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FINITE p-GROUPS G WITH p > 2 AND d(G) = 2 HAVING

EXACTLY ONE MAXIMAL SUBGROUP WHICH IS

NEITHER ABELIAN NOR MINIMAL NONABELIAN

Zvonimir Janko

University of Heidelberg, Germany

Abstract. We give here a complete classification (up to isomorphism)
of the title groups (Theorem 8 and Theorem 9). The corresponding prob-
lem for p = 2 was solved in [4].

Let G be a nonabelian finite p-group (p prime). If all maximal subgroups
of G are abelian, then such groups are minimal nonabelian and they are
known long time ago (L. Rédei). If all maximal subgroups of G are abelian
or minimal nonabelian and at least one of them is minimal nonabelian, then
such p-groups are called A2-groups and they are completely determined in
§71 of [2]. It is a surprising fact that it is still possible to classify completely
p-groups G all of whose maximal subgroups but one are abelian or minimal
nonabelian. For 2-groups (p = 2) this was done in [4]. Here we classify up
to isomorphism such p-groups G in case p > 2 under the assumption that
d(G) = 2, i.e., G is 2-generated (Theorems 8 and 9). In a forthcoming paper
we shall also consider the case d(G) > 2.

Our notation is standard (see [1] and [2]). In particular, S(p3) denotes
for p > 2 the nonabelian group of order p3 and exponent p and an L3-group
is a p-group G in which Ω1(G) is of order p3 and exponent p and G/Ω1(G) is
cyclic of order > p.

We state now all known results which are quoted in the proof of our
theorems. Moreover, if these results are quoted from the unpublished book
[3], then we also give a proof.
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Lemma 1 ([1, Lemma 1.1]). If G is a nonabelian p-group with an abelian
maximal subgroup, then |G| = p|Z(G)||G′|.

Exercise 1 ([1, Exercise 1.6(a)]). The number of abelian subgroups of
index p in a nonabelian p-group G is 0, 1, orp + 1.

Exercise 2 ([1, Exercise 1.69(a)] (Mann)). If A and B are distinct max-
imal subgroups in a p-group G, then |G′ : (A′B′)| ≤ p.

Exercise 3 ([1, Exercise 9.1(c)]). Let G be a p-group of maximal class
and order pm. If p > 2 and m > 3, then G has no cyclic normal subgroup of
order p2.

Theorem 2 ([1, Theorem 36.1(c)]). If G/R is metacyclic for some G-
invariant subgroup R of index p in G′, then G is also metacyclic.

Lemma 3 ([1, Lemma 36.5]). (a) If a p-group G is two-generator of
class 2, then G′ is cyclic.

(b) If G is a nonabelian two-generator p-group, then G′/K3(G) is cyclic.

Theorem 4 ([1, Theorem A.1.3] (The Hall-Petrescu formula)). In an ar-
bitrary group G, the following formula holds for x, y ∈ G and any positive
integer n:

xnyn = (xy)nc
(n

2)
2 c

(n

3)
3 ...c

(n

n)
n ,

where ci ∈ Ki(〈x, y〉), i = 2, ..., n.

Theorem 5 ([2, Theorem 65.7(z)]). Suppose that G is an A2 -group of
order > p4. If G′ is cyclic of order > p, then G is metacyclic and |G′| = p2.

Theorem 6 ([2, Theorem 69.1]). If G is a minimal non-metacyclic p-
group, p > 2, then either G is of order p3 and exponent p or G is a group of
maximal class and order 34.

Proposition 7 ([3, Proposition A.40.12] (Berkovich)). A p-group G of
order > p4, p > 2, has exactly one non-metacyclic maximal subgroup if and
only if G is an L3-group.

Proof. Suppose that G has exactly one non-metacyclic maximal sub-
group. Assume in addition that G has no normal subgroup of order p3 and
exponent p. By Theorem 69.3 in [2], G is either metacyclic (which in our case
is not possible) or G is a 3-group of maximal class. By Theorem 9.6 in [1], our
3-group G has exactly three subgroups of maximal class and index 3. Since
3-groups of maximal class and order > 33 are obviously non-metacyclic, we
get a contradiction.

Now suppose that R is a G-invariant subgroup of order p3 and exponent
p. Since all maximal subgroups of G that contain R are non-metacyclic, we
conclude that G/R is cyclic. Since G has a metacyclic maximal subgroup, it
follows that G has no subgroup of order p4 and exponent p. Let H/R be a



FINITE p-GROUPS G WITH p > 2 AND d(G) = 2 443

subgroup of order p in G/R so that Ω1(G) ≤ H and exp(H) = p2. Since an
Sp-subgroup of Aut(R) is of exponent p and G/R is cyclic of order > p, we
get H = RCH(R) and so H is of class ≤ 2. It follows that Ω1(H) = R and so
G is an L3-group.

Suppose that G is an L3-group. Let M be a maximal subgroup of G such
that R 6≤ M . Then M has a cyclic subgroup of index p and so is metacyclic.

Exercise 4 ([3, Exercise P9]). Let H = 〈a, b〉 be a two-generator p-group
with |H ′| = p. Then Φ(H) = 〈ap, bp, [a, b]〉 and H is minimal nonabelian.

Proof. For any x, y ∈ H , [xp, y] = [x, y]p = 1 and so ℧1(H) ≤ Z(H) and
Φ(H) = 〈℧1(H), H ′〉 ≤ Z(H). We get Φ(H) = Z(H) and so H/Z(H) ∼= Ep2

implies that H is minimal nonabelian. Set H0 = 〈ap, bp, [a, b]〉 ≤ Φ(H) so that
H/H0 is an abelian group generated by two elements of order p and so H/H0

is elementary abelian of order ≤ p2. Thus Φ(H) ≤ H0 and so H0 = Φ(H).

We turn now to a proof of our theorems.

Theorem 8. Let G be a two-generator p-group, p > 2, with exactly one
maximal subgroup M which is neither abelian nor minimal nonabelian. If G
has an abelian maximal subgroup A, then we have:

G = 〈h, k | [h, k] = v, [v, k] = z, [v, h] = zρ,

vp = zp = [z, h] = [z, k] = 1, hp = zσ, kpn+1

= zτ 〉,

where n ≥ 1 and ρ, σ, τ are integers mod p with ρ 6≡ 0 (mod p).
We have |G| = pn+4, G′ = 〈v, z〉 ∼= Ep2 , Z(G) = 〈kp, z〉, Φ(G) = Z(G)G′,

G′ ∩ Z(G) = 〈z〉 ∼= Cp, [G′, G] = 〈z〉 and so G is of class 3. Also, S =
〈v, h〉 ∼= S(p3) (if σ ≡ 0 (mod p) ) or S ∼= Mp3 (if σ 6≡ 0 (mod p) ), S
is normal in G, G = S〈k〉, S ∩ 〈k〉 ≤ 〈z〉, G/S ∼= Cpn+1 , M = S〈kp〉,
d(M) = 3, M ′ = 〈z〉, A = CG(G′), the set of maximal subgroups of G
is Γ1 = {A, M, M1, ..., Mp−1}, where all Mi are minimal nonabelian with
M ′

1 = ... = M ′

p−1 = 〈z〉 and G/Z(G) ∼= S(p3). Finally, G is an L3-group if

and only if τ 6≡ 0 (mod p) and in that case Ω1(G) ∼= S(p3) , G/Ω1(G) is cyclic
of order pn+1 (n ≥ 1) and Z(G) = 〈kp〉 ∼= Cpn+1 is cyclic.

Proof. Obviously, A is a unique abelian maximal subgroup of G (oth-
erwise, by Exercise 1.6(a) in [1], all p + 1 maximal subgroups of G would
be abelian). By a result of A.Mann (see Exercise 1.69(a) in [1]), |G′ :
(A′M ′

1)| ≤ p, where M1 is a minimal nonabelian maximal subgroup of G
and so |G′| ≤ p2. But if |G′| = p, then this fact together with d(G) = 2
would imply that G is minimal nonabelian, a contradiction. Hence |G′| = p2.
From |G| = p|G′||Z(G)| (Lemma 1.1 in [1]) follows |G : Z(G)| = p3. Set Γ1 =
{A, M, M1, ..., Mp−1}, where all Mi (i = 1, ..., p− 1) are minimal nonabelian.
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We have Z(G) ≤ Mi (otherwise d(G) = 3) and so Z(G) = Z(Mi) = Φ(Mi) for
all i = 1, ..., p − 1. Also, Φ(Mi) < Φ(G) < Mi and so Φ(G) is abelian. For
each x ∈ G − A, CA(x) = Z(G) and so xp ∈ Z(G). Hence G/Z(G) is gen-
erated by its elements of order p and so G/Z(G) ∼= S(p3) because d(G) = 2
and so G/Z(G) cannot be elementary abelian. This implies G′ ∩ Z(G) ∼= Cp,
Φ(G) = Z(G)G′ and G is of class 3. Also, M ′

i = M ′ = G′ ∩ Z(G) for all
i = 1, ..., p − 1. If d(M) = 2, then M ′ ∼= Cp would imply that M is min-
imal nonabelian, a contradiction. Hence we have d(M) ≥ 3. In particular,
|M | ≥ p4 and so |G| ≥ p5.

(i) First assume that G′ = 〈v〉 ∼= Cp2 is cyclic. Since 〈vp〉 = M ′

i is not
a maximal cyclic subgroup in Mi > Φ(G) = Z(G)G′, it follows that all Mi

(i = 1, ..., p− 1) are metacyclic. In particular, |Ω1(Φ(G))| ≤ p2. Suppose that
A is also metacyclic so that M (with d(M) ≥ 3) is the only non-metacyclic
maximal subgroup of G. By a result of Y. Berkovich (see A.40.12 in [3]), G is
an L3-group. But then G′ ≤ Ω1(G), where Ω1(G) is of order p3 and exponent
p and so G′ ∼= Ep2 , a contradiction. It follows that A must be non-metacyclic
in which case Ω1(A) 6≤ Φ(G). Let a be an element of order p in A−Φ(G) and
let k ∈ G − A be such that 〈Φ(G), k〉 = M1. Since [k, v] 6= 1, we may replace
k with another generator of 〈k〉 so that we may assume that [k, v] = vp. Since
〈k, v〉′ = 〈vp〉 ≤ Z(G), it follows that 〈k, v〉 is minimal nonabelian and so
〈k, v〉 = M1. We have (see for example Exercise P9 in [3]),

Z(G) = Φ(M1) = 〈kp, vp, [k, v] = vp〉 = 〈kp, vp〉.

All maximal subgroups of G distinct from A = Φ(G)〈a〉 are Φ(G)〈aik〉 =
Z(G)〈aik, v〉, where i is any integer mod p. Since [aik, v] = [ai, v]k[k, v] =
vp ∈ Z(G), it follows that 〈aik, v〉 is minimal nonabelian. Again (see Exercise
P9 in [3]),

Φ(〈aik, v〉) = 〈(aik)p, vp, [aik, v] = vp〉 = 〈(aik)p, vp〉.

The factor-group G/〈vp〉 is minimal nonabelian (since d(G/〈vp〉) = 2 and
(G/〈vp〉)′ ∼= Cp) and so computing in G/〈vp〉, we get:

(aik)p = aipkp[k, ai](
p

2)x, where x ∈ 〈vp〉.

But aip = 1 and [k, ai] ∈ 〈v〉 so that [k, ai](
p

2) ∈ 〈vp〉 which gives (aik)p = kpy
for some y ∈ 〈vp〉. By the above,

Φ(〈aik, v〉) = 〈kpy, vp〉 = 〈kp, vp〉 = Z(G)

and so Φ(G)〈aik〉 = Z(G)〈aik, v〉 = 〈aik, v〉 is minimal nonabelian for all
i = 1, .., p − 1. It follows that G is an A2-group, a contradiction.

(ii) We have proved that G ∼= Ep2 . Since [G, G′] = G′ ∩ Z(G) ∼= Cp,
we get by the Hall-Petrescu formula (Appendix 1 in [1]) for any x, y ∈ G,
(xy)p = xpypl for some l ∈ G′ ∩ Z(G).
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We have A = CG(G′) and we take an element k ∈ G − A such that
Φ(G)〈k〉 = M1 is a minimal nonabelian maximal subgroup of G. Then for
any element v ∈ G′ − Z(G), we have [v, k] = z, where 〈z〉 = G′ ∩ Z(G). Since
〈k, v〉′ = 〈z〉, 〈k, v〉 is minimal nonabelian and so 〈k, v〉 = M1. In particular,

Φ(〈k, v〉) = 〈kp, vp, [v, k]〉 = 〈kp, z〉 = Φ(M1) = Z(G).

Thus 〈kp〉 covers Z(G)/〈z〉, where |Z(G)| ≥ p2. Set Z(G)/〈z〉 ∼= Φ(G)/G′ ∼=
Cpn with n ≥ 1 so that |G| = pn+4. Consider the abelian group G/G′ of
rank 2. Since (G′〈k〉)/G′ ∼= Cpn+1 , there is a subgroup S/G′ of order p such
that G = S〈k〉 and S ∩ 〈k〉 ≤ 〈z〉. Let h ∈ S − G′ so that hp ∈ 〈z〉 since
hp ∈ Z(G) ∩ G′ = 〈z〉.

Assume that S ≤ A in which case h ∈ A − Φ(G) and G = 〈h, k〉. We
may assume [h, k] = v and we examine all maximal subgroups Φ(G)〈hik〉 of
G (i is any integer mod p) which are distinct from A. We have [v, hik] =
[v, k][v, hi]k = [v, k] = z and so 〈v, hik〉 is minimal nonabelian. On the other
hand,

Φ(〈v, hik〉) = 〈vp = 1, (hik)p = hipkpl, [v, hik] = z〉 = 〈kp, z〉 = Z(G),

(where l ∈ 〈z〉) since (hik)p = kpl′ for some l′ ∈ 〈z〉. This means that
Φ(G)〈hik〉 = 〈v, hik〉 and so all these p maximal subgroups of G are minimal
nonabelian. But then G is an A2-group, a contradiction.

We have proved that S 6≤ A = CG(G′) and so 1 6= [v, h] ∈ 〈z〉. Since
G = 〈h, k〉, we may set [h, k] = v and [v, k] = z, where v ∈ G′ − Z(G) and

〈z〉 = G′ ∩ Z(G). Also, [v, h] = zρ, hp = zσ, and kpn+1

= zτ , where ρ, σ, τ
are integers mod p with ρ 6≡ 0 (mod p). Here S = 〈v, h〉 ∼= S(p3) or Mp3 , S
is normal in G, G = S〈k〉 with 〈k〉 ∩ S ≤ 〈z〉 and M = SZ(G) = S〈kp〉 with
d(M) = 3.

It remains to examine all p maximal subgroups Φ(G)〈hik〉 (i = 0, 1, ..., p−
1) of G which are distinct from M = Φ(G)〈h〉 = S〈kp〉. We compute
[v, hik] = [v, k][v, h]i = zzρi = zρi+1, where the congruence ρi + 1 ≡ 0 (mod
p) has exactly one solution i′ for i (noting that ρ 6≡ 0 (mod p)). Hence

A = Φ(G)〈hi′k〉 is an abelian maximal subgroup of G and for all other i 6≡ i′

(mod p), we see that 〈v, hik〉 is minimal nonabelian and moreover,

Φ(〈v, hik〉) = 〈vp = 1, (hik)p = hipkpl, [v, hik] = zρi+1 6= 1〉

for some l ∈ 〈z〉. Hence Φ(〈v, aik〉) = 〈kp, z〉 = Z(G) and so Φ(G)〈hik〉 =
〈v, hik〉 is a minimal nonabelian maximal subgroup of G. Our theorem is
proved.

Theorem 9. Let G be a two-generator p-group, p > 2, with exactly one
maximal subgroup H which is neither abelian nor minimal nonabelian. If G
has no abelian maximal subgroup, then Γ1 = {H, H1, ..., Hp}, where Hi (i =
1, ..., p) are non-metacyclic minimal nonabelian, G′ ∼= Ep3 , W = [G, G′] ∼=
Ep2 , W ≤ Z(G) (and so G is of class 3) and CG(G′) = Φ(G) is abelian.
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Moreover, {H ′, H ′

1, ..., H
′

p} is the set of p + 1 subgroups of order p in W and
the following holds.

(a) If |G| ≥ p6, then we have:

G = 〈h, x |hpm+1

= 1, [h, x] = v, hpm

= u, [v, h] = z, [v, x] = uα,

vp = zp = [u, x] = [z, h] = [z, x] = 1, xp ∈ 〈u, z〉〉,

where m ≥ 2 and α is an integer mod p with α 6≡ 0 (mod p). Here
|G| = pm+4, G′ = 〈u, z, v〉 ∼= Ep3 , W = [G, G′] = 〈u, z〉 ≤ Z(G),
Z(G) = 〈hp〉 × 〈z〉 ∼= Cpm × Cp, Φ(G) = Z(G) × 〈v〉. Finally, H =
Φ(G)〈x〉, where in case xp ∈ W − 〈u〉 we have d(H) = 3 and in case
xp ∈ 〈u〉 we have d(H) = 4 and Hi = 〈v, xih〉 (i = 1, ..., p) is the set
of p non-metacyclic minimal nonabelian maximal subgroups of G.

(b) If |G| = p5, then:

G = 〈h, x |hp2

= 1, [h, x] = v, hp = uα, [v, h] = z, [v, x] = u,

vp = zp = [u, x] = [z, h] = [z, x] = 1, hp = uβzγ〉,

where α, β, γ are integers mod p with β 6≡ 0 (mod p). We have Φ(G) =
G′ = 〈u, z, v〉 ∼= Ep3 and W = [G, G′] = 〈u, z〉 = Z(G) ∼= Ep2 .

If p ≥ 5, then γ ≡ α (mod p). In that case α ≡ 0 (mod p) implies
℧1(G) = 〈u〉 and Ω1(G) = H ∼= S(p3)×Cp and α 6≡ 0 (mod p) implies
℧1(G) = W , Ω1(G) = G′ and H ∼= Mp3 × Cp. Also, all p maximal
subgroups Hi = G′〈xih〉 (i integer mod p) are non-metacyclic minimal
nonabelian.

If p = 3, then either β = 1 and γ 6≡ α (mod 3) or β = −1 and
γ ≡ α (mod 3). In that case H = G′〈x〉 ∼= S(27)×C3 or H ∼= M27×C3

and all 3 maximal subgroups Hi = G′〈xih〉 (i integer mod 3) are non-
metacyclic minimal nonabelian.

Proof. We set Γ1 = {H, H1, ..., Hp}, where Hi (i = 1, ..., p) are minimal
nonabelian. Since H is neither abelian nor minimal nonabelian, |H | ≥ p4 and
so |G| ≥ p5.

First suppose that two distinct minimal nonabelian maximal subgroups
of G have the same commutator subgroup, say, H ′

1 = H ′

2. Then considering
G/H ′

1 (see Exercise 1.6(a)), we see that all maximal subgroups of G/H ′

1 are
abelian and so we get H ′ = H ′

1 = ... = H ′

p = 〈z〉 ∼= Cp. By a result of A.
Mann (see Exercise 1.69(a) in [1]), |G′ : (H ′

1H
′

2)| = |G′ : H ′

1| ≤ p and so
|G′| ≤ p2. But if |G′| = p, then this fact together with d(G) = 2 implies
(see Exercise P9 in [1]) that G is minimal nonabelian, a contradiction. Hence
|G′| = p2. Also, d(H) ≥ 3 and so H is non-metacyclic. Indeed, if d(H) = 2,
then (noting that |H ′| = p) H would be minimal nonabelian, a contradiction.

Suppose for a moment that G′ = 〈v〉 ∼= Cp2 is cyclic. Then H ′

1 = ... =
H ′

p = 〈v2〉 and G′ = 〈v〉 ≤ Hi so that H ′

i is not a maximal cyclic subgroup
in Hi and therefore Hi is metacyclic for all i = 1, ..., p. By a result of Y.
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Berkovich (see A.40.12 in [3]), G is an L3-group. But in that case, G′ is of
exponent p, a contradiction. We have proved that G′ ∼= Ep2 .

We have that Φ(G) = H1 ∩ H2 is a maximal normal abelian subgroup of
G. Taking h1 ∈ H1 − Φ(G) and h2 ∈ H2 − Φ(G), we have 〈h1, h2〉 = G and
so s = [h1, h2] ∈ G′ − 〈z〉 and s 6∈ Z(G). Indeed, if s ∈ Z(G), then G/〈s〉
would be abelian, a contradiction. In particular, [G, G′] = 〈z〉 = H ′

1 and so
G is of class 3. Since s 6∈ Z(G), we have s 6∈ Z(H1) or s 6∈ Z(H2) and we
may assume without loss of generality that s 6∈ Z(H1). Suppose that there
is an element x ∈ H1 − Φ(G) such that xp ∈ 〈z〉. Then G′〈x〉 is minimal
nonabelian of order p3 and so G′〈x〉 = H1, contrary to |G| ≥ p5. Assume that
〈z〉 = H ′

1 is not a maximal cyclic subgroup in H1. Then there is v ∈ Φ(G)
such that v2 = z. This implies that all Hi, i = 1, ..., p, are metacyclic. Again
by a result of Y. Berkovich (A.40.12 in [3]), G is an L3-group. This means
that U = Ω1(G) is of order p3 and exponent p and G/U is cyclic of order
≥ p2. We have G′ ≤ U and so if U is nonabelian, then CG(G′) covers G/U
and CG(G′) is an abelian maximal subgroup of G, a contradiction. If U is
elementary abelian, then |G : CG(U)| = p since a Sylow p-subgroup of GL3(p)
is isomorphic to S(p3) and so is of exponent p. But in that case CG(U) is an
abelian maximal subgroup of G, a contradiction. Hence 〈z〉 = H ′

1 is a maximal
cyclic subgroup in H1 which implies that H1 is non-metacyclic. Noting that
|H1| ≥ p4, we get E = Ω1(H1) = Ω1(Φ(G)) ∼= Ep3 which also implies that all
Hi are non-metacyclic.

By the previous paragraph, Ω1(〈h1〉) = 〈u〉 ≤ E and u ∈ E − G′. We
have H1 = E〈h1〉 and so H1 is a splitting extension of G′ by 〈h1〉, where
o(h1) = pn, n ≥ 2. Since G/G′ is abelian of rank 2, we get G = H1F with
H1 ∩ F = G′ and |F : G′| = p. We have G/F ∼= H1/G′ ∼= Cpn . If F is
nonabelian, then CG(G′) covers G/F and so CG(G′) is an abelian maximal
subgroup of G, a contradiction. Hence F is abelian. Assume that ℧1(F ) 6≤
〈z〉. Then |℧1(F )| = p and G′ = 〈z〉 ×℧1(F ) ≤ Z(G), a contradiction. Hence
℧1(F ) ≤ 〈z〉 and so for an element x ∈ F − G′ we have xp ∈ 〈z〉.

Since G = 〈h1, x〉, we may set [x, h1] = s ∈ G′−〈z〉 and [s, h1] = z, where

H ′

1 = 〈z〉 ≤ Z(G). Then xh1 = xs, sh1 = sz and shi
1 = szi for all i ≥ 1. We

get xh2
1 = (xs)h1 = (xs)(sz) = xs2z and claim that we have xhi

1 = xsiz(i

2) for
all i ≥ 2. Indeed, by induction on i,

xh
i+1

1 = (xh1)hi
1 = (xs)hi

1 = (xsiz(i

2))(szi) = xsi+1z(i

2)+i = xsi+1z(i+1

2 ).

Our formula gives xh
p

1 = xspz(p

2) = x and so F 〈hp
1〉 is an abelian maximal

subgroup of G, a contradiction.
We have proved that H ′

1 = 〈z1〉, H ′

2 = 〈z2〉,...,H
′

p = 〈zp〉 are pairwise
distinct subgroups of order p in G′ ∩ Z(G). By a result of A. Mann (Exercise
1.69(a) in [1]), |G′ : (H ′

1H
′

2)| ≤ p and so |G′| ≤ p3. Set W = 〈z1, ..., zp〉 so that
W is an elementary abelian subgroup of order ≥ p2 contained in G′ ∩ Z(G)
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which implies that G′ is abelian of exponent ≤ p2. We have G = 〈x, y〉 for
some x, y ∈ G. If [x, y] ∈ Z(G), then G/〈[x, y]〉 is abelian which implies that
G′ = 〈[x, y]〉 is cyclic, contrary to the fact that W ≤ G′. Thus [x, y] ∈ G′−W
which gives |G′| = p3, W ∼= Ep2 , {1} 6= [G, G′] ≤ W ≤ Z(G) and so G is of
class 3. Let 〈zp+1〉 be the subgroup of order p in W such that 〈zp+1〉 6= 〈zi〉
for all i = 1, ..., p.

For any fixed i ∈ {1, ..., p} we consider G/〈zi〉, where Hi/〈zi〉 is abelian
(and two-generated) and Hj/〈zi〉 is minimal nonabelian for all j 6= i, j ∈
{1, ..., p}. This implies that H/〈zi〉 must be nonabelian (Exercise 1.6(a) in
[1]). If G/〈zi〉 is metacyclic, then a result of N. Blackburn (Theorem 36.1 in
[1]) gives that G is also metacyclic, contrary to Ep2

∼= W ≤ G′. Hence G/〈zi〉
is non-metacyclic. Suppose that H/〈zi〉 is minimal nonabelian. Then G/〈zi〉
is a non-metacyclic A2-group. If |G/〈zi〉| > p4, then Theorem 65.7(a) in [2]
implies that G′/〈zi〉 ∼= Ep2 . Suppose that |G/〈zi〉| = p4 and G′/〈zi〉 ∼= Cp2 .
In that case each maximal subgroup of G/〈zi〉 is metacyclic and so G/〈zi〉 is
minimal non-metacyclic. By Theorem 69.1 in [2], G/〈zi〉 is a group of maximal
class and order 34. But in that case G′/〈zi〉 cannot be cyclic (see Exercise
9.1(c)in [1]). We have proved that in any case G′/〈zi〉 ∼= Ep2 . Assume now
that H/〈zi〉 is not minimal nonabelian and we know already that H/〈zi〉 is
nonabelian. By Theorem 8, we have again G′/〈zi〉 ∼= Ep2 . As a consequence
we get [x, y]p ∈ 〈zi〉 for each i = 1, ..., p which implies [x, y]p = 1 and so
G′ ∼= Ep3 is elementary abelian.

By Lemma 36.5(b) in [1], G′/[G, G′] is cyclic and so [G, G′] = W (since
[G, G′] ≤ W ). Since (G/W )′ ∼= Cp and d(G/W ) = 2, G/W is minimal
nonabelian (Exercise P9 in [3]) and so H/W is abelian which implies {1} 6=
H ′ ≤ W . Suppose that H ′ = 〈zj〉 for some j ∈ {1, ..., p}. Then G/〈zj〉 is
nonabelian with at least two distinct abelian maximal subgroups Hj/〈zj〉 and
H/〈zj〉. But then (G/〈zj〉)

′ ∼= Cp (Exercise P1 in [3]), a contradiction. We
have proved that H ′ = 〈zp+1〉 or H ′ = W .

Suppose that H ′ = W ≤ Z(G). In that case d(H) ≥ 3. Indeed, if
d(H) = 2, then H is a two-generator group of class 2 in which case H ′ must
be cyclic (Proposition 36.5(a) in [1]), a contradiction. Consider G/〈zp+1〉
with d(G/〈zp+1〉) = 2 and having minimal nonabelian maximal subgroups
Hi/〈zp+1〉 for all i = 1, ..., p. The remaining maximal subgroup H/〈zp+1〉
is neither abelian nor minimal nonabelian since d(H/〈zp+1〉) ≥ 3. But
(Hi/〈zp+1〉)

′ = W/〈zp+1〉 for all i = 1, ..., p, contrary to the first part of
this proof. Hence we must have H ′ = 〈zp+1〉.

We have proved that H ′, H ′

1,...,H
′

p are p + 1 pairwise distinct subgroups
of order p in W . Since H is not minimal nonabelian, we have d(H) ≥ 3
and so |H | ≥ p4 and |G| ≥ p5. Also, Ω1(Hi) = G′ ≤ Φ(G) for all i =
1, ..., p, where Φ(G) is abelian. Therefore we have either CG(G′) = Φ(G) or
CG(G′) is a maximal subgroup of G. In any case there exist two minimal
nonabelian maximal subgroups of G, say, H1 and H2, such that G′ 6≤ Z(H1)
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and G′ 6≤ Z(H2). Then H1 ∩ H2 = Φ(G) and taking some elements h1 ∈
H1 − Φ(G) and h2 ∈ H2 − Φ(G), we have 〈h1, h2〉 = G and so v = [h1, h2] ∈
G′−W . Indeed, if v ∈ W , then G/〈v〉 is abelian, a contradiction. We may set
[v, h1] = z1 and [v, h2] = z2 so that H ′

1 = 〈z1〉, H ′

2 = 〈z2〉 and W = 〈z1〉×〈z2〉.
All maximal subgroups of G are H1 = Φ(G)〈h1〉 and Φ(G)〈hi

1h2〉, where i is
any integer mod p. We compute:

[v, hi
1h2] = [v, h2][v, hi

1]
h2 = z2(z

i
1)

h2 = zi
1z2 6= 1,

which shows that CG(v) = Φ(G) and so CG(G′) = Φ(G). Since 〈v, h1〉 (with
[v, h1] = z1) is minimal nonabelian, we have 〈v, h1〉 = H1 = G′〈h1〉. Hence

H1/G′ ∼= Cpm is cyclic of order pm, m ≥ 1, and hpm

1 ∈ W −〈z1〉. The abelian
group G/G′ is of rank 2 and so G/G′ is of type (pm, p) and |G| = pm+4.
Finally, Φ(G) = G′〈hp

1〉 = 〈hp
1〉 × 〈v〉 × 〈z1〉 is of type (pm, p, p).

(i) First suppose that m ≥ 2. Set u = hpm

1 so that u ∈ W − H ′

1, o(h1) =
pm+1 ≥ p3 and Φ(G)/G′ is cyclic of order pm−1 ≥ p since H1/G′ ∼= Cpm .
Consider any Hi for 2 ≤ i ≤ p so that Hi ∩ H1 = Φ(G). Let hi ∈ Hi − Φ(G)
and v ∈ G′−W so that 1 6= [hi, v] = zi and H ′

i = 〈zi〉. Since 〈hi, v〉 is minimal
nonabelian, we have 〈hi, v〉 = Hi = G′〈hi〉 and so Hi/G′ is also cyclic of order

pm. We have hp
i ∈ Φ(G) − G′ and 〈hp

i 〉 covers Φ(G)/G′. It follows hp
i = hδp

1 k

for some k ∈ G′ and δ 6≡ 0 (mod p). Then hp2

i = hδp2

1 and so 〈hpm

i 〉 = 〈u〉,

where u = hpm

1 and this implies that u ∈ W − H ′

i. We have proved that
u 6∈ H ′

i for all i = 1, ..., p which forces 〈u〉 = H ′.
Since G/G′ is abelian of type (pm, p), m ≥ 2, we get G = H1F with

H1 ∩ F = G′ and |F : G′| = p. For the maximal subgroup Φ(G)F of G we
have (Φ(G)F )/G′ = (Φ(G)/G′) × (F/G′) ∼= Cpm−1 × Cp and so (Φ(G)F )/G′

is not cyclic which implies that Φ(G)F = H . Taking h1 = h ∈ H1 − Φ(G)
and x ∈ F −Φ(G), we have o(x) ≤ p2, G = 〈h, x〉 and so v = [h, x] ∈ G′ −W .
We set again u = hpm

and we know that H ′ = 〈u〉. Also set [v, h] = z1 = z,

where H ′

1 = 〈z〉, W = 〈u〉 × 〈z〉, vh = vz and vhj

= vzj for j ≥ 1. Since
CG(G′) = CG(v) = Φ(G), we have xp ∈ W = 〈u, z〉 and [v, x] = uα with
α 6≡ 0 (mod p). We have obtained all relations stated in part (a) of our
theorem. From [h, x] = v, we get [h2, x] = [h, x]h[h, x] = vhv = (vz)v = v2z.

We prove by induction on j ≥ 2 that [hj , x] = vjz(j

2). Indeed,

[hj+1, x] = [hhj , x] = [h, x]h
j

[hj , x] = vhj

(vjz(j

2)) = (vzj)(vjz(j

2)) =

vj+1zj+(j

2) = vj+1z(j+1

2 ).

In particular, [hp, x] = vpz(p

2) = 1 and so hp ∈ Z(G) since G = 〈h, x〉. We get
Z(G) = 〈hp〉×〈z〉 ∼= Cpm ×Cp and Φ(G) = Z(G)×〈v〉. We have H = F ∗〈hp〉
with F ∩ 〈hp〉 = 〈u〉. If xp ∈ W − 〈u〉, then F is minimal nonabelian and
so d(H) = 3. If xp ∈ 〈u〉, then F = 〈v, x〉 × 〈z〉, where 〈u〉 = Z(〈v, x〉) and
〈v, x〉 ∼= S(p3) or Mp3 and so d(H) = 4.
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Finally, we have to check all p maximal subgroups Hi = Φ(G)〈xih〉 of
G which are distinct from H and we have to show that they are minimal
nonabelian. We have

[v, xih] = [v, h][v, xi]h = z(uαi)h = zuαi,

where 〈zuαi〉 are pairwise distinct subgroups of order p in W for i = 1, ..., p
since α 6≡ 0 (mod p). Hence 〈v, xih〉 is minimal nonabelian with 〈v, xih〉′ =
〈zuαi〉 6= 〈u〉. By Hall-Petrescu formula (Appendix 1 in [1]), we get for all
r, s ∈ G,

(rs)pm

= rpm

spm

c
(pm

2 )
2 c

(pm

3 )
3 ,

where c2 ∈ G′ and c3 ∈ W = [G, G′]. But m ≥ 2 and so (rs)pm

= rpm

spm

. We
get (xih)pm

= (xi)pm

hpm

= hpm

= u and so o(xih) = pm+1 which together
with 〈v, xih〉 = G′〈xih〉 and G′ ∩ 〈xih〉 = 〈u〉 implies that |〈v, xih〉| = pm+3.
But |G| = pm+4 and so 〈v, xih〉 = Hi is minimal nonabelian and we are done.

(ii) Suppose that m = 1 which implies |G| = p5 and G′ = Φ(G) with
CG(G′) = G′. We have H1 ∩ H = G′ and since Ω1(H1) = G′, we get for
an element h ∈ H1 − G′, 1 6= hp ∈ W = [G, G′] = Z(G) ∼= Ep2 . Also we
have ℧1(G) ≤ W . Take an element x ∈ H − G′ so that xp ∈ W , G = 〈h, x〉
and v = [h, x] = G′ − W . Set [v, x] = u so that 1 6= u ∈ W and 〈u〉 = H ′.
Then [v, h] = z 6∈ 〈u〉 and so H ′

1 = 〈z〉 and W = 〈u〉 × 〈z〉. Since 〈v, x〉 is
minimal nonabelian, we have 〈v, x〉 6= H which implies xp = uα (for some
integer α mod p) and H = 〈v, x〉 × 〈z〉 , where 〈v, x〉 ∼= S(p3) or Mp3 . Since
H1 is non-metacyclic minimal nonabelian, 〈z〉 is a maximal cyclic subgroup
in H1 which implies hp = uβzγ with β 6≡ 0 (mod p). All p maximal subgroups
Hi = G′〈xih〉 (i is any integer mod p) of G which are distinct from H must
be minimal nonabelian. Since [v, xih] = [v, h][v, xi]h = z(ui)h = zui 6= 1 and
〈v, xih〉 is minimal nonabelian with 〈v, xih〉′ = 〈uiz〉 and so we must have
Hi = 〈v, xih〉, we get 〈(xih)p〉 6= 〈uiz〉 or equivalently

(∗) 〈(xih)p, uiz〉 = 〈u, z〉

for all integers i mod p.
(ii1) First we assume p ≥ 5 in which case G is regular. By Hall-Petrescu

formula (Appendix 1 in [1]), we have in our case for all r, s ∈ G,

(rs)p = rpspc
(p

2)
2 c

(p

3)
3 ,

where c2 ∈ G′ and c3 ∈ W = [G, G′] and so (rs)p = rpsp. Hence (xih)p =
xpihp = uαi(uβzγ) = uαi+βzγ . Our condition (∗) is equivalent with:

∣

∣

∣

∣

αi + β γ
i 1

∣

∣

∣

∣

= (α − γ)i + β 6≡ 0 (mod p)

for all integers i mod p, where we know that β 6≡ 0 (mod). This is equivalent
with α − γ ≡ 0 (mod p) and so γ ≡ α(mod p). If α ≡ 0 (mod p), then
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℧1(G) = 〈u〉 and Ω1(G) = H ∼= S(p3) × Cp. If α 6≡ 0 (mod p), then ℧1(G) =
W and Ω1(G) = G′ so that H ∼= Mp3 × Cp.

(ii2) Finally, we suppose p = 3. In that case the Hall-Petrescu formula
gives for all r, s ∈ G, (rs)3 = r3s3c3, where c3 ∈ W . This is not a sufficient
information because we have to know exactly the element c3. Using the usual
commutator identities (see §7, p. 98) together with xy = yx[x, y] we compute
exactly (rs)3. We get:

(rs)2 = r(sr)s = r(rs[s, r])s = r2s(s[s, r][s, r, s]) = r2s2[s, r][s, r, s],

(rs)3 = r2s2[s, r][s, r, s] · rs = r2s2 · r[s, r]s[s, r, r][s, r, s]

= r2(s2r)s[s, r][s, r, s][s, r, r][s, r, s].

But we have:

r2(s2r)s[s, r] = r2(rs2[s2, r])s[s, r] = r3s3[s2, r][s2, r, s][s, r]

= r3s3[s, r][s, r]s[s2, r, s][s, r]

= r3s3[s, r]([s, r][s, r, s])[s2, r, s][s, r] = r3s3[s, r, s][s2, r, s]

and so

(1) (rs)3 = r3s3[s, r, s][s2, r, s][s, r, s][s, r, r][s, r, s] = r3s3[s2, r, s][s, r, r].

Also we get:

[s2, r] = [s, r]s[s, r] = [s, r][s, r, s][s, r] = [s, r]2[s, r, s]

and so:

[s2, r, s] = [[s, r]2[s, r, s], s] = [[s, r]2, s] = [s, r, s][s,r][s, r, s] = [s, r, s]2,

and so we have by (1):

(rs)3 = r3s3[s, r, s]2[s, r, r] = r3s3[s, r, s]−1[s, r, r] = r3s3[s, [s, r]][[s, r], r],

and so we have obtained the formula:

(∗∗) (rs)3 = r3s3[s, [s, r] ] [ [s, r], r].

Since 〈hp, z〉 = 〈uβzγ , z〉 = 〈u, z〉 (noting that β 6≡ 0 (mod 3)),we
have to use our condition (∗) only for i = 1, 2. By (∗∗), (xh)3 =
x3h3[h, [h, x] ] [ [h, x], x] = uαuβzγ [h, v][v, x] = uα+β+1zγ−1, and so from
〈uα+β+1zγ−1, uz〉 = 〈u, z〉, we get

(2)

∣

∣

∣

∣

α + β + 1 γ − 1
1 1

∣

∣

∣

∣

= α + β − γ − 1 6≡ 0 (mod 3).

We compute [h, x2] = [h, x][h, x]x = vvx = v(vu) = v2u and so by (∗∗),

(x2h)3 = x6h3[h, v2u][v2u, x2] = u2α(uβzγ)z−2u = u−α+β+1z
γ+1.
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From our condition (∗) for i = 2, we get 〈u−α+β+1z
γ+1, u2z〉 = 〈u, z〉, or

equivalently:

(3)

∣

∣

∣

∣

−α + β + 1 γ + 1
−1 1

∣

∣

∣

∣

= −α + β + γ − 1 6≡ 0 (mod 3).

Now, (2) and (3) hold if and only if:

(α + β − γ − 1)(−α + β + γ − 1) 6≡ 0 (mod 3).

This is equivalent with:

((β − 1) + (α − γ))((β − 1) − (α − γ)) 6≡ 0 (mod 3) or

(β − 1)2 − (α − γ)2 6≡ 0 (mod 3).

Hence if β = 1, then γ 6≡ α (mod 3) and if β = −1, then γ ≡ α (mod 3).
We have obtained the groups stated in part (b) of our theorem which is

now completely proved.
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