COVERINGS OF FINITE GROUPS BY FEW PROPER SUBGROUPS

Yakov Berkovich
University of Haifa, Israel

Abstract

A connection between maximal sets of pairwise noncommuting elements and coverings of a finite group by proper subgroups is established. This allows us to study coverings of groups by few proper subgroups. The p-groups without $p+2$ pairwise non-commuting elements are classified. We also prove that if a p-group admits an irredundant covering by $p+2$ subgroups, then $p=2$. Some related topics are also discussed.

1. Introduction

In what follows all groups are finite and p is a prime.
We say that a group G is covered by proper subgroups A_{1}, \ldots, A_{n} if

$$
\begin{equation*}
G=A_{1} \cup \cdots \cup A_{n} . \tag{1.1}
\end{equation*}
$$

We have, in (1.1), $G>\{1\}$ and $n>1$. A group is covered by its proper subgroups if and only if it is not cyclic. Every noncyclic group is covered by (proper) cyclic subgroups. A group is not covered by two proper subgroups. Covering (1.1) is said to be irredundant if every proper subset of the set $\left\{A_{1}, \ldots, A_{n}\right\}$ does not cover G. In what follows, we assume that (1.1) is an irredundant covering of G by proper subgroups.

Remark 1.1. If, in (1.1), $\left|A_{1}\right| \geq \cdots \geq\left|A_{n}\right|$, then $|G| \leq\left|A_{1}\right| n-(n-1)<$ $n\left|A_{1}\right|$, and hence $\left|G: A_{1}\right|<n$. A more general situation is considered in the following theorem of B. H. Neumann ([N]): If an arbitrary (finite or infinite) group G is covered by n cosets $H_{1} x_{1}, \ldots, H_{n} x_{n}\left(H_{1}, \ldots, H_{n} \leq G\right)$, then at least one subgroup H_{i} has index $\leq n$ in G, and this estimate is best possible

2010 Mathematics Subject Classification. 20D15.
Key words and phrases. Minimal nonabelian p-groups, irredundant covering, minimal nonnilpotent groups, central product.
(Neumann's theorem is obvious for finite G, however, for infinite groups it is a fairly deep result).

Let \mathcal{M} be a maximal subset (with respect to inclusion) of pairwise noncommuting elements of a nonabelian group G. We denote the set of all such subsets by $\Lambda(G)$. Write

$$
\gamma(G)=\max \{|\mathcal{M}| \mid \mathcal{M} \in \Lambda(G)\}
$$

For an abelian group G, we set $\gamma(G)=1$. If H is a subgroup of G, then $\gamma(H) \leq \gamma(G)$. Recall that two groups G and G_{1} are lattice isomorphic if there is a bijective mapping ϕ of the set of subgroups of G onto the set of subgroups of G_{1} such that, provided $F, H \leq G$, then $(F \cap H)^{\phi}=F^{\phi} \cap H^{\phi}$ and $\langle F, H\rangle^{\phi}=\left\langle F^{\phi}, H^{\phi}\right\rangle$. If groups G and G_{1} are lattice isomorphic, then the inequality $\gamma(G) \neq \gamma\left(G_{1}\right)$ is possible owing to the fact that some nonabelian groups are lattice isomorphic to abelian groups (indeed, there exist nonabelian modular groups which are lattice isomorphic to abelian groups).

Let Γ_{1} be the set of all maximal subgroups of G.
As Lemma 1.3(a) shows, if $\mathcal{M} \in \Lambda(G)$, then $G=\bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)$ and this covering is irredundant.

Every nonabelian group contains three pairwise non-commuting elements (this follows from Lemma 1.3(a)). For p-groups one can prove a stronger result.

Lemma 1.2. Let G be a nonabelian p-group. Then
(a) If G is minimal nonabelian, then $\gamma(G)=p+1$.
(b) $\gamma(G) \geq p+1$.

Proof. (a) We have $\mathrm{d}(G)=2$. Since all maximal subgroups of G are abelian, any two non-commuting elements of G are contained in distinct maximal subgroups of G. Therefore, $\gamma(G) \leq p+1$. If $\Gamma_{1}=\left\{M_{1}, \ldots, M_{p+1}\right\}$ and $x_{i} \in M_{i}-\Phi(G)$, then, for $i \neq j,\left\langle x_{i}, x_{j}\right\rangle=G$ is nonabelian, so $x_{i} x_{j} \neq x_{j} x_{i}$. Thus, x_{1}, \ldots, x_{p+1} are pairwise non-commuting elements so $\gamma(G) \geq p+1$, completing the proof.
(b) Let H be a minimal nonabelian subgroup of G. Then $\gamma(H)=p+1$, by (a), and so $\gamma(G) \geq \gamma(H)=p+1$.

The following lemma establishes a connection between members of the set $\Lambda(G)$ with some irredundant coverings of a nonabelian group G. Part (b) of this lemma also shows that members of $\Lambda(G)$ of cardinality $\gamma(G)$ have a special property.

Lemma 1.3. Let G be a nonabelian group and $\mathcal{M} \in \Lambda(G)$. Then
(a) We have

$$
\begin{equation*}
\bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)=G \tag{1.2}
\end{equation*}
$$

If $\mathcal{N} \subseteq \mathcal{M}_{1} \in \Lambda(G)$ and $\bigcup_{x \in \mathcal{N}} \mathrm{C}_{G}(x)=G$, then $\mathcal{N}=\mathcal{M}_{1}$; in particular, (1.2) is an irredundant covering.
(b) Suppose, in addition, that $|\mathcal{M}|=\gamma(G)$. If $x \in \mathcal{M}$, then the subgroup $\left\langle G-\bigcup_{y \in \mathcal{M}-\{x\}} \mathrm{C}_{G}(y)\right\rangle$ is abelian.

Proof. (a) Assume that there is $g \in G-\bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)$. Since $\mathcal{M} \subset$ $\mathcal{M} \cup\{g\}$, it follows from maximality of \mathcal{M} that $g x=x g$ for some $x \in \mathcal{M}$; then $g \in \mathrm{C}_{G}(x)$, contrary to the choice of g. Thus, $\bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)=G$.

Now assume that there is $u \in \mathcal{M}$ such that $\bigcup_{x \in \mathcal{M}-\{u\}} \mathrm{C}_{G}(x)=G$. Then there is $v \in \mathcal{M}-\{u\}$ such that $u \in \mathrm{C}_{G}(v)$, so that u, v are distinct commuting members of the set \mathcal{M}, a contradiction. Thus, the covering $\bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)=G$ is irredundant.
(b) Given $x \in \mathcal{M}$, set $D=G-\bigcup_{y \in \mathcal{M}-\{x\}} \mathrm{C}_{G}(y)$. Assume that there are noncommuting $u, v \in D$. By the choice, every element of the set $\mathcal{M}-\{x\}$ does not commute with u and v. It follows that the set $(\mathcal{M}-\{x\}) \cup\{u, v\} \subseteq M_{2} \in$ $\Lambda(G)$, a contradiction since $\left|\mathcal{M}_{2}\right|>|\mathcal{M}|=\gamma(G)$. Thus, any two elements of the set D commute so the subgroup $\langle D\rangle$ is abelian.

It follows from Lemma 1.3(a) that if $H<G$ is such that $\gamma(H)=\gamma(G)$ and $\mathcal{M}=\left\{x_{1}, \ldots, x_{\gamma(G)}\right\} \in \Lambda(H)$, then there are $i \neq j$ with $\mathrm{C}_{G}\left(x_{i}\right) \not \leq H$ and $\mathrm{C}_{G}\left(x_{j}\right) \not 又 H$. Indeed, there is i such that $\mathrm{C}_{G}\left(x_{i}\right) \not 又 H$ since $\bigcup_{k=1}^{\gamma(G)} \mathrm{C}_{G}\left(\left(x_{k}\right)=\right.$ $G>H$ (Lemma 1.3(a)). If for all $j \neq i$ we have $\mathrm{C}_{G}\left(x_{j}\right) \leq H$, then $H \cup$ $\mathrm{C}_{G}\left(x_{i}\right)=G$, which is impossible since H and $\mathrm{C}_{G}\left(x_{j}\right)$ are non-incident so cannot cover G.

There are dozens of papers devoted to irredundant coverings of groups (without finiteness assumption); see MathSciNet and [Bh]. I state some results from those papers that are mentioned in [Bh]. Let $\sigma(G)$ be a minimal number n such that G is covered by n proper subgroups. As we have noticed, $\sigma(G) \geq 3$. As Scorza (see [Z]) has showed, $\sigma(G)=3$ if and only if there is $N \triangleleft G$ such that G / N is a four-group. The groups G satisfying $\sigma(G) \in\{4,5,6\}$ are also described (see, for example, $[\mathrm{C}]$). On the other hand, it is proved in $[\mathrm{T}]$ that $\sigma(G) \neq 7$. In contrast, in this note we consider irredundant coverings by n subgroups such that inequality $n>\sigma(G)$ is possible. For noncyclic p groups G, we have $\sigma(G)=p+1$ always. In the same time, in investigation of irredundant coverings of p-groups we meet a number of deep problems, and our note is not more than an introduction in this fascinating topic.

In the following section we study the p-groups containing a maximal subset (with respect to inclusion) of pairwise non-commuting elements of cardinality $p+1$. Some related results are also established and discussed. Next, we study the p-groups which are covered by $\leq 2 p$ proper subgroups. It is proved that if a p-group G admits an irredundant covering by $p+2$ subgroup, then
$p=2$. We also consider coverings of nonnilpotent groups by few proper subgroups. Minimal nonabelian and minimal nonnilpotent groups play a crucial role in what follows.

2. p-GROUPS

A noncyclic p-group G admits an irredundant covering by $p+1$ maximal subgroups (indeed, if $T \triangleleft G$ is such that G / T is abelian of type (p, p), then $p+1$ maximal subgroups of G containing T, cover G). Moreover, Lemma 2.1 shows that if a p-group G is covered by $p+1$ proper subgroups A_{1}, \ldots, A_{p+1}, then $\left|G: \bigcap_{i=1}^{p+1} A_{i}\right|=p^{2}$, i.e., all A_{i} are maximal in G.

Lemma 2.1 is known; it is proved to make our exposition self contained.
For $X \subseteq G$, we write $X^{\#}=X-\{1\}$
Lemma 2.1. Suppose that a noncyclic p-group G of order p^{m} is covered by n proper subgroups A_{1}, \ldots, A_{n} as in (1.1). Then
(a) $n \geq p+1$.
(b) If $n=p+1$, then covering (1.1) is irredundant and $\left|G: \bigcap_{i=1}^{p+1} A_{i}\right|=p^{2}$. In particular, all the A_{i} 's are maximal in G.
Proof. (a) If $n \leq p$, then

$$
\left|\sum_{i=1}^{n} A_{i}^{\#}\right| \leq p\left(p^{m-1}-1\right)=p^{m}-p<\left|G^{\#}\right|,
$$

which is a contradiction.
(b) Now let $n=p+1$. Then the covering (1.1) is irredundant, by (a). First assume that A_{1}, \ldots, A_{p+1} are maximal in G; then $\left|A_{i} \cap A_{j}\right|=p^{m-2}$ for $i \neq j$. We have

$$
\begin{equation*}
G=A_{p+1} \cup\left(\bigcup_{i=1}^{p}\left(A_{i}-A_{p+1}\right)\right) \tag{2.1}
\end{equation*}
$$

Since $A_{i}-A_{j}=A_{i}-\left(A_{i} \cap A_{j}\right)$ for $i \neq j$, the right-hand side of (2.1) contains at most

$$
p^{m-1}+p\left(p^{m-1}-p^{m-2}\right)=p^{m}=|G|
$$

elements so (2.1) is a partition of G. It follows that $A_{i} \cap A_{p+1}=A_{j} \cap A_{p+1}$ and $\left(A_{i}-A_{p+1}\right) \cap\left(A_{j}-A_{p+1}\right)=\emptyset$ for all distinct $i, j<p+1$ (indeed, one can take in (2.1), $A_{j}, j \neq i$, instead of A_{p+1}). We conclude that $\bigcap_{i=1}^{p+1} A_{i}=A_{1} \cap A_{p+1}$ has index p^{2} in G.

It follows from the above computation (see the displayed formula after (2.1)) that, in fact, all subgroups A_{1}, \ldots, A_{p+1} must be maximal in G (otherwise, we obtain $\left.\left|\bigcup_{i=1}^{p+1} A_{i}\right|<|G|\right) .{ }^{1}$

[^0]It follows from Lemmas 1.3 and 2.1 that if G is a nonabelian p-group, then $\gamma(G) \geq p+1$. In Theorem 2.3(b), the p-groups G with $\gamma(G)=p+1$ are classified.

Lemma 2.2. Let H be a minimal nonabelian subgroup of a p-group G. Then the intersection $\Lambda(H) \cap \Lambda(G)$ is not empty if and only if $G=H * \mathrm{C}_{G}(H)$; in that case, $\Lambda(H) \subseteq \Lambda(G)$.

Proof. (i) Let $\mathcal{M} \in \Lambda(H)$ and suppose that $\mathcal{M} \in \Lambda(G)$; then $|\mathcal{M}|=p+1$ (Lemma 1.2(a)). By hypothesis and Lemma 1.3(a), $G=\bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)$ so, by Lemma 2.1(b), $\left|G: \bigcap_{x \in \mathcal{M}} \mathrm{C}_{G}(x)\right|=p^{2}$. Since $\bigcap_{x \in \mathcal{M}} \mathrm{C}_{G}(x)=\mathrm{C}_{G}(\mathcal{M})$ and $\langle\mathcal{M}\rangle=H$, we get $\mathrm{C}_{G}(H)=\mathrm{C}_{G}(\mathcal{M})$. Since $\mathrm{C}_{G}(H) \cap H=\mathrm{Z}(H)$ has index $p^{2}=\left|G: \mathrm{C}_{G}(\mathcal{M})\right|$ in H, we get $G=H * \mathrm{C}_{G}(H)$, by the product formula. In particular, H is G-invariant.
(ii) Now suppose that an (arbitrary) p-group $G=H * \mathrm{C}_{G}(H)$, where H is minimal nonabelian, and let $\mathcal{M}=\left\{x_{1}, \ldots, x_{p+1}\right\} \in \Lambda(H)$. Then $G=$ $H * \mathrm{C}_{G}(H) \subseteq \bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)$, so $\mathcal{M} \in \Lambda(G)$, by Lemmas 1.3(a) and 2.1(a). Thus, $\Lambda(H) \subseteq \Lambda(G) .{ }^{2}$

If M is a subset of a group G, then $\mathrm{C}_{G}(M)=\bigcap_{x \in M} \mathrm{C}_{G}(x)$.
Theorem 2.3. Let G be a nonabelian p-group.
(a) If $\mathcal{M} \in \Lambda(G)$ has cardinality $p+1$, then $\left|G: \mathrm{C}_{G}(x)\right|=p$ for all $x \in \mathcal{M}$ and $\left|G: \mathrm{C}_{G}(\mathcal{M})\right|=p^{2}$.
(b) $\gamma(G)=p+1$ if and only if $G=H Z(G)$, where H is an arbitrary minimal nonabelian subgroup of $G, H \cap \mathrm{Z}(G)=\mathrm{Z}(H)$. If, in addition, G is of exponent p, then $G=H \times E$, where H is nonabelian of order p^{3} and E is abelian.

Proof. Given $\mathcal{M} \in \Lambda(G)$, we have $G=\bigcup_{x \in \mathcal{M}} \mathrm{C}_{G}(x)$, and this covering is irredundant (Lemma 1.3(a)).
(a) follows from Lemma 2.1(b).
(b) Suppose that $\gamma(G)=p+1$. Let $H \leq G$ be minimal nonabelian. Then $\mathcal{M} \in \Lambda(H)$ has cardinality $p+1$ (Lemma $1.2(\mathrm{a}))$ so that $\mathcal{M} \in \Lambda(G)$. By Lemma 2.2, $G=H * \mathrm{C}_{G}(H)$ (central product).

We claim that $\mathrm{C}_{G}(H)=\mathrm{Z}(G)$. It suffices to show that $\mathrm{C}_{G}(H)$ is abelian. Assume that this is false. Then $\mathrm{C}_{G}(H)$ contains two non-commuting elements b, b_{1}. Let $\mathcal{M}=\left\{a_{1}, \ldots, a_{p+1}\right\} \in \Lambda(H)$. Take $a \in L-\left\{\mathrm{Z}(H) \cup\left\{a_{1}\right\}\right\}$, where L is an (abelian) maximal subgroup of H containing a_{1} (such a exists since $|L-\mathrm{Z}(H)|>1)$. Then, since $\left[a b, a_{i}\right]=\left[a, a_{i}\right] \neq 1$ for $i>1$ (indeed, for $i>1$, the subgroup $\left\langle a, a_{i}\right\rangle=H$ is nonabelian), we obtain $\left\{a b, a_{2}, \ldots, a_{p+1}\right\} \in \Lambda(G)$. Note, that $\left[a b, a b_{1}\right]=\left[b, b_{1}\right] \neq 1$ and, for $i>1$, we have $\left[a b_{1}, a_{i}\right]=\left[a, a_{i}\right] \neq 1$.

[^1]It follows that $p+2(>\gamma(G))$ elements $a b, a b_{1}, a_{2}, \ldots, a_{p+1}$ are pairwise noncommuting, a contradiction. Thus, $\mathrm{C}_{G}(H)$ is abelian so coincides with $\mathrm{Z}(G)$.

Let us show that for our group $G=H Z(G)$ we have $\gamma(G)<p+2$ (by Lemma $2.2(\mathrm{~b}), \Lambda(H) \subseteq \Lambda(G)$, but our assertion is stronger). Indeed, assume that $g_{1}, \ldots, g_{p+2} \in G$ are pairwise non-commuting. Then $g_{i}=h_{i} z_{i}$, where $h_{i} \in H, z_{i} \in \mathrm{Z}(G)(i=1,2, \ldots, p+2)$. Let $i \neq j$. Then $\left[h_{i}, h_{j}\right]=$ $\left[h_{i} z_{i}, h_{j} z_{j}\right]=\left[g_{i}, g_{j}\right] \neq 1$ so the minimal nonabelian p-group H contains $p+2$ pairwise non-commuting elements h_{1}, \ldots, h_{p+2}, contrary to Lemma 1.2(a).

Now suppose that $G=H Z(G)$ is of exponent p (here H is of order p^{3} as minimal nonabelian group of exponent p, and $\mathrm{Z}(G)$ is elementary abelian). In that case, $H \cap \mathrm{Z}(G)=\mathrm{Z}(H)$ is of order p so $\mathrm{Z}(G)=\mathrm{Z}(H) \times E$, where E is elementary abelian. Then $G=H \times E$, and this completes the proof of (b).

Theorem 2.3(b), in particular, classifies the nonabelian p-groups possessing exactly $p+1$ distinct centralizers of noncentral elements (note that paper [P] yields an estimate of $|G: \mathrm{Z}(G)|$ is terms of $\gamma(G))$.

Proposition 2.4. The following assertions for a nonabelian p-group G are equivalent:
(a) If $H \leq G$ is minimal nonabelian, then $\Lambda(H) \subseteq \Lambda(G)$.
(b) $G=\left(B_{1} * \cdots * B_{k}\right) \mathrm{Z}(G)$, where B_{1}, \ldots, B_{k} are minimal nonabelian.

Proof. (a) $\Rightarrow(\mathrm{b})$: We proceed by induction on $|G|$. Let $B_{1} \leq G$ be minimal nonabelian. Then $G=B_{1} * \mathrm{C}_{G}\left(B_{1}\right)$, by Lemma 2.2. If $\mathrm{C}_{G}\left(B_{1}\right)$ is abelian, we are done. If $\mathrm{C}_{G}\left(B_{1}\right)$ is nonabelian, the result follows by induction applied to $\mathrm{C}_{G}\left(B_{1}\right)$ since $\mathrm{Z}\left(\mathrm{C}_{G}\left(B_{1}\right)\right)=\mathrm{Z}(G)$.
(b) $\Rightarrow(\mathrm{a})$: Let G be as in (b) and $H \leq G$ minimal nonabelian. Since $\left|G^{\prime}\right|=p$, then, by [B1, Lemma 4.3(a)], we obtain $G=H * \mathrm{C}_{G}(H)$ so $\Lambda(H) \subseteq$ $\Lambda(G)$, by Lemma 2.2.

Remark 2.5. The argument in part (ii) of the proof of Lemma 2.2 shows that if H is a nonabelian subgroup of an arbitrary group $G=H * \mathrm{C}_{G}(H)$, then $\Lambda(H) \subseteq \Lambda(G)$.

3. Nonnilpotent groups

In this section G is a nonnilpotent group.
Let p be a prime divisor of $|G|$ such that G has no normal p-complement. Then there is in G a minimal nonnilpotent subgroup $H=Q \cdot P$, where $P=H^{\prime} \in \operatorname{Syl}_{p}(H)$ and $Q \in \operatorname{Syl}_{q}(H)$ is cyclic (this follows from Frobenius' normal p-complement theorem; see, for example, [I, Theorem 9.18]). We have $|P|=p^{b+c}$, where b is the order of $p(\bmod q)$ and $p^{c}=|P \cap \mathrm{Z}(H)|$ (see [BZ, Lemma 11.2]). In that case, there are in H exactly p^{b} Sylow q-subgroups, say

$$
Q_{1}=\left\langle x_{1}\right\rangle, \ldots, Q_{p^{b}}=\left\langle x_{p^{b}}\right\rangle
$$

Then $x_{1}, \ldots, x_{p^{b}}$ are pairwise non-commuting elements (indeed, if $i \neq j$, then $\left\langle x_{i}, x_{j}\right\rangle$ is nonnilpotent so coincides with H : it has two distinct Sylow q subgroups Q_{i} and $\left.Q_{j}\right)$. If $\left\{y_{1}, \ldots, y_{s}\right\}$ is a maximal subset of pairwise noncommuting elements of P, then $y_{1}, \ldots, y_{s}, x_{1}, \ldots, x_{p^{b}}$ is a maximal subset (with respect to inclusion) of pairwise non-commuting elements of H of cardinality $p^{b}+s \geq p+1$ (note that $s=1$ if and only if P is abelian). Thus, $\gamma(G) \geq \gamma(H)=p^{b}+s \geq p^{b}+1$.

Theorem 3.1. Let G be a nonabelian group and p a prime divisor of $|G|$.
(a) If G has no normal p-complement, then $\gamma(G) \geq p+1$. If, in addition, p is the minimal prime divisor of $|G|$, then $\gamma(G) \geq p^{2}+1$.
(b) Suppose that G has a normal p-complement however a Sylow psubgroup is not a direct factor of G. Then $\gamma(G) \geq p+2$. If, in addition, $\gamma(G)=p+2$, then either $p=2$ and $q=3$ or p is a Mersenne prime.
(c) If $G=P \times A$, where P is nonabelian, A is abelian and $\gamma(G)<p+2$, then P is such as in Theorem 2.3(b).

Proof. (a) was proved in the paragraph, preceding the theorem.
(b) Now assume that G has a normal p-complement H but $P \in \operatorname{Syl}_{p}(G)$ is not a direct factor of G. It follows that the p-solvable group G contains a nonnilpotent subgroup $P Q$, where $Q \in \operatorname{Syl}_{q}(H)$; then $Q=P Q \cap H \triangleleft P Q$. In that case, $P Q$ contains a minimal nonnilpotent subgroup $F=P_{1} Q_{1}$, where $P_{1} \in \operatorname{Syl}_{p}(F)$ is cyclic and $Q_{1}=F^{\prime} \in \operatorname{Syl}_{q}(F)$. Then $\left|Q_{1}\right|=q^{\beta+c}$, where β is the order of $q(\bmod p)$ and $q^{c}=\left|Q_{1} \cap \mathrm{Z}(F)\right|$. As above, there is $\mathcal{M} \in \Lambda(F)$ of cardinality $\geq q^{\beta}+1$. Since $q^{\beta} \geq p+1$, we get $|\mathcal{M}| \geq p+2$. Now assume that $|\mathcal{M}|=p+2$; then $q^{\beta}=p+1$ so either $p=2$ and $q=3$ or $q=2$ and p is a Mersenne prime.
(c) now follows from Remark 2.5 and Theorem 2.3(b).

Proposition 3.2. Let p be a minimal prime divisor of the order of a group G and let $G=\bigcup_{i=1}^{p+1} A_{i}$ be an irredundant covering. Then $\left|G: \bigcap_{i=1}^{p+1} A_{i}\right|=p^{2}$. In particular, $\left|G: A_{i}\right|=p$ for $i=1, \ldots, p+1$.

Proof. It follows from Remark 1.1 that, if p is the minimal prime divisor of a group G, then it is not covered by p proper subgroups. One may assume that $\left|A_{1}\right| \geq \cdots \geq\left|A_{n}\right|$. Then, by Remark 1.1, we have $\left|G: A_{1}\right|<p+1$ so that $\left|G: A_{1}\right|=p$ and $A_{1} \triangleleft G$.

First assume that all A_{i} are maximal in G. Set $|G|=g,\left|G: A_{i}\right|=k_{i}$, $i=2, \ldots, p+1$. Note, that $k_{i} \geq p$ for all i. We have

$$
\begin{equation*}
G=A_{1} \cup\left(\bigcup_{i=2}^{p+1}\left(A_{i}-A_{1}\right)\right) . \tag{3.1}
\end{equation*}
$$

Since $A_{i}-A_{1}=A_{i}-\left(A_{i} \cap A_{1}\right)$ and $\left|A_{i}:\left(A_{i} \cap A_{1}\right)\right|=p$ so $\left|G:\left(A_{i} \cap A_{1}\right)\right|=p k_{i}$ for $i>1$, so obtain

$$
\left|A_{i}-A_{1}\right|=\frac{g}{k_{i}}-\frac{g}{p k_{i}}=\frac{g}{k_{i}}\left(1-\frac{1}{p}\right) .
$$

The right-hand side of (3.1) contains v elements, where

$$
v \leq \frac{g}{p}+\left(1-\frac{1}{p}\right) \sum_{i=2}^{p+1} \frac{g}{k_{i}} \leq \frac{g}{p}+\left(1-\frac{1}{p}\right) \sum_{i=2}^{p+1} \frac{g}{p}=\frac{g}{p}+\frac{g}{p}\left(1-\frac{1}{p}\right) p=g .
$$

Since $v=g$, it follows that (3.1) is a partition of G and $k_{i}=p$ for all i; in that case, $\left|G: \bigcap_{i=1}^{p+1} A_{i}\right|=p^{2}$.

Now let $A_{i} \leq B_{i}<G$, where B_{i} are maximal in G for all i. Then $G=\bigcup_{i=1}^{p+1} B_{i}$ is an irredundant covering of G, by the first sentence of the proof, and so $\left|G: B_{i}\right|=p$ for all i, by the previous paragraph. If some $A_{i}<B_{i}$, then, taking in (3.1), $A_{j}=B_{j}$ for $j \neq i$, we get a contradiction. Thus, $B_{i}=A_{i}$ for all i and so $\left|G: \bigcap_{i=1}^{p+1} A_{i}\right|=p^{2}$, by the previous paragraph.

Lemma 2.1(b) is a partial case of Proposition 3.2.
Let G be a non-p-nilpotent group. Then, using Theorem 3.1, one can show the following results:
(a) If $p=2$, then $\gamma(G) \geq 5$.
(b) If $p>2$, then $\gamma(G) \geq p+1$.
(c) If $p>2$ is a minimal prime divisor of $|G|$, then $\gamma(G) \geq p^{3}+1$.

4. On the number of maximal subgroups appearing in some COVERINGS OF p-GROUPS

In this section we consider irredundant coverings of a p-group by k proper subgroups, where $p+1<k \leq 2 p$.

It is impossible to avoid some repetitions in computations (otherwise, the proofs will be unreadable).

Remark 4.1. We claim that, if a p-group G is neither cyclic nor Q_{8}, it admits an irredundant covering by $2 p$ subgroups. Indeed, let $T \triangleleft G$ be such that G / T is abelian of type (p, p). Let $A_{1} / T, \ldots, A_{p+1} / T$ be all subgroups of order p in G / T. Then $G=\bigcup_{i=1}^{p+1} A_{i}$ is an irredundant covering. Since G is neither cyclic nor isomorphic to Q_{8}, one may assume that A_{1} is noncyclic (here we use [B 1 , Theorem 1.2] which implies that if a p-group contains $>p$ cyclic subgroups of index p, it is $\cong \mathrm{Q}_{8}$). In that case, there is in T an A_{1}-invariant subgroup T_{0} such that A_{1} / T_{0} is abelian of type (p, p). Let $T=T_{1}, T_{2}, \ldots, T_{p+1}$ be all maximal subgroups of A_{1} containing T_{0}. Then G is covered by $2 p$ subgroups $A_{2}, \ldots, A_{p+1}, T_{2}, \ldots, T_{p+1}$, and this covering is irredundant.

Theorem 4.2. If a p-group G admits an irredundant covering by $p+2$ subgroups A_{1}, \ldots, A_{p+2}, then
(a) If $p>2$, then at least $p+1$ of the A_{i} 's are maximal in G.
(b) If $p=2$, then at least two of the A_{i} 's are maximal in G.

Proof. Let $\left|A_{1}\right| \geq \cdots \geq\left|A_{p+2}\right|$ and $|G|=p^{n}$. By Remark 1.1, $\mid G$: $A_{1} \mid=p$. Assume that $\left|G: A_{p+1}\right|>p$. Set $|G|=p^{n}$. Then

$$
\begin{gathered}
p^{n}=\left|\bigcup_{i=1}^{p+2} A_{i}\right| \leq\left|A_{1}\right|+\sum_{i=2}^{p}\left|A_{i}-A_{1}\right|+\sum_{i=p+1}^{p+2}\left|A_{i}-A_{1}\right| \\
=p^{n-1}+(p-1)\left(p^{n-1}-p^{n-2}\right)+2\left(p^{n-2}-p^{n-3}\right) \\
=p^{n}-p^{n-3}\left(p^{2}-3 p+2\right)=p^{n}-p^{n-3}(p-1)(p-2) .
\end{gathered}
$$

If $p>2$, then $p^{n} \leq p^{n}-p^{n-3}(p-1)(p-2)<p^{n}$, which is a contradiction. Thus, if $p>2$, then at least $p+1$ subgroups A_{i} 's are maximal in G, completing this case.

Now let $p=2$ and assume that $\left|A_{2}\right|<2^{n-1}$. Then
$2^{n}=\left|\sum_{i=1}^{4} A_{i}\right| \leq\left|A_{1}\right|+\sum_{i=2}^{4}\left|A_{i}-A_{1}\right|=2^{n-1}+3\left(2^{n-2}-2^{n-3}\right)=7 \cdot 2^{n-3}<2^{n}$, a contradiction. Thus, if $p=2$, then at least two A_{i} 's are maximal in G.

Let $G=\bigcup_{i=1}^{4} A_{i}$ be an irredundant covering of a 2-group that is not twogenerator, $\left|A_{1}\right| \geq\left|A_{2}\right| \geq\left|A_{3}\right| \geq\left|A_{4}\right|$; then $A_{1}, A_{2} \in \Gamma_{1}$ (Theorem 4.2(b)). We claim that if $\left|G: A_{3}\right|=2$, then $\left|G: A_{4}\right|=2$ so all A_{i} are maximal in G. We have

$$
\begin{equation*}
G=A_{1} \cup\left(A_{2}-A_{1}\right) \cup\left(A_{3}-A_{1}-A_{2}\right) \cup\left(A_{4}-A_{1}\right) . \tag{4.1}
\end{equation*}
$$

Assume that $\left|G: A_{4}\right|>2$. We have $\left|G:\left(A_{1} \cap A_{2} \cap A_{3}\right)\right|=2^{3}$ (Lemma 2.1). Therefore,

$$
\left|A_{3}-A_{1}-A_{2}\right|=2^{n-1}-2 \cdot 2^{n-2}+2^{n-3}=2^{n-3}
$$

It follows that the right-hand side of formula (4.1) contains v elements, where

$$
v \leq 2^{n-1}+\left(2^{n-1}-2^{n-2}\right)+2^{n-3}+\left(2^{n-3}-2^{n-4}\right)<2^{n}
$$

which is a contradiction. Thus, either exactly two or four of the A_{i} 's are maximal in G.

Let G be a 2 -group that is not generated by two elements. We claim that then G admits an irredundant covering $G=\bigcup_{i=1}^{4} A_{i}$, where $A_{i} \in \Gamma_{1}$ for all i. Without loss of generality, one may assume that $\Phi(G)=\{1\}$. Let $A_{1}, A_{2} \in \Gamma_{1}$ be distinct, and set $T=A_{1} \cap A_{2}$. Let $T<A_{3} \in \Gamma_{1}-\left\{A_{1}, A_{2}\right\}$ and let $S<T$ be of index 2 ; then $A_{3} / S \cong \mathrm{E}_{4}$. Let $T / S, T_{1} / S, T_{2} / S<A_{3} / S$ be of index 2. Since $G / T_{i} \cong \mathrm{E}_{4}$, there is $B_{1}, B_{2} \in \Gamma_{1}-\left\{A_{3}\right\}$ such that $B_{i} \cap A_{3}=T_{i}$, $i=1,2$. Since A_{3} is a subset of the set $A_{1} \cup B_{1} \cup B_{2}$ (indeed, $A_{3}=T \cup T_{1} \cup T_{2}$
is a subset of $A_{1} \cup B_{1} \cup B_{2}$), it follows that $G=A_{1} \cup A_{2} \cup B_{1} \cup B_{2}$ is a covering (indeed, $G=A_{1} \cup A_{2} \cup A_{3}$ is a subset of $A_{1} \cup A_{2} \cup B_{1} \cup B_{2}$). Since the intersection of any three distinct elements of the set $\left\{A_{1}, A_{2}, B_{1}, B_{2}\right\}$ has index 2^{3} in G, our covering is irredundant (Lemma 2.1(b)).

Similarly, if $p>2$ and a p-group G is not generated by two elements, then it admits an irredundant covering by $2 p$ maximal subgroups.

Lemma 4.3. Suppose that A, B, C, D are pairwise distinct maximal subgroups of a p-group G of order p^{n} such that $|G:(A \cap B \cap C)|=p^{3}$. Then

$$
\begin{gather*}
|A \cup B \cup C|=3 p^{n-1}-3 p^{n-2}+p^{n-3}, \tag{4.2}\\
|D-(A \cup B \cup C)| \leq p^{n-1}-3 p^{n-2}+3 p^{n-3}-p^{n-4} . \tag{4.3}
\end{gather*}
$$

Proof. Note that if distinct $U, V<G$ are maximal, then $|G:(U \cap V)|=$ p^{2}. By the inclusion-exclusion identity $[\mathrm{H}$, formula (2.2.1)],

$$
\begin{gathered}
|A \cup B \cup C|=(|A|+|B|+C \mid)-(|A \cap B|+|B \cap C|+|C \cap A|)+|A \cap B \cap C| \\
=3 p^{n-1}-3 p^{n-2}+p^{n-3} .
\end{gathered}
$$

By hypothesis, $A \cap B \neq B \cap C \neq C \cap A$ (if, for example, $A \cap B=A \cap C$, then $A \cap B=(A \cap B) \cap(A \cap C)=A \cap B \cap C$, a contradiction since $|A \cap B|=$ $\left.p^{n-2}>p^{n-3}=|A \cap B \cap C|\right)$. We have

$$
\begin{equation*}
D-(A \cup B \cup C)=D-(D \cap(A \cup B \cup C)) \tag{4.4}
\end{equation*}
$$

and so

$$
D-(A \cup B \cup C)=D-((D \cap A) \cup(D \cap B) \cup(D \cap C))
$$

By inclusion-exclusion identity,

$$
\begin{aligned}
& |(D \cap A) \cup(D \cap B) \cup(D \cap C)|=(|D \cap A|+|D \cap B|+|D \cap C|) \\
& -(|D \cap A \cap B|+|D \cap A \cap C|+|D \cap B \cap C|)+|D \cap A \cap B \cap C|
\end{aligned}
$$

If $A \cap B \subset D$, then $D \cap A \cap B \cap C=D \cap C$ has order p^{n-2}, a contradiction since $A \cap B \cap C \supseteq D \cap A \cap B \cap C$ has order p^{n-3}, by hypothesis. Thus, $A \cap B \nsubseteq D$, and the same is true for $A \cap C$ and $B \cap C$. Then, by the product formula and the previous displayed formula, we have

$$
\begin{gathered}
|D \cap A \cap B|=|D \cap A \cap C|=|D \cap B \cap C|=p^{n-3} \\
|D \cap(A \cup B \cup C)|=|(D \cap A) \cup(D \cap B) \cup(D \cap C)| \\
\quad=3 p^{n-2}-3 p^{n-3}+|D \cap A \cap B \cap C|
\end{gathered}
$$

Since $|D \cap A \cap B \cap C| \in\left\{p^{n-3}, p^{n-4}\right\}$, we obtain

$$
|D \cap(A \cup B \cup C)| \geq 3 p^{n-2}-3 p^{n-3}+p^{n-4}
$$

Now (4.3) follows from (4.4).
THEOREM 4.4. If a p-group admits an irredundant covering by $p+2$ proper subgroups, then $p=2$.

Proof. Assume that a group G of order p^{n} admits an irredundant covering by $p+2$ proper subgroups A_{1}, \ldots, A_{p+2} and $p>2$. By Theorem 4.2(a), one may assume that A_{1}, \ldots, A_{p+1} are maximal in G. Since $G \neq \bigcup_{i=1}^{p+1} A_{i}$, we have $\left|G: \bigcap_{i=1}^{p+1} A_{i}\right| \geq p^{3}$. One may assume, without loss of generality, that $\left|G:\left(A_{1} \cap A_{2} \cap A_{3}\right)\right|=p^{3}$. We may also assume that $\left|G: A_{p+2}\right|=p$. Then, by (4.2), we have

$$
\begin{equation*}
\left|A_{1} \cup A_{2} \cup A_{3}\right|=3 p^{n-1}-3 p^{n-2}+p^{n-3} \tag{4.5}
\end{equation*}
$$

and, for $i>3$,
(4.6) $\left|A_{i}-\left(A_{1} \cup A_{2} \cup A_{3}\right)\right|<p^{n-1}-3 p^{n-2}+3 p^{n-3}=p^{n-3}\left(p^{2}-3 p+3\right)$, by (4.3).

Set $A_{1} \cup A_{2} \cup A_{3}=U$. We have

$$
\begin{equation*}
G=U \cup\left(\bigcup_{i=4}^{p+2}\left(A_{i}-U\right)\right) \tag{4.7}
\end{equation*}
$$

Therefore, taking in account (4.5) and (4.6), we obtain

$$
\begin{aligned}
& |G|=p^{n} \leq\left(3 p^{n-1}-3 p^{n-2}+p^{n-3}\right)+(p-1) p^{n-3}\left(p^{2}-3 p+3\right) \\
& \quad=p^{n}-p^{n-3}\left(p^{2}-3 p+2\right)=p^{n}-p^{n-3}(p-1)(p-2)<p^{n}
\end{aligned}
$$

since $p>2$, a final contradiction. Thus, we must have $p=2$.
Proposition 4.5. If a p-group G is covered by at most $k \leq 2 p$ proper subgroups A_{1}, \ldots, A_{k} (we do not assume that this covering is irredundant), then at least p of these subgroups are maximal in G. If $p>3$ and $p+2<k<$ $2 p$, then at least $p+1$ summands in our covering are maximal in G.

Proof. (i) One may assume that G is not isomorphic to Q_{8}. Let $|G|=$ p^{n}.

In view of Theorem $4.2(\mathrm{~b})$, one may assume that $p>2$. Let $\left|A_{1}\right| \geq \cdots \geq$ $\left|A_{k}\right|$. Then $\left|G: A_{1}\right|=p$ (Remark 1.1). Since we do not assume that our covering is irredundant, one can add new summands of order p^{n-2} to obtain $k=2 p$. We also may assume, by way of contradiction, that A_{1}, \ldots, A_{p-1} are maximal in G and $A_{p}, \ldots, A_{2 p}$ have index p^{2} in G. Indeed, if, for example, $\left|G: A_{i}\right|>p^{2},(i>p-1)$, one can replace A_{i} by subgroup that contains A_{i} and has index p^{2} in G. If, for example, $\left|G: A_{i}\right|>p(i<p)$, one can replace A_{i} by maximal subgroup of G that contains A_{i}. We have

$$
\begin{equation*}
G=A_{p-1} \cup\left(\bigcup_{i=1}^{p-2}\left(A_{i}-A_{p-1}\right)\right) \cup\left(\bigcup_{i=p}^{2 p}\left(A_{i}-A_{p-1}\right)\right) . \tag{4.8}
\end{equation*}
$$

The right-hand side of formula (4.8) contains v elements, where

$$
\begin{aligned}
v \leq p^{n-1}+ & (p-2)\left(p^{n-1}-p^{n-2}\right)+(p+1)\left(p^{n-2}-p^{n-3}\right) \\
& =p^{n}-p^{n-3}(p-1)^{2}<p^{n}=|G|
\end{aligned}
$$

a contradiction. Thus, at least p subgroups $A_{i}(i \leq 2 p)$ are maximal in G.
(ii) To prove the last assertion, one may assume, by way of contradiction, that A_{1}, \ldots, A_{p} are maximal in G and $\left|G: A_{i}\right|=p^{2}$ for $i>p$ (see (i)). (Here $p>3$ since $3+2=2 \cdot 3-1$.) We also may assume that $k=2 p-1$ (if $k<2 p-1$, one can add to our union $2 p-1-k$ new summands of order p^{n-2}). Then, as above, we obtain

$$
\begin{aligned}
|G| & =p^{n} \leq p^{n-1}+(p-1)\left(p^{n-1}-p^{n-2}\right)+(p-1)\left(p^{n-2}-p^{n-3}\right) \\
& =p^{n-1}+(p-1)\left(p^{n-1}-p^{n-3}\right)=p^{n}-p^{n-3}(p-1)<p^{n}
\end{aligned}
$$

a contradiction.
Proposition 4.6. Suppose that a p-group G of order $p^{n} \geq p^{4}, p>2$, is covered by k proper subgroups, say A_{1}, \ldots, A_{k}, where $p+2<k \leq 2 p$. Let, in addition, any $p+2$ subgroups A_{i} do not cover $G,\left|G: A_{i}\right|=p$ for $i \leq p$ and $\left|G: A_{i}\right|>p$ for $i>p$. Then
(a) $k=2 p$ and our covering is irredundant.
(b) $\left|\bigcap_{i=1}^{p} A_{i}\right|=p^{n-2}$.
(c) $\left|A_{i}\right|=p^{n-2}$ for $i>p$.
(d) $\left|\bigcap_{i=p+1}^{2 p} A_{i}\right|=p^{n-3}$.

Proof. In view of Proposition $4.5, k=2 p$ so (a) is true since our covering must be irredundant.

We have

$$
\begin{equation*}
G=A_{p} \cup\left(\bigcup_{i=1}^{p-1}\left(A_{i}-A_{p}\right)\right) \cup\left(\bigcup_{i=p+1}^{2 p}\left(A_{i}-A_{p}\right)\right) \tag{4.9}
\end{equation*}
$$

(c) Assume that $\left|A_{p+1}\right| \geq \cdots \geq\left|A_{2 p}\right|$ and $\left|A_{2 p}\right|<p^{n-2}$. Then the righthand side of (4.9) contains v elements, where

$$
\begin{gathered}
\quad v \leq p^{n-1}+(p-1)\left(p^{n-1}-p^{n-2}\right)+(p-1)\left(p^{n-2}-p^{n-3}\right)+\left(p^{n-3}-p^{n-4}\right) \\
=p^{n-1}+(p-1)\left(p^{n-1}-p^{n-3}\right)+\left(p^{n-3}-p^{n-4}\right)=p^{n}-p^{n-4}(p-1)^{2}<p^{n}=|G|,
\end{gathered}
$$

which is a contradiction. This proves (c).
(b, d) We have $\left|G: A_{i}\right|=p^{2}$ for $i>p$, by (c). In that case, the right-hand side of (4.9) contains v elements, where

$$
v \leq p^{n-1}+(p-1)\left(p^{n-1}-p^{n-2}\right)+p\left(p^{n-2}-p^{n-3}\right)=p^{n}=|G|
$$

so (4.9) is a partition. This implies (b) and (d).
A similar argument shows that if a p-group G of order p^{n} is covered by p^{2} proper subgroups, then at least two of these subgroups are maximal in G. Indeed, if only one summand of our covering is maximal in G (see Remark 1.1), we obtain

$$
p^{n} \leq p^{n-1}+\left(p^{2}-1\right)\left(p^{n-2}-p^{n-3}\right)=p^{n}-p^{n-3}(p-1)<p^{n}
$$

a contradiction.
Corollary 4.7. If a nonabelian p-group G has at most $2 p$ pairwise noncommuting elements, then centralizers of at least p of these elements are maximal in G.

Remark 4.8. Let G be a group of maximal class and order $p^{n+2}, n \geq 2$, with abelian subgroup A of index p. In that case, every $x \in G-A$ satisfies $\left|\mathrm{C}_{G}(x)\right|=p^{2}$ (indeed, $\mathrm{C}_{A}(x)=\mathrm{Z}(G)$ is of order p) and the number of maximal abelian subgroups of order p^{2} not contained in A, is equal to $\frac{|G-A|}{p(p-1)}=p^{n}$ (indeed, if B is such a subgroup, then $|B-A|=p(p-1)$ and all such B cover the set $G-A$). These p^{n} subgroups together with A cover G and this covering is irredundant. If T is one of such abelian subgroups, take $x \in T-\mathrm{Z}(G)$. So obtained set of cardinality $p^{n}+1$ is contained in $\Lambda(G)$. It is easy to see that $\gamma(G)=p^{n}+1$.

Remark 4.9. Let G be a nonabelian p-group. If $x \in G$ and A_{x} is a maximal abelian subgroup of $\mathrm{C}_{G}(x)$, then A_{x} is also a maximal abelian subgroup of G. Let $\mathcal{M} \in \Lambda(G)$. Take in $\mathrm{C}_{G}(x)$ a maximal abelian subgroup A_{x} for every $x \in \mathcal{M}$ (indeed, if $B>A_{x}$ is abelian, then, by the choice, $B \not \leq \mathrm{C}_{G}(x)$, a contradiction). Then $\left|\left\{A_{x} \mid x \in \mathcal{M}\right\}\right|=|\mathcal{M}|$. It follows that G has at least $\gamma(G)$ maximal abelian subgroups. If G has exactly $p+1$ maximal abelian subgroups, say A_{1}, \ldots, A_{p+1}, they cover G. In that case, A_{1}, \ldots, A_{p+1} are maximal in G (Lemma 1.3(b)) and G has the structure described in Theorem 2.3(b).

REmARK 4.10. Let B_{1}, \ldots, B_{n} be all maximal abelian subgroups of a nonabelian group G. Then $\gamma(G) \leq n$ since $G=\bigcup_{i=1}^{n} B_{i}$ (it is possible that this covering may be redundant). If $B_{i} \cap B_{j}=\mathrm{Z}(G)$ for all $i \neq j$ (in this case, the considered covering is irredundant), then $\gamma(G)=n$. Indeed, take $x_{i} \in B_{i}-\mathrm{Z}(G)$ for all i. We claim that $\left\{x_{1}, \ldots, x_{n}\right\} \in \Lambda(G) .{ }^{3}$ For example, let G be a Sylow 2-subgroup of the simple Suzuki group $\operatorname{Sz}(q)$, where $q=2^{2 m+1}$. Then $\mathrm{Z}(G)=\Phi(G)$ has index $2^{2 m+1}$ in G. If $A<G$ is maximal abelian, then $|A: \mathrm{Z}(G)|=2$. It follows that there is $\mathcal{M} \in \Lambda(G)$ of cardinality $2^{2 m+1}-1$; moreover, all members of the set $\Lambda(G)$ have the same cardinality.

Remark 4.11. Let $G=A * B$ be a central product of nonabelian subgroups A and $B, \mathcal{M}=\left\{a_{1}, \ldots, a_{m}\right\} \in \Lambda(A)$ and $\mathcal{N}=\left\{b_{1}, \ldots, b_{n}\right\} \in \Lambda(B)$. Then $m-1+n$ elements of the following set

$$
\mathcal{M}_{1}=\left\{a_{2}, \ldots, a_{m}, a_{1} b_{1}, a_{1} b_{2}, \ldots, a_{1} b_{n}\right\}
$$

are pairwise non-commuting. We claim that $\mathcal{M}_{1} \in \Lambda(G)$. Assume that there is $x \in G-\mathcal{M}_{1}$ such that all elements of the set $\mathcal{M}_{1} \cup\{x\}$ are pairwise noncommuting. We have $x=a b$, where $a \in A$ and $b \in B$. For $i>1$, we have

[^2]$1 \neq\left[a b, a_{i}\right]=\left[a, a_{i}\right]$ so that $a \in D=A-\bigcup_{i=2}^{n} \mathrm{C}_{A}\left(a_{i}\right)$. By Lemma 1.3(b), the subgroup $\langle D\rangle$ is abelian so $\left[a, a_{1}\right]=1$ since $a_{1} \in D$. For $i=1, \ldots, n$, we have $1 \neq\left[a b, a_{1} b_{i}\right]=\left[a b, b_{i}\right]=\left[b, b_{i}\right]$. We conclude that $n+1>\gamma(B)$ elements $b, b_{1}, \ldots, b_{n} \in B$ are pairwise non-commuting, a contradiction. In particular, if G is an extraspecial group of order $p^{2 m+1}$, then, by induction, $\gamma(G) \geq m p+1$.

It follows from Remark 4.11 and Lemma 1.2(a) that if G is a nonabelian p group such that $\gamma(G) \leq 2 p$, then $\mathrm{C}_{G}(H)$ is abelian for all minimal nonabelian $H<G$.

It is interesting to carry out similar considerations for infinite groups. We consider only one example. According to [SS], every infinite minimal nonabelian group G coincides with its derived subgroup. Every proper noncentral subgroup of G is contained in a unique maximal subgroup of G, its centralizer. Since $G=G^{\prime}$, every maximal subgroup has infinite index in G (Poincare). Let Γ_{1} be the set of maximal subgroups of G. For every $H \in \Gamma_{1}$, choose $x \in H-\mathrm{Z}(G)$. Since the intersection of any two distinct members of the set Γ_{1} coincides with $\mathrm{Z}(G)$ and the set Γ_{1} is infinite, all so chosen elements form an infinite set of pairwise non-commuting elements. It is not true that every nonabelian infinite group possesses an infinite set of pairwise non-commuting elements. For example, $G=H \times A$, where H is finite nonabelian and A is infinite abelian, satisfies $\gamma(G)=\gamma(H)<\infty$.

5. Problems

Below we state some related problems.

1. Classify the 2-groups without five pairwise non-commuting elements. (See Lemma 1.2 and Theorem 4.4)
2. Does there exist a p-group G admitting an irredundant covering by n subgroups, where $p+1<n<2 p$? If 'yes', classify such the groups.
3. Describe the set of positive integers n such that there is an elementary abelian p-group admitting an irredundant covering by n maximal subgroups.
4. Let M, N be groups and $\gamma(M)=m, \gamma(N)=n$. Then $\gamma(M \times N)=m n$. (i) Estimate $\gamma(M * N)$ in terms of M, N and $M \cap N$. Consider the case where M, N are p-groups of maximal class. (ii) Find $\gamma(G)$, where G is an extraspecial group of order $p^{2 m+1}$ (see Remark 4.11).
5. Classify the pairs groups $N \triangleleft G$ such that $\gamma(G / N)=\gamma(G)$.
6. Find $\gamma\left(\Sigma_{p^{n}}\right)$, where $\Sigma_{p^{n}}$ is a Sylow p-subgroup of the symmetric group $\mathrm{S}_{p^{n}}$ of degree p^{n}. The same problem for $\operatorname{UT}\left(m, p^{n}\right)$, a Sylow p-subgroup of the general linear group $\mathrm{GL}\left(m, p^{n}\right)$.
7. Study the nonabelian p-groups G such that $\mathrm{C}_{G}(H)$ is abelian for all minimal nonabelian $H \leq G$ (see the paragraph following Remark 4.11).
8. Study the nonnilpotent groups G such that $\Lambda(H) \subseteq \Lambda(G)$ for all minimal nonnilpotent $H \leq G$ (compare with Lemma 2.2(b)).
9. Study the groups that are covered by (i) minimal nonnilpotent subgroups, (ii) minimal nonabelian subgroups, (iii) Frobenius subgroups.
10. Classify the p-groups that are covered by subgroups of maximal class.
11. Let H be a proper subgroup of maximal class of a p-group G such that $\Lambda(H) \subset \Lambda(G)$. Study the structure of G.
12. Find $\gamma(G)$, where $G \in\left\{\mathrm{~A}_{n}, \mathrm{~S}_{n}\right\}$ (for example, $\gamma\left(\mathrm{A}_{5}\right)=21$; see also $[\mathrm{Br}]$).

Acknowledgements.

I am indebted to the referee for discussion and a number of useful remarks.

References

[B1] Y. Berkovich, Groups of Prime Power Order, Volume 1, Walter de Gruyter, Berlin, 2008.
[B2] Y. Berkovich, Minimal nonabelian and maximal subgroups of a finite p-group, Glas. Mat. Ser. III 43(63) (2008), 97-109.
[BZ] Ya. G. Berkovich and E. M. Zhmud', Characters of Finite Groups. Part 1, Translations of Mathematical Monographs, Volume 172, American Mathematical Society, Providence, 1998.
[Bh] M. Bhargava, Groups as unions of proper subgroups, Amer. Math. Monthly 116 (2009), 413-422.
[Br] R. Brown, Minimal covers of S_{n} by abelian subgroups and maximal subsets of pairwise noncommuting elements, J. Combin. Theory Ser A 49 (1988), 294-307; ibid. II, J. Combin. Theory Ser A 56 (1991), 285-289.
[C] J. H. E. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.
[H] M. Hall, Combinatorial Theory, Wiley, New York, 1986.
[I] I. M. Isaacs, Algebra. A Graduate Course, Brooks/Cole, Pacific Grove, 1994.
[N] B. H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954), 227-242.
[P] L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. London. Math. Soc. (2) 35 (1987), 287-295.
[SS] N. F. Sesekin and O. S. Shirokovskaya, A class of bigraded groups, Mat. Sb. N.S. 46(88) (1958), 133-142 (Russian).
[T] M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 191-198.
[Z] G. Zappa, The papers of Gaetano Scorza on group theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991), 95-101.
Y. Berkovich

Department of Mathematics
University of Haifa
Mount Carmel, Haifa 31905
Israel
Received: 3.7.2009.
Revised: 22.7.2009.

[^0]: ${ }^{1}$ For another, longer proof, due to M. Roitman, see [B2, Remark 3.5].

[^1]: ${ }^{2}$ We do not assert that here, in the case under consideration, $\gamma(G)=\gamma(H)$ (however, this equality holds, by Theorem 2.3(b)).

[^2]: ${ }^{3}$ Indeed, if $\left\{x, x_{1}, \ldots, x_{n}\right\} \in \Lambda(G)$ and $x \in B$, where $B<G$ is maximal abelian and $x \neq x_{i}$ for all i, then $B \notin\left\{B_{1}, \ldots, B_{n}\right\}$.

