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ABSTRACT. A connection between maximal sets of pairwise non-
commuting elements and coverings of a finite group by proper subgroups is
established. This allows us to study coverings of groups by few proper sub-
groups. The p-groups without p + 2 pairwise non-commuting elements are
classified. We also prove that if a p-group admits an irredundant covering
by p + 2 subgroups, then p = 2. Some related topics are also discussed.

1. INTRODUCTION

In what follows all groups are finite and p is a prime.
We say that a group G is covered by proper subgroups Ay, ..., A, if

(1.1) G=A1U---UA,.

We have, in (1.1), G > {1} and n > 1. A group is covered by its proper
subgroups if and only if it is not cyclic. Every noncyclic group is covered by
(proper) cyclic subgroups. A group is not covered by two proper subgroups.
Covering (1.1) is said to be irredundant if every proper subset of the set
{A41,..., A} does not cover G. In what follows, we assume that (1.1) is an
irredundant covering of G by proper subgroups.

REMARK 1.1. If, in (1.1), |A1] > -+ > |A,], then |G| < |[A1n—(n—1) <
n|A;|, and hence |G : A1| < n. A more general situation is considered in the
following theorem of B. H. Neumann ([N]): If an arbitrary (finite or infinite)
group G is covered by n cosets Hyx1,..., Hyxy (Hi,...,H, < G), then at
least one subgroup H; has index < n in GG, and this estimate is best possible
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(Neumann’s theorem is obvious for finite G, however, for infinite groups it is
a fairly deep result).

Let M be a maximal subset (with respect to inclusion) of pairwise non-
commuting elements of a nonabelian group G. We denote the set of all such
subsets by A(G). Write

V(@) = max{|M| | M € A(G)}.

For an abelian group G, we set 7(G) = 1. If H is a subgroup of G, then
v(H) < 7(G). Recall that two groups G and G; are lattice isomorphic if
there is a bijective mapping ¢ of the set of subgroups of G onto the set of
subgroups of G such that, provided F, H < G, then (FNH)? = F¢ N H?
and (F, H)? = (F?, H?). If groups G and G are lattice isomorphic, then the
inequality v(G) # v(G1) is possible owing to the fact that some nonabelian
groups are lattice isomorphic to abelian groups (indeed, there exist nonabelian
modular groups which are lattice isomorphic to abelian groups).

Let I'; be the set of all maximal subgroups of G.

As Lemma 1.3(a) shows, if M € A(G), then G = |J,c Ca(z) and this
covering is irredundant.

Every nonabelian group contains three pairwise non-commuting elements
(this follows from Lemma 1.3(a)). For p-groups one can prove a stronger
result.

LEMMA 1.2. Let G be a nonabelian p-group. Then

(a) If G is minimal nonabelian, then v(G) =p + 1.
(b) v(G)zp+1.

PRrROOF. (a) We have d(G) = 2. Since all maximal subgroups of G are
abelian, any two non-commuting elements of GG are contained in distinct max-
imal subgroups of G. Therefore, v(G) < p+ 1. f 'y = {My,...,Mp41} and
x; € M; — ®(G), then, for i # j, (z;,z;) = G is nonabelian, so z;x; # =,z;.
Thus, 1,...,Zp4+1 are pairwise non-commuting elements so v(G) > p + 1,
completing the proof.

(b) Let H be a minimal nonabelian subgroup of G. Then v(H) = p + 1,
by (a), and so v(G) > v(H) =p+ 1. O

The following lemma establishes a connection between members of the
set A(G) with some irredundant coverings of a nonabelian group G. Part (b)
of this lemma also shows that members of A(G) of cardinality v(G) have a
special property.

LEMMA 1.3. Let G be a nonabelian group and M € A(G). Then

(a) We have
(1.2) U Cel@)=a.

reM
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IfN € My € A(G) and J,c s Calx) = G, then N = My ; in particu-
lar, (1.2) is an irredundant covering.

(b) Suppose, in addition, that IM| = ~(G). If x € M, then the subgroup
(G = Uyem—1a1 Caly)) is abelian.

PROOF. (a) Assume that there is g € G — e Ca(z). Since M C
M U {g}, it follows from maximality of M that ga = zg for some x € M;
then g € Cg(x), contrary to the choice of g. Thus, J, .1 Ca(z) = G.

Now assume that there is w € M such that U, ¢ (-4 Ca(2) = G. Then
there is v € M —{u} such that u € Cg(v), so that u, v are distinct commuting
members of the set M, a contradiction. Thus, the covering J, .1 Ca(z) = G
is irredundant.

(b) Given z € M, set D = G — e pq—q4} Ca(y). Assume that there are
noncommuting u, v € D. By the choice, every element of the set M —{z} does
not commute with v and v. It follows that the set (M —{z})U{u,v} C My €
A(G), a contradiction since |[Maz| > |[M| = v(G). Thus, any two elements of
the set D commute so the subgroup (D) is abelian. O

It follows from Lemma 1.3(a) that if H < G is such that v(H) = v(G)
and M = {z1,...,2,(c)} € A(H), then there are i # j with Cg(x;) £ H and
Ca(z;) £ H. Indeed, there is 7 such that Cq(x;) € H since UZ(:GI) Ce((zg) =
G > H (Lemma 1.3(a)). If for all j # i we have Cg(z;) < H, then H U
Cg(z;) = G, which is impossible since H and Cg(z;) are non-incident so
cannot cover G.

There are dozens of papers devoted to irredundant coverings of groups
(without finiteness assumption); see MathSciNet and [Bh]. I state some results
from those papers that are mentioned in [Bh]. Let o(G) be a minimal number
n such that G is covered by n proper subgroups. As we have noticed, o(G) > 3.
As Scorza (see [Z]) has showed, o(G) = 3 if and only if there is N < G such
that G/N is a four-group. The groups G satisfying o(G) € {4,5,6} are also
described (see, for example, [C]). On the other hand, it is proved in [T]
that o(G) # 7. In contrast, in this note we consider irredundant coverings
by n subgroups such that inequality n > o(G) is possible. For noncyclic p-
groups G, we have 0(G) = p+1 always. In the same time, in investigation of
irredundant coverings of p-groups we meet a number of deep problems, and
our note is not more than an introduction in this fascinating topic.

In the following section we study the p-groups containing a maximal sub-
set (with respect to inclusion) of pairwise non-commuting elements of cardi-
nality p+ 1. Some related results are also established and discussed. Next, we
study the p-groups which are covered by < 2p proper subgroups. It is proved
that if a p-group G admits an irredundant covering by p + 2 subgroup, then
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p = 2. We also consider coverings of nonnilpotent groups by few proper sub-
groups. Minimal nonabelian and minimal nonnilpotent groups play a crucial
role in what follows.

2. p-GROUPS

A noncyclic p-group G admits an irredundant covering by p + 1 maximal
subgroups (indeed, if T'< G is such that G/T is abelian of type (p,p), then
p+ 1 maximal subgroups of G containing T, cover G). Moreover, Lemma 2.1
shows that if a p-group G is covered by p+ 1 proper subgroups A1,..., Ap;1,
then |G : ﬂfill A;| = p?, ie., all A; are maximal in G.

Lemma 2.1 is known; it is proved to make our exposition self contained.

For X C G, we write X# = X — {1}

LEMMA 2.1. Suppose that a noncyclic p-group G of order p™ is covered
by n proper subgroups Ai,..., A, as in (1.1). Then
(a) n>p+1.
(b) Ifn =p+1, then covering (1.1) is irredundant and |G : ﬂf:ll A = p?.
In particular, all the A;’s are mazimal in G.

Proor. (a) If n < p, then
AT <p™ Tt =1 =p" —p < |GF|,
i=1

which is a contradiction.
(b) Now let n = p+ 1. Then the covering (1.1) is irredundant, by (a).

First assume that A1, ..., Ap41 are maximal in G; then |4; N A4;| = p™~2 for
i # j. We have
P
(2.1) G=Ap1 U (U(Ai - A,,+1)> :
i=1

Since A; — Aj; = A, — (A;NA;) for i # j, the right-hand side of (2.1) contains
at most
pm—l +p(pm—1 _pm—Q) _ pm _ |G|

elements so (2.1) is a partition of G. It follows that A;,NAp41 = A;NAy4q and
(Ai—Ap11)N(A; —Apyq) = 0 for all distinct 4, j < p+1 (indeed, one can take
in (2.1), Aj, j # i, instead of Ap41). We conclude that ﬂfill A =A1NAn
has index p? in G.

It follows from the above computation (see the displayed formula after
(2.1)) that, in fact, all subgroups A1, ..., Apy1 must be maximal in G (oth-
erwise, we obtain | /2] A;] < |G]).! a

1For another, longer proof, due to M. Roitman, see [B2, Remark 3.5].



COVERINGS OF FINITE GROUPS BY FEW PROPER SUBGROUPS 419

It follows from Lemmas 1.3 and 2.1 that if G is a nonabelian p-group,
then v(G) > p+ 1. In Theorem 2.3(b), the p-groups G with v(G) =p+1 are
classified.

LEMMA 2.2. Let H be a minimal nonabelian subgroup of a p-group G.
Then the intersection A(H)NA(G) is not empty if and only if G = HxCqg(H);
in that case, A(H) C A(G).

PRrROOF. (i) Let M € A(H) and suppose that M € A(G); then |M| = p+1
(Lemma 1.2(a)). By hypothesis and Lemma 1.3(a), G = J,c 1 Ca(x) so, by
Lemma 2.1(b), |G : e Cala)| = p?. Since M, Calz) = Ca(M) and
(M) = H, we get Cg(H) = Cg(M). Since Cg(H) N H = Z(H) has index
p? =|G:Cg(M)| in H, we get G = H x C(H), by the product formula. In
particular, H is G-invariant.

(ii) Now suppose that an (arbitrary) p-group G = H x Cg(H), where
H is minimal nonabelian, and let M = {z1,...,2p41} € A(H). Then G =
H*Cg(H) € Uper Calx), so M € A(G), by Lemmas 1.3(a) and 2.1(a).
Thus, A(H) C A(G).2 a

If M is a subset of a group G, then Cq(M) = (,c,; Ca(x).

THEOREM 2.3. Let G be a nonabelian p-group.

(a) If M € A(G) has cardinality p+ 1, then |G : Cg(x)| = p for allx € M
and |G : Cg(M)| = p?.

(b) v(G) = p+ 1 if and only if G = HZ(G), where H is an arbitrary
minimal nonabelian subgroup of G, HNZ(G) = Z(H). If, in addition,
G is of exponent p, then G = H X E, where H is nonabelian of order
p® and E is abelian.

PRrOOF. Given M € A(G), we have G = |, Ca(x), and this covering
is irredundant (Lemma 1.3(a)).

(a) follows from Lemma 2.1(b).

(b) Suppose that v(G) = p+1. Let H < G be minimal nonabelian. Then
M € A(H) has cardinality p + 1 (Lemma 1.2(a)) so that M € A(G). By
Lemma 2.2, G = H x Cg(H) (central product).

We claim that Cq(H) = Z(G). It suffices to show that Cg(H) is abelian.
Assume that this is false. Then Cg(H) contains two non-commuting elements
b,bi. Let M ={a1,...,ap41} € A(H). Take a € L — {Z(H) U {a1}}, where
L is an (abelian) maximal subgroup of H containing a; (such a exists since
|L —Z(H)| > 1). Then, since [ab, a;] = [a,a;] # 1 for ¢ > 1 (indeed, for ¢ > 1,
the subgroup (a, a;) = H is nonabelian), we obtain {ab, as, ..., ap+1} € A(G).
Note, that [ab, abi] = [b,b1] # 1 and, for i > 1, we have [ab1, a;] = [a,a;] # 1.

2We do not assert that here, in the case under consideration, v(G) = v(H) (however,
this equality holds, by Theorem 2.3(b)).
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It follows that p 4+ 2(> v(G)) elements ab, abi, ag, ..., ap41 are pairwise non-
commuting, a contradiction. Thus, Ce(H) is abelian so coincides with Z(G).
Let us show that for our group G = HZ(G) we have v(G) < p + 2
(by Lemma 2.2(b), A(H) € A(G), but our assertion is stronger). Indeed,
assume that gi,...,gp+2 € G are pairwise non-commuting. Then g; = h;z;,
where h; € H, z; € Z(G) (i = 1,2,...,p+2). Let i # j. Then [h;, hj] =
[hizi, hjzi] = [9i, gj] # 1 so the minimal nonabelian p-group H contains p + 2

pairwise non-commuting elements hy, ..., hpt2, contrary to Lemma 1.2(a).
Now suppose that G = HZ(G) is of exponent p (here H is of order p® as
minimal nonabelian group of exponent p, and Z(G) is elementary abelian).
In that case, HNZ(G) = Z(H) is of order p so Z(G) = Z(H) x E, where E is

elementary abelian. Then G = H x E, and this completes the proof of (b).
O

Theorem 2.3(b), in particular, classifies the nonabelian p-groups possess-
ing exactly p+ 1 distinct centralizers of noncentral elements (note that paper
[P] yields an estimate of |G : Z(G)] is terms of v(G)).

PROPOSITION 2.4. The following assertions for a mnonabelian p-group G
are equivalent:
(a) If H < G is minimal nonabelian, then A(H) C A(G).
(b) G = (By *---x By)Z(G), where By,..., By are minimal nonabelian.

PROOF. (a) = (b): We proceed by induction on |G|. Let By < G be
minimal nonabelian. Then G = B; * Cg(B1), by Lemma 2.2. If Cq(By) is
abelian, we are done. If C¢(B) is nonabelian, the result follows by induction
applied to Cg(Bq) since Z(Cq(B1)) = Z(G).

(b) = (a): Let G be as in (b) and H < G minimal nonabelian. Since
|G’| = p, then, by [B1, Lemma 4.3(a)], we obtain G = H *Cg(H) so A(H) C
A(G), by Lemma 2.2. O

REMARK 2.5. The argument in part (ii) of the proof of Lemma 2.2 shows

that if H is a nonabelian subgroup of an arbitrary group G = H * Cg(H),
then A(H) C A(G).

3. NONNILPOTENT GROUPS

In this section G is a nonnilpotent group.

Let p be a prime divisor of |G| such that G has no normal p-complement.
Then there is in G a minimal nonnilpotent subgroup H = @ - P, where
P = H'" € Syl,(H) and Q € Syl (H) is cyclic (this follows from Frobenius’
normal p-complement theorem; see, for example, [I, Theorem 9.18]). We have
|P| = p®*¢, where b is the order of p (mod q) and p¢ = |P N Z(H)| (see [BZ,
Lemma 11.2]). In that case, there are in H exactly p” Sylow g-subgroups, say

Ql = <1’1>,. ..,Qpb = <l‘pb>.
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Then z1,...,x, are pairwise non-commuting elements (indeed, if 7 # j, then
(x;,x;) is nonnilpotent so coincides with H: it has two distinct Sylow g-
subgroups Q; and Q;). If {y1,...,ys} is a maximal subset of pairwise non-
commuting elements of P, then yi,...,ys,Z1,...,%Tp is a maximal subset
(with respect to inclusion) of pairwise non-commuting elements of H of car-
dinality p® +s > p+ 1 (note that s = 1 if and only if P is abelian). Thus,

Y(G) > v(H) =p* +s > p°+ 1.

THEOREM 3.1. Let G be a nonabelian group and p a prime divisor of |G|.

(a) If G has no normal p-complement, then v(G) > p+ 1. If, in addition,
p is the minimal prime divisor of |G|, then v(G) > p? + 1.

(b) Suppose that G has a normal p-complement however a Sylow p-
subgroup is not a direct factor of G. Then v(G) > p+2. If, in addition,
Y(G) = p+ 2, then either p =2 and q = 3 or p is a Mersenne prime.

(¢) If G = P x A, where P is nonabelian, A is abelian and v(G) < p+ 2,
then P is such as in Theorem 2.3(b).

PROOF. (a) was proved in the paragraph, preceding the theorem.

(b) Now assume that G has a normal p-complement H but P € Syl,(G)
is not a direct factor of G. It follows that the p-solvable group G contains a
nonnilpotent subgroup PQ, where Q € Syl (H); then Q = PQN H <4 PQ. In
that case, PQ contains a minimal nonnilpotent subgroup F' = P;Q, where
Py € Syl,(F) is cyclic and Q1 = F’ € Syl (F). Then [Q1] = ¢%*e, where 3 is
the order of ¢ (mod p) and ¢° = |Q1 NZ(F)|. As above, there is M € A(F)
of cardinality > ¢ 4+ 1. Since ¢° > p + 1, we get |[M| > p + 2. Now assume
that |[M| = p+2; then ¢” = p+ 1 so either p=2and ¢ =3 or ¢ = 2 and p is
a Mersenne prime.

(c) now follows from Remark 2.5 and Theorem 2.3(b). O

PROPOSITION 3.2. Let p be a minimal prime divisor of the order of a group
G and let G = |JPt] A; be an irredundant covering. Then |G = (1! Ai| = p?.

In particular, |G : A;|=p fori=1,....,p+ 1.

PRrROOF. It follows from Remark 1.1 that, if p is the minimal prime divisor
of a group G, then it is not covered by p proper subgroups. One may assume
that |A1| > --- > |An|. Then, by Remark 1.1, we have |G : A;] < p+1 so
that |G : A1] = p and 4; <G.

First assume that all A; are maximal in G. Set |G| = g, |G : A;| = ki,
i=2,...,p+ 1. Note, that k; > p for all i. We have

p+1
(3.1) G=A4AU <U(Ai—A1)>.

=2
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Since Ai—Al = Ai—(AiﬁAl) and |Az : (AzﬁA1)| = P SO |G : (AZQA1)| :pk'i
for ¢ > 1, so obtain

g g g 1
A, — Al = == (1-=].
| ll ki pk; kz( p)

The right-hand side of (3.1) contains v elements, where

p+1 p+1 1
w0 (R (s
p p p p p

=2

Since v = g, it follows that (3 1) is a partition of G and k; = p for all ¢; in

that case, |G : (1) A;| =
Now let A; < B; < G where B; are maximal in G for all ¢. Then
Up 1B, is an irredundant covering of GG, by the first sentence of the
proof and so |G : B;| = p for all 4, by the previous paragraph. If some
A; < B, then, taking in (3.1), A; = B; for j # i, we get a contradiction.
Thus, B; = A, for all i and so |G : "2 A, | = p?, by the previous paragraph.
O

Lemma 2.1(b) is a partial case of Proposition 3.2.
Let G be a non-p-nilpotent group. Then, using Theorem 3.1, one can
show the following results:
(a) If p =2, then v(G) > 5.
(b) If p > 2, then 4(G) > p + 1.
(c) If p > 2 is a minimal prime divisor of |G|, then v(G) > p* + 1.

4. ON THE NUMBER OF MAXIMAL SUBGROUPS APPEARING IN SOME
COVERINGS OF p-GROUPS

In this section we consider irredundant coverings of a p-group by k proper
subgroups, where p + 1 < k < 2p.

It is impossible to avoid some repetitions in computations (otherwise, the
proofs will be unreadable).

REMARK 4.1. We claim that, if a p-group G is neither cyclic nor Qg, it
admits an irredundant covering by 2p subgroups. Indeed, let T'< G be such
that G/T is abelian of type (p,p). Let A1/T, ..., Ap+1/T be all subgroups of
order p in G/T. Then G = Uf:ll A; is an irredundant covering. Since G is
neither cyclic nor isomorphic to Qg, one may assume that A; is noncyclic (here
we use [B1, Theorem 1.2] which implies that if a p-group contains > p cyclic
subgroups of index p, it is & Qg). In that case, there is in 7" an A;j-invariant
subgroup Tp such that A, /Tj is abelian of type (p,p). Let T = T1,Ts, ..., Tpy1
be all maximal subgroups of A; containing 7y. Then G is covered by 2p
subgroups Asa, ..., Ap+1,T5, ..., Tp41, and this covering is irredundant.
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THEOREM 4.2. If a p-group G admits an irredundant covering by p + 2
subgroups A1, ..., Api2, then
(a) If p> 2, then at least p+ 1 of the A;’s are mazimal in G.
(b) If p =2, then at least two of the A;’s are maximal in G.

PROOF. Let |Ai| > -+ > |A,12| and |G| = p™. By Remark 1.1, |G :
Aq| = p. Assume that |G : Apt1]| > p. Set |G| = p™. Then

p+2 P p+2
= UAil < |A1|+Z|Ai_A1|+ Z |A; — Ad|
i=1 i=2 i=p+1

=p" (=D =P ) 420" 2 p"?)
=p" =" =3p+2)=p" —p" (- 1)(p-2).
If p > 2, then p" < p" —p"3(p—1)(p—2) < p", which is a contradiction.
Thus, if p > 2, then at least p+1 subgroups A;’s are maximal in G, completing

this case.
Now let p = 2 and assume that |As| < 2771, Then

4 4
2" = [N A < A+ A - A =20t 3@n o2 ) = 72 <o,
=1 =2

a contradiction. Thus, if p = 2, then at least two A;’s are maximal in G. 0O

Let G = Ule A; be an irredundant covering of a 2-group that is not two-
generator, |A1| > |Ag| > |As| > |A4|; then Ay, As € Ty (Theorem 4.2(b)). We
claim that if |G : Az| = 2, then |G : A4] = 2 so all A; are maximal in G. We
have

(4.1) G=AU(Ay— A) U (A5 — Ay — Ay) U (Ay — Ay).

Assume that |G : A4] > 2. We have |G : (4; N A3 N A3)] = 2% (Lemma 2.1).
Therefore,

|As — Ay — Ag| =2n7 1 —2.2n72 L 9n=3 — 913,
It follows that the right-hand side of formula (4.1) contains v elements, where
v § 27’7,71 + (2n71 _ 2n72) 4 27’173 + (2n73 _ 2n74) < 2n’

which is a contradiction. Thus, either exactly two or four of the A;’s are
maximal in G.

Let G be a 2-group that is not generated by two elements. We claim that
then G admits an irredundant covering G = Ule A;, where A; € I'y for all 1.
Without loss of generality, one may assume that ®(G) = {1}. Let Ay, Ay € Ty
be distinct, and set T = A;jNAz. Let T < A3 € 1 — {41, Az} and let S < T
be of index 2; then A3/S = E4. Let T/S,11/5,T2/S < Asz/S be of index
2. Since G/T; = Ey4, there is By, By € I'y — {As} such that B; N A3 = T;
1 =1,2. Since Az is a subset of the set A; UB;UDBsy (indeed, A5 = TUT; UTs
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is a subset of A; U By U By), it follows that G = A3 U A2 UBy UBs is a
covering (indeed, G = A; U A3 U A3 is a subset of A; U Ay U By U Bs). Since
the intersection of any three distinct elements of the set { A1, Aa, By, B2} has
index 22 in G, our covering is irredundant (Lemma 2.1(b)).

Similarly, if p > 2 and a p-group G is not generated by two elements, then
it admits an irredundant covering by 2p maximal subgroups.

LEMMA 4.3. Suppose that A, B,C, D are pairwise distinct maximal sub-
groups of a p-group G of order p" such that |G : (AN BNC)| = p3. Then

(4.2) |JAUBUC|=3p" ! —3p" 2 +p" 3,
(4.3) |ID—(AUBUCQC)| <p" ' —3pn2 4 3pn3 —pn—i.
ProOF. Note that if distinct U, V' < G are maximal, then |G : (UNV)| =
p?. By the inclusion-exclusion identity [H, formula (2.2.1)],
[AUBUC|=(JA|+|B|+C|)— (JANnB|+|BNC|+|CNA))+|AnBNC|
_ 3pn—1 _ 3pn—2 +pn—3.
By hypothesis, ANB # BN C # CN A (if, for example, ANB=ANC,

then ANB = (ANB)N(ANC)=ANBNC, a contradiction since |[AN B| =
p" 2 >p" 3 =|ANBNC|). We have

(4.4) D—-(AUuBUC)=D—-(DNn(AUBUC()),
and so
D—-(AUBUC)=D—-((DNA)U(DNB)U(DNC)).
By inclusion-exclusion identity,
[(DNAUDNB)UMDNC) =(DNAl+|DNnB|+|DNC)
—(IDNANB|+|DNANC|+|DnNnBNC))+|DNANnBNC.

If ANB C D, then DNANBNC = DN C has order p"~2, a contradiction
since ANBNC D DN AN BNC has order p»~3, by hypothesis. Thus,
AN B ¢ D, and the same is true for ANC and BN C. Then, by the product
formula and the previous displayed formula, we have

IDNANB|=|DNANC|=|DNBNC|=p" 3,
[DN(AUBUC)|=|(DNA)U(DNB)U(DNC)|
=3p" 2 -3p"*+|DNANBNC|.
Since [DNANBNC| € {p"3,p"*}, we obtain
IDN(AUBUC)| >3p"2 —3p" 3 4 p"*.
Now (4.3) follows from (4.4). O

THEOREM 4.4. If a p-group admits an irredundant covering by p+2 proper
subgroups, then p = 2.
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PROOF. Assume that a group G of order p™ admits an irredundant cov-
ering by p + 2 proper subgroups A1, ..., Apto and p > 2. By Theorem 4.2(a),
one may assume that Ai,..., Ap41 are maximal in G. Since G # Uf:ll A,
we have |G : ﬂf:ll A;| > p*. One may assume, without loss of generality, that
|G : (A1 N Ay N A3)| = p®. We may also assume that |G : Apio| = p. Then,
by (4.2), we have

(4.5) |A1 U Ay U Ag| = 3p”71 — 3pn*2 +pn73
and, for i > 3,
(46) |A7, - (Al @] AQ U A3)| < pn_l — Spn_Q + 3pn—3 _ pn—3(p2 o 3p + 3)7

by (4.3).
Set A1 U Ay U A3 = U. We have
p+2
(4.7) G=Uvu(|J-0)).
i=4

Therefore, taking in account (4.5) and (4.6), we obtain
Gl =p" < (3" =3p" 240" ) + (p = Dp" (" — 3p+3)

=p" ="’ =3p+2)=p" —p" o - 1)p—2) <p",
since p > 2, a final contradiction. Thus, we must have p = 2. O

ProprosITION 4.5. If a p-group G is covered by at most k < 2p proper
subgroups Ai,..., A (we do not assume that this covering is irredundant),
then at least p of these subgroups are mazimal in G. If p >3 andp+2 < k <
2p, then at least p + 1 summands in our covering are maximal in G.

PROOF. (i) One may assume that G is not isomorphic to Qs. Let |G| =

7

p".
In view of Theorem 4.2(b), one may assume that p > 2. Let |4y > --- >

|Ag|. Then |G : Ai] = p (Remark 1.1). Since we do not assume that our
covering is irredundant, one can add new summands of order p™~?2 to obtain
k = 2p. We also may assume, by way of contradiction, that A;,..., 4,1 are
maximal in G and A4,,..., As, have index p? in G. Indeed, if, for example,
|G : Ai] > p?, (i > p— 1), one can replace A; by subgroup that contains A;
and has index p? in G. If, for example, |G : A;| > p (i < p), one can replace
A; by maximal subgroup of G that contains A4;. We have

(4.8) G=Ay U (@ (A; — A,,g) U Lj(AZ- — A1)

i=1 i=p
The right-hand side of formula (4.8) contains v elements, where
v (=2 =)+ (0 D ")
=p" =" P p—1)? <p" =G,
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a contradiction. Thus, at least p subgroups 4; (i < 2p) are maximal in G.

(ii) To prove the last assertion, one may assume, by way of contradiction,
that Ai,..., A, are maximal in G and |G : 4;| = p? for i > p (see (i)). (Here
p > 3since 3+2 = 2-3—1.) We also may assume that k = 2p—1 (if k < 2p—1,
one can add to our union 2p — 1 — k new summands of order p”~2). Then, as
above, we obtain

|G| :pn S pn—l 4 (p _ 1)(pn—1 _pn—2) + (p _ 1)(pn—2 _pn—3)

=p" (D" —p" ) =p" —p" P p—1) <p",
a contradiction. O

PROPOSITION 4.6. Suppose that a p-group G of order p™ > p*, p > 2, is
covered by k proper subgroups, say A1,..., A, where p+2 < k < 2p. Let, in
addition, any p + 2 subgroups A; do not cover G, |G : A;| =p fori < p and
|G : A;| > p fori>p. Then

(a) k=2p and our covering is irredundant.
(b) |Mizy Asl =p" 2
(c) |Ail =p™~2 fori> p.
2 _
(d) [MZpq1 Ail =p" 2.

PROOF. In view of Proposition 4.5, k = 2p so (a) is true since our covering
must be irredundant.

We have
p—1 2p
(4.9) G=A4,U <U (A; — Ap)> U U (Ai — Ap)
i=1 i=p+1

(c) Assume that |A,4q] > -+ > |Agp| and |Az,| < p"~2. Then the right-

hand side of (4.9) contains v elements, where
vEp" T =D ="+ (- DO =" T+ (" T

—_ pn—l + (p_ 1)(pn—1 _pn—3) + (pn—?; _pn—4) — pn _pn—4(p_ 1)2 < pn _ |G|,
which is a contradiction. This proves (c).

(b, d) We have |G : A;| = p? for i > p, by (c). In that case, the right-hand
side of (4.9) contains v elements, where

v < pnfl + (p _ 1)(pn71 7pn72) +p(pn72 *]7"73) _ pn _ |G|,

so (4.9) is a partition. This implies (b) and (d). O

A similar argument shows that if a p-group G of order p” is covered by
p? proper subgroups, then at least two of these subgroups are maximal in G.

Indeed, if only one summand of our covering is maximal in G (see Remark 1.1),
we obtain

pn § pnfl + (p2 o 1)(pn72 7pn73) _ pn 7pn73(p o 1) < pn’
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a contradiction.

COROLLARY 4.7. If a nonabelian p-group G has at most 2p pairwise non-
commuting elements, then centralizers of at least p of these elements are max-
imal in G.

REMARK 4.8. Let G be a group of maximal class and order p"+2, n > 2,
with abelian subgroup A of index p. In that case, every z € G — A satisfies
|Cq(x)| = p? (indeed, C(x) = Z(G) is of order p) and the number of maximal

abelian subgroups of order p? not contained in A, is equal to p(pil) =0
(indeed, if B is such a subgroup, then |B — A| = p(p—1) and all such B cover
the set G— A). These p" subgroups together with A cover G and this covering
is irredundant. If T is one of such abelian subgroups, take x € T — Z(G). So
obtained set of cardinality p™ + 1 is contained in A(G). It is easy to see that
v(G) =p" + 1.

REMARK 4.9. Let G be a nonabelian p-group. If x € G and A, is a max-
imal abelian subgroup of Cg(z), then A, is also a maximal abelian subgroup
of G. Let M € A(G). Take in Cg(x) a maximal abelian subgroup A, for
every x € M (indeed, if B > A, is abelian, then, by the choice, B £ Cg(z),
a contradiction). Then |[{A4, | x € M}| = |M]|. It follows that G has at least
~v(G) maximal abelian subgroups. If G has exactly p + 1 maximal abelian
subgroups, say Ai,...,Ap+1, they cover G. In that case, A,...,A,41 are
maximal in G (Lemma 1.3(b)) and G has the structure described in Theo-
rem 2.3(b).

REMARK 4.10. Let Bi,...,B, be all maximal abelian subgroups of a
nonabelian group G. Then (@) < n since G = |J;_, B; (it is possible that
this covering may be redundant). If B; N B; = Z(G) for all # # j (in this
case, the considered covering is irredundant), then v(G) = n. Indeed, take
x; € B;—7Z(G) for all i. We claim that {x1,...,z,} € A(G).® For example, let
G be a Sylow 2-subgroup of the simple Suzuki group Sz(q), where ¢ = 227 +1,
Then Z(G) = ®(G) has index 22m*1 in G. If A < G is maximal abelian, then
|A: Z(G)| = 2. Tt follows that there is M € A(G) of cardinality 2*™*! — 1;
moreover, all members of the set A(G) have the same cardinality.

REMARK 4.11. Let G = A % B be a central product of nonabelian sub-
groups A and B, M = {a1,...,a,m} € A(A) and N = {b1,...,b,} € A(B).
Then m — 1 4+ n elements of the following set

Ml = {a2; sy Omy, albh a1b27 R albn}

are pairwise non-commuting. We claim that M; € A(G). Assume that there
is ¢ € G — M such that all elements of the set My U {z} are pairwise non-
commuting. We have © = ab, where a € A and b € B. For ¢ > 1, we have

3Indeed, if {x,21,...,2n} € A(G) and = € B, where B < G is maximal abelian and
x # x; for all i, then B & {Bi1,...,Bn}.
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1 # [ab,a;] = [a,a;] so that @ € D = A —J;_, Ca(a;). By Lemma 1.3(b),

the subgroup (D) is abelian so [a,a1] = 1 since a3 € D. For i = 1,...,n,
we have 1 # [ab,a1b;] = [ab,b;] = [b,b;]. We conclude that n + 1 > ~(B)
elements b,by,...,b, € B are pairwise non-commuting, a contradiction. In

particular, if G is an extraspecial group of order p?™*!, then, by induction,
v(G) = mp+ 1.

It follows from Remark 4.11 and Lemma 1.2(a) that if G is a nonabelian p-
group such that y(G) < 2p, then Ci(H) is abelian for all minimal nonabelian
H < G.

It is interesting to carry out similar considerations for infinite groups.
We consider only one example. According to [SS], every infinite minimal non-
abelian group G coincides with its derived subgroup. Every proper noncentral
subgroup of G is contained in a unique maximal subgroup of G, its centralizer.
Since G = G, every maximal subgroup has infinite index in G (Poincare).
Let T'; be the set of maximal subgroups of G. For every H € I'y, choose
x € H —Z(G). Since the intersection of any two distinct members of the set
I’y coincides with Z(G) and the set I'; is infinite, all so chosen elements form
an infinite set of pairwise non-commuting elements. It is not true that every
nonabelian infinite group possesses an infinite set of pairwise non-commuting
elements. For example, G = H x A, where H is finite nonabelian and A is
infinite abelian, satisfies v(G) = v(H) < oo.

5. PROBLEMS

Below we state some related problems.

1. Classify the 2-groups without five pairwise non-commuting elements.
(See Lemma 1.2 and Theorem 4.4)

2. Does there exist a p-group G admitting an irredundant covering by n
subgroups, where p + 1 < n < 2p? If ‘yes’, classify such the groups.

3. Describe the set of positive integers n such that there is an elemen-
tary abelian p-group admitting an irredundant covering by n maximal
subgroups.

4. Let M, N be groups and v(M) = m, v(N) =n. Then y(M x N) = mn.
(i) Estimate v(M % N) in terms of M, N and M N N. Consider the
case where M, N are p-groups of maximal class. (i) Find v(G), where
G is an extraspecial group of order p?™*! (see Remark 4.11).

5. Classify the pairs groups N <G such that v(G/N) = ~v(G).

6. Find v(Xpn), where X,n is a Sylow p-subgroup of the symmetric
group S,n of degree p"”. The same problem for UT(m,p"), a Sylow
p-subgroup of the general linear group GL(m, p™).

7. Study the nonabelian p-groups G such that Cg(H) is abelian for all
minimal nonabelian H < G (see the paragraph following Remark 4.11).
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8. Study the nonnilpotent groups G such that A(H) C A(G) for all min-
imal nonnilpotent H < G (compare with Lemma 2.2(b)).
9. Study the groups that are covered by (i) minimal nonnilpotent sub-
groups, (ii) minimal nonabelian subgroups, (iii) Frobenius subgroups.
10. Classify the p-groups that are covered by subgroups of maximal class.
11. Let H be a proper subgroup of maximal class of a p-group G such that
A(H) C A(G). Study the structure of G.
12. Find v(G), where G € {A,,,S,} (for example, 7(A5) = 21; see also
[Br]).
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