.2.1)],

|A ∪ B ∪ C| = (|A| + |B| + C|) − (|A ∩ B|+ |B ∩ C| + |C ∩ A|) + |A ∩ B ∩ C|

= 3pn−1 − 3pn−2 + pn−3.

By hypothesis, A ∩B 6= B ∩C 6= C ∩A (if, for example, A ∩B = A ∩C,
then A∩B = (A∩B)∩ (A∩C) = A∩B ∩C, a contradiction since |A∩B| =
pn−2 > pn−3 = |A ∩ B ∩ C|). We have

(4.4) D − (A ∪ B ∪ C) = D − (D ∩ (A ∪ B ∪ C)),

and so

D − (A ∪ B ∪ C) = D − ((D ∩ A) ∪ (D ∩ B) ∪ (D ∩ C)).

By inclusion-exclusion identity,

|(D ∩ A) ∪ (D ∩ B) ∪ (D ∩ C)| = (|D ∩ A| + |D ∩ B| + |D ∩ C|)

−(|D ∩ A ∩ B| + |D ∩ A ∩ C| + |D ∩ B ∩ C|) + |D ∩ A ∩ B ∩ C|.

If A ∩ B ⊂ D, then D ∩ A ∩ B ∩ C = D ∩ C has order pn−2, a contradiction
since A ∩ B ∩ C ⊇ D ∩ A ∩ B ∩ C has order pn−3, by hypothesis. Thus,
A∩B 6⊆ D, and the same is true for A∩C and B ∩C. Then, by the product
formula and the previous displayed formula, we have

|D ∩ A ∩ B| = |D ∩ A ∩ C| = |D ∩ B ∩ C| = pn−3,

|D ∩ (A ∪ B ∪ C)| = |(D ∩ A) ∪ (D ∩ B) ∪ (D ∩ C)|

= 3pn−2 − 3pn−3 + |D ∩ A ∩ B ∩ C|.

Since |D ∩ A ∩ B ∩ C| ∈ {pn−3, pn−4}, we obtain

|D ∩ (A ∪ B ∪ C)| ≥ 3pn−2 − 3pn−3 + pn−4.

Now (4.3) follows from (4.4).

Theorem 4.4. If a p-group admits an irredundant covering by p+2 proper
subgroups, then p = 2.
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Proof. Assume that a group G of order pn admits an irredundant cov-
ering by p+2 proper subgroups A1, . . . , Ap+2 and p > 2. By Theorem 4.2(a),

one may assume that A1, . . . , Ap+1 are maximal in G. Since G 6=
⋃p+1

i=1 Ai,

we have |G :
⋂p+1

i=1 Ai| ≥ p3. One may assume, without loss of generality, that
|G : (A1 ∩ A2 ∩ A3)| = p3. We may also assume that |G : Ap+2| = p. Then,
by (4.2), we have

(4.5) |A1 ∪ A2 ∪ A3| = 3pn−1 − 3pn−2 + pn−3

and, for i > 3,

(4.6) |Ai − (A1 ∪ A2 ∪ A3)| < pn−1 − 3pn−2 + 3pn−3 = pn−3(p2 − 3p + 3),

by (4.3).
Set A1 ∪ A2 ∪ A3 = U . We have

(4.7) G = U ∪ (

p+2
⋃

i=4

(Ai − U)).

Therefore, taking in account (4.5) and (4.6), we obtain

|G| = pn ≤ (3pn−1 − 3pn−2 + pn−3) + (p − 1)pn−3(p2 − 3p + 3)

= pn − pn−3(p2 − 3p + 2) = pn − pn−3(p − 1)(p − 2) < pn,

since p > 2, a final contradiction. Thus, we must have p = 2.

Proposition 4.5. If a p-group G is covered by at most k ≤ 2p proper
subgroups A1, . . . , Ak (we do not assume that this covering is irredundant),
then at least p of these subgroups are maximal in G. If p > 3 and p+2 < k <
2p, then at least p + 1 summands in our covering are maximal in G.

Proof. (i) One may assume that G is not isomorphic to Q8. Let |G| =
pn.

In view of Theorem 4.2(b), one may assume that p > 2. Let |A1| ≥ · · · ≥
|Ak|. Then |G : A1| = p (Remark 1.1). Since we do not assume that our
covering is irredundant, one can add new summands of order pn−2 to obtain
k = 2p. We also may assume, by way of contradiction, that A1, . . . , Ap−1 are
maximal in G and Ap, . . . , A2p have index p2 in G. Indeed, if, for example,
|G : Ai| > p2, (i > p − 1), one can replace Ai by subgroup that contains Ai

and has index p2 in G. If, for example, |G : Ai| > p (i < p), one can replace
Ai by maximal subgroup of G that contains Ai. We have

(4.8) G = Ap−1 ∪

(

p−2
⋃

i=1

(Ai − Ap−1)

)

∪





2p
⋃

i=p

(Ai − Ap−1)



 .

The right-hand side of formula (4.8) contains v elements, where

v ≤ pn−1 + (p − 2)(pn−1 − pn−2) + (p + 1)(pn−2 − pn−3)

= pn − pn−3(p − 1)2 < pn = |G|,
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a contradiction. Thus, at least p subgroups Ai (i ≤ 2p) are maximal in G.
(ii) To prove the last assertion, one may assume, by way of contradiction,

that A1, . . . , Ap are maximal in G and |G : Ai| = p2 for i > p (see (i)). (Here
p > 3 since 3+2 = 2·3−1.) We also may assume that k = 2p−1 (if k < 2p−1,
one can add to our union 2p− 1− k new summands of order pn−2). Then, as
above, we obtain

|G| = pn ≤ pn−1 + (p − 1)(pn−1 − pn−2) + (p − 1)(pn−2 − pn−3)

= pn−1 + (p − 1)(pn−1 − pn−3) = pn − pn−3(p − 1) < pn,

a contradiction.

Proposition 4.6. Suppose that a p-group G of order pn ≥ p4, p > 2, is
covered by k proper subgroups, say A1, . . . , Ak, where p + 2 < k ≤ 2p. Let, in
addition, any p + 2 subgroups Ai do not cover G, |G : Ai| = p for i ≤ p and
|G : Ai| > p for i > p. Then

(a) k = 2p and our covering is irredundant.
(b) |

⋂p
i=1 Ai| = pn−2.

(c) |Ai| = pn−2 for i > p.

(d) |
⋂2p

i=p+1 Ai| = pn−3.

Proof. In view of Proposition 4.5, k = 2p so (a) is true since our covering
must be irredundant.

We have

(4.9) G = Ap ∪

(

p−1
⋃

i=1

(Ai − Ap)

)

∪





2p
⋃

i=p+1

(Ai − Ap)



 .

(c) Assume that |Ap+1| ≥ · · · ≥ |A2p| and |A2p| < pn−2. Then the right-
hand side of (4.9) contains v elements, where

v ≤ pn−1 + (p − 1)(pn−1 − pn−2) + (p − 1)(pn−2 − pn−3) + (pn−3 − pn−4)

= pn−1+(p−1)(pn−1−pn−3)+(pn−3−pn−4) = pn−pn−4(p−1)2 < pn = |G|,

which is a contradiction. This proves (c).
(b, d) We have |G : Ai| = p2 for i > p, by (c). In that case, the right-hand

side of (4.9) contains v elements, where

v ≤ pn−1 + (p − 1)(pn−1 − pn−2) + p(pn−2 − pn−3) = pn = |G|,

so (4.9) is a partition. This implies (b) and (d).

A similar argument shows that if a p-group G of order pn is covered by
p2 proper subgroups, then at least two of these subgroups are maximal in G.
Indeed, if only one summand of our covering is maximal in G (see Remark 1.1),
we obtain

pn ≤ pn−1 + (p2 − 1)(pn−2 − pn−3) = pn − pn−3(p − 1) < pn,
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a contradiction.

Corollary 4.7. If a nonabelian p-group G has at most 2p pairwise non-
commuting elements, then centralizers of at least p of these elements are max-
imal in G.

Remark 4.8. Let G be a group of maximal class and order pn+2, n ≥ 2,
with abelian subgroup A of index p. In that case, every x ∈ G − A satisfies
|CG(x)| = p2 (indeed, CA(x) = Z(G) is of order p) and the number of maximal

abelian subgroups of order p2 not contained in A, is equal to |G−A|
p(p−1) = pn

(indeed, if B is such a subgroup, then |B−A| = p(p−1) and all such B cover
the set G−A). These pn subgroups together with A cover G and this covering
is irredundant. If T is one of such abelian subgroups, take x ∈ T − Z(G). So
obtained set of cardinality pn + 1 is contained in Λ(G). It is easy to see that
γ(G) = pn + 1.

Remark 4.9. Let G be a nonabelian p-group. If x ∈ G and Ax is a max-
imal abelian subgroup of CG(x), then Ax is also a maximal abelian subgroup
of G. Let M ∈ Λ(G). Take in CG(x) a maximal abelian subgroup Ax for
every x ∈ M (indeed, if B > Ax is abelian, then, by the choice, B 6≤ CG(x),
a contradiction). Then |{Ax | x ∈ M}| = |M|. It follows that G has at least
γ(G) maximal abelian subgroups. If G has exactly p + 1 maximal abelian
subgroups, say A1, . . . , Ap+1, they cover G. In that case, A1, . . . , Ap+1 are
maximal in G (Lemma 1.3(b)) and G has the structure described in Theo-
rem 2.3(b).

Remark 4.10. Let B1, . . . , Bn be all maximal abelian subgroups of a
nonabelian group G. Then γ(G) ≤ n since G =

⋃n
i=1 Bi (it is possible that

this covering may be redundant). If Bi ∩ Bj = Z(G) for all i 6= j (in this
case, the considered covering is irredundant), then γ(G) = n. Indeed, take
xi ∈ Bi−Z(G) for all i. We claim that {x1, . . . , xn} ∈ Λ(G).3 For example, let
G be a Sylow 2-subgroup of the simple Suzuki group Sz(q), where q = 22m+1.
Then Z(G) = Φ(G) has index 22m+1 in G. If A < G is maximal abelian, then
|A : Z(G)| = 2. It follows that there is M ∈ Λ(G) of cardinality 22m+1 − 1;
moreover, all members of the set Λ(G) have the same cardinality.

Remark 4.11. Let G = A ∗ B be a central product of nonabelian sub-
groups A and B, M = {a1, . . . , am} ∈ Λ(A) and N = {b1, . . . , bn} ∈ Λ(B).
Then m − 1 + n elements of the following set

M1 = {a2, . . . , am, a1b1, a1b2, . . . , a1bn}

are pairwise non-commuting. We claim that M1 ∈ Λ(G). Assume that there
is x ∈ G −M1 such that all elements of the set M1 ∪ {x} are pairwise non-
commuting. We have x = ab, where a ∈ A and b ∈ B. For i > 1, we have

3Indeed, if {x, x1, . . . , xn} ∈ Λ(G) and x ∈ B, where B < G is maximal abelian and
x 6= xi for all i, then B 6∈ {B1, . . . , Bn}.
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1 6= [ab, ai] = [a, ai] so that a ∈ D = A −
⋃n

i=2 CA(ai). By Lemma 1.3(b),
the subgroup 〈D〉 is abelian so [a, a1] = 1 since a1 ∈ D. For i = 1, . . . , n,
we have 1 6= [ab, a1bi] = [ab, bi] = [b, bi]. We conclude that n + 1 > γ(B)
elements b, b1, . . . , bn ∈ B are pairwise non-commuting, a contradiction. In
particular, if G is an extraspecial group of order p2m+1, then, by induction,
γ(G) ≥ mp + 1.

It follows from Remark 4.11 and Lemma 1.2(a) that if G is a nonabelian p-
group such that γ(G) ≤ 2p, then CG(H) is abelian for all minimal nonabelian
H < G.

It is interesting to carry out similar considerations for infinite groups.
We consider only one example. According to [SS], every infinite minimal non-
abelian group G coincides with its derived subgroup. Every proper noncentral
subgroup of G is contained in a unique maximal subgroup of G, its centralizer.
Since G = G′, every maximal subgroup has infinite index in G (Poincare).
Let Γ1 be the set of maximal subgroups of G. For every H ∈ Γ1, choose
x ∈ H − Z(G). Since the intersection of any two distinct members of the set
Γ1 coincides with Z(G) and the set Γ1 is infinite, all so chosen elements form
an infinite set of pairwise non-commuting elements. It is not true that every
nonabelian infinite group possesses an infinite set of pairwise non-commuting
elements. For example, G = H × A, where H is finite nonabelian and A is
infinite abelian, satisfies γ(G) = γ(H) < ∞.

5. Problems

Below we state some related problems.

1. Classify the 2-groups without five pairwise non-commuting elements.
(See Lemma 1.2 and Theorem 4.4)

2. Does there exist a p-group G admitting an irredundant covering by n
subgroups, where p + 1 < n < 2p? If ‘yes’, classify such the groups.

3. Describe the set of positive integers n such that there is an elemen-
tary abelian p-group admitting an irredundant covering by n maximal
subgroups.

4. Let M, N be groups and γ(M) = m, γ(N) = n. Then γ(M×N) = mn.
(i) Estimate γ(M ∗ N) in terms of M , N and M ∩ N . Consider the
case where M, N are p-groups of maximal class. (ii) Find γ(G), where
G is an extraspecial group of order p2m+1 (see Remark 4.11).

5. Classify the pairs groups N ⊳ G such that γ(G/N) = γ(G).
6. Find γ(Σpn), where Σpn is a Sylow p-subgroup of the symmetric

group Spn of degree pn. The same problem for UT(m, pn), a Sylow
p-subgroup of the general linear group GL(m, pn).

7. Study the nonabelian p-groups G such that CG(H) is abelian for all
minimal nonabelian H ≤ G (see the paragraph following Remark 4.11).
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8. Study the nonnilpotent groups G such that Λ(H) ⊆ Λ(G) for all min-
imal nonnilpotent H ≤ G (compare with Lemma 2.2(b)).

9. Study the groups that are covered by (i) minimal nonnilpotent sub-
groups, (ii) minimal nonabelian subgroups, (iii) Frobenius subgroups.

10. Classify the p-groups that are covered by subgroups of maximal class.
11. Let H be a proper subgroup of maximal class of a p-group G such that

Λ(H) ⊂ Λ(G). Study the structure of G.
12. Find γ(G), where G ∈ {An, Sn} (for example, γ(A5) = 21; see also

[Br]).

Acknowledgements.

I am indebted to the referee for discussion and a number of useful remarks.

References

[B1] Y. Berkovich, Groups of Prime Power Order, Volume 1, Walter de Gruyter, Berlin,
2008.

[B2] Y. Berkovich, Minimal nonabelian and maximal subgroups of a finite p-group, Glas.
Mat. Ser. III 43(63) (2008), 97–109.

[BZ] Ya. G. Berkovich and E. M. Zhmud′, Characters of Finite Groups. Part 1, Trans-
lations of Mathematical Monographs, Volume 172, American Mathematical Society,
Providence, 1998.

[Bh] M. Bhargava, Groups as unions of proper subgroups, Amer. Math. Monthly 116
(2009), 413–422.

[Br] R. Brown, Minimal covers of Sn by abelian subgroups and maximal subsets of pairwise

noncommuting elements, J. Combin. Theory Ser A 49 (1988), 294–307; ibid. II, J.
Combin. Theory Ser A 56 (1991), 285–289.

[C] J. H. E. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44–58.
[H] M. Hall, Combinatorial Theory, Wiley, New York, 1986.
[I] I. M. Isaacs, Algebra. A Graduate Course, Brooks/Cole, Pacific Grove, 1994.
[N] B. H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3

(1954), 227–242.
[P] L. Pyber, The number of pairwise noncommuting elements and the index of the centre

in a finite group, J. London. Math. Soc. (2) 35 (1987), 287–295.
[SS] N. F. Sesekin and O. S. Shirokovskaya, A class of bigraded groups, Mat. Sb. N.S.

46(88) (1958), 133–142 (Russian).
[T] M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997),

191–198.
[Z] G. Zappa, The papers of Gaetano Scorza on group theory, Atti Accad. Naz. Lincei

Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991), 95–101.

Y. Berkovich
Department of Mathematics
University of Haifa
Mount Carmel, Haifa 31905
Israel

Received : 3.7.2009.

Revised : 22.7.2009.


