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FINITE p-GROUPS G WITH p > 2 AND d(G) =2 HAVING
EXACTLY ONE MAXIMAL SUBGROUP WHICH IS
NEITHER ABELIAN NOR MINIMAL NONABELIAN

ZVONIMIR JANKO

University of Heidelberg, Germany

ABSTRACT. We give here a complete classification (up to isomorphism)
of the title groups (Theorem 8 and Theorem 9). The corresponding prob-
lem for p = 2 was solved in [4].

Let G be a nonabelian finite p-group (p prime). If all maximal subgroups
of G are abelian, then such groups are minimal nonabelian and they are
known long time ago (L. Rédei). If all maximal subgroups of G are abelian
or minimal nonabelian and at least one of them is minimal nonabelian, then
such p-groups are called As-groups and they are completely determined in
§71 of [2]. Tt is a surprising fact that it is still possible to classify completely
p-groups G all of whose maximal subgroups but one are abelian or minimal
nonabelian. For 2-groups (p = 2) this was done in [4]. Here we classify up
to isomorphism such p-groups G in case p > 2 under the assumption that
d(G) =2, i.e., G is 2-generated (Theorems 8 and 9). In a forthcoming paper
we shall also consider the case d(G) > 2.

Our notation is standard (see [1] and [2]). In particular, S(p*) denotes
for p > 2 the nonabelian group of order p® and exponent p and an Ls-group
is a p-group G in which Q;(G) is of order p* and exponent p and G/Q(G) is
cyclic of order > p.

We state now all known results which are quoted in the proof of our
theorems. Moreover, if these results are quoted from the unpublished book
[3], then we also give a proof.

2010 Mathematics Subject Classification. 20D15.
Key words and phrases. Minimal nonabelian p-groups, Ag-groups, metacyclic p-
groups, Frattini subgroups, Hall-Petrescu formula, generators and relations.

441



442 Z. JANKO

LEMMA 1 ([1, Lemma 1.1]). If G is a nonabelian p-group with an abelian
mazimal subgroup, then |G| = p|Z(G)||G'|.

EXERCISE 1 ([1, Exercise 1.6(a)]). The number of abelian subgroups of
index p in a nonabelian p-group G is 0,1, orp + 1.

EXERCISE 2 ([1, Exercise 1.69(a)] (Mann)). If A and B are distinct max-
imal subgroups in a p-group G, then |G’ : (A'B")| < p.

EXERCISE 3 ([1, Exercise 9.1(c)]). Let G be a p-group of mazimal class
and order p™. If p > 2 and m > 3, then G has no cyclic normal subgroup of
order p®.

THEOREM 2 ([1, Theorem 36.1(c)]). If G/R is metacyclic for some G-
invariant subgroup R of index p in G', then G is also metacyclic.

LEMMA 3 ([1, Lemma 36.5]). (a) If a p-group G is two-generator of
class 2, then G’ is cyclic.
(b) If G is a nonabelian two-generator p-group, then G’ /Ks(G) is cyclic.

THEOREM 4 ([1, Theorem A.1.3] (The Hall-Petrescu formula)). In an ar-
bitrary group G, the following formula holds for x,y € G and any positive

integer n:
"y = (zy)"ch)cgg)...cn )
where ¢; € K;({x,y)), i = 2,...,n.

THEOREM 5 ([2, Theorem 65.7(z)]). Suppose that G is an Ay -group of
order > p*. If G’ is cyclic of order > p, then G is metacyclic and |G'| = p?.

THEOREM 6 ([2, Theorem 69.1]). If G is a minimal non-metacyclic p-
group, p > 2, then either G is of order p> and exponent p or G is a group of
mazimal class and order 3*.

PROPOSITION 7 ([3, Proposition A.40.12] (Berkovich)). A p-group G of
order > p*, p > 2, has exactly one non-metacyclic mazimal subgroup if and
only if G is an Ls-group.

PROOF. Suppose that G has exactly one non-metacyclic maximal sub-
group. Assume in addition that G has no normal subgroup of order p? and
exponent p. By Theorem 69.3 in [2], G is either metacyclic (which in our case
is not possible) or G is a 3-group of maximal class. By Theorem 9.6 in [1], our
3-group G has exactly three subgroups of maximal class and index 3. Since
3-groups of maximal class and order > 33 are obviously non-metacyclic, we
get a contradiction.

Now suppose that R is a G-invariant subgroup of order p> and exponent
p. Since all maximal subgroups of G that contain R are non-metacyclic, we
conclude that G/R is cyclic. Since G has a metacyclic maximal subgroup, it
follows that G has no subgroup of order p* and exponent p. Let H/R be a
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subgroup of order p in G/R so that Q1(G) < H and exp(H) = p?. Since an
Sp-subgroup of Aut(R) is of exponent p and G/R is cyclic of order > p, we
get H = RCy(R) and so H is of class < 2. It follows that Q4 (H) = R and so

G is an Ls-group.
Suppose that G is an Ls-group. Let M be a maximal subgroup of G such
that R £ M. Then M has a cyclic subgroup of index p and so is metacyclic.
O

EXERCISE 4 ([3, Exercise P9]). Let H = {(a,b) be a two-generator p-group
with |H'| = p. Then ®(H) = (a?,b?,[a,b]) and H is minimal nonabelian.

PRrOOF. For any z,y € H, [2P,y] = [z,y]? = 1 and so U1 (H) < Z(H) and
O(H) = (U1(H),H') < Z(H). We get ®(H) = Z(H) and so H/Z(H) = E,2
implies that H is minimal nonabelian. Set Hy = (a?,b?, [a,b]) < ®(H) so that
H/Hy is an abelian group generated by two elements of order p and so H/Hy
is elementary abelian of order < p?. Thus ®(H) < Hy and so Hy = ®(H).

o

We turn now to a proof of our theorems.

THEOREM 8. Let G be a two-generator p-group, p > 2, with exactly one
maximal subgroup M which is neither abelian nor minimal nonabelian. If G
has an abelian mazximal subgroup A, then we have:

G = (h,k|[h, k] =v, [v,k] =z, [v,h] =2,

P =2P =[z,h] =[z,k] =1, AP =27, = 27,
where n > 1 and p, 0,7 are integers mod p with p Z 0 (mod p).
We have |G| = p"**, G' = (v,2) 2 E,2, Z(G) = (kP, 2), ®(G) = Z(G)&,
G' NZ(G) = (z) =2 Cp, [(",G] = (z) and so G is of class 3. Also, S =
(v,h)y = S(p*) (if o = 0 (modp) ) or S = My (if o # 0 (mod p) ), S
is normal in G, G = S(k), SN (k) < (2), G/S = Cpus1, M = S(kP),
dM) = 3, M' = (z), A = Cg(G"), the set of mazimal subgroups of G
is v = {A,M,M,..,M,_1}, where all M; are minimal nonabelian with
M| =..=M) , =(z) and G/Z(G) = S(p*). Finally, G is an Ls-group if
and only if T # 0 (mod p) and in that case Q1 (G) =2 S(p?) , G/Q(G) is cyclic
of order p"*' (n>1) and Z(G) = (kP) = Cpn+1 is cyclic.

PROOF. Obviously, A is a unique abelian maximal subgroup of G (oth-
erwise, by Exercise 1.6(a) in [1], all p + 1 maximal subgroups of G would
be abelian). By a result of A.Mann (see Exercise 1.69(a) in [1]), |G’ :
(A’M7])| < p, where M; is a minimal nonabelian maximal subgroup of G
and so |G’| < p?. But if |G'| = p, then this fact together with d(G) = 2
would imply that G is minimal nonabelian, a contradiction. Hence |G’| = p?.
From |G| = p|G’||Z(G)| (Lemma 1.1 in [1]) follows |G : Z(G)| = p®. Set I'; =
{A, M, M,...,My_1}, where all M; (i =1,...,p— 1) are minimal nonabelian.
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We have Z(G) < M; (otherwise d(G) = 3) and so Z(G) = Z(M;) = ®(M;) for
alli =1,..,p—1. Also, ®(M;) < ®(G) < M; and so ®(G) is abelian. For
each v € G — A, Ca(z) = Z(G) and so 2P € Z(G). Hence G/Z(G) is gen-
erated by its elements of order p and so G/Z(G) = S(p?) because d(G) = 2
and so G/Z(G) cannot be elementary abelian. This implies G' N Z(G) = C,,
®(G) = Z(G)G and G is of class 3. Also, M/ = M’ = G' N Z(G) for all
i=1,..,p—1. If d(M) = 2, then M’ = C, would imply that M is min-
imal nonabelian, a contradiction. Hence we have d(M) > 3. In particular,
|M| > p* and so |G| > p°.

(i) First assume that G’ = (v) = C,2 is cyclic. Since (vP) = M is not
a maximal cyclic subgroup in M; > ®(G) = Z(G)G, it follows that all M;
(i =1,...,p— 1) are metacyclic. In particular, | (®(G))| < p?. Suppose that
A is also metacyclic so that M (with d(M) > 3) is the only non-metacyclic
maximal subgroup of G. By a result of Y. Berkovich (see A.40.12 in [3]), G is
an Ls-group. But then G’ < Q;(G), where Q;(G) is of order p* and exponent
p and so G' = E,2, a contradiction. It follows that A must be non-metacyclic
in which case Q1 (A) £ ®(G). Let a be an element of order p in A — ®(G) and
let k € G — A be such that (D(G), k) = M;. Since [k,v] # 1, we may replace
k with another generator of (k) so that we may assume that [k, v] = vP. Since
(k,v) = (vP) < Z(G), it follows that (k,v) is minimal nonabelian and so
(k,v) = M. We have (see for example Exercise P9 in [3]),

Z(G) = ®(My) = (kP, P, [k,v] = vP) = (kP,vP).

All maximal subgroups of G distinct from A = ®(G){a) are ®(G){a'k) =
Z(G){a'k, v), where i is any integer mod p. Since [a’k, v] = [a?, v]*[k, v] =
vP € Z(G), it follows that (a’k,v) is minimal nonabelian. Again (see Exercise
P9 in [3]),

(I)(<aika v)) = <(aik)pa vP, [aika v] =0F) = <(aik)p’vp>.

The factor-group G/(vP) is minimal nonabelian (since d(G/{v?)) = 2 and
(G/{vP)) =2 C,) and so computing in G/(vP), we get:

(a'k)? = a™PkP[E, ai](g)ac, where z € (V).

But @ =1 and [k, a'] € (v) so that [k, ai](g) € (vP) which gives (a'k)P = kPy
for some y € (vP). By the above,

¢((a'k,v)) = (kPy, ") = (K, 0") = Z(G)

and so ®(G)(a'k) = Z(G){a'k,v) = (a’k,v) is minimal nonabelian for all
i=1,..,p— 1. It follows that G is an As-group, a contradiction.

(ii) We have proved that G = E,.. Since [G,G'] = G' N Z(G) = C,,
we get by the Hall-Petrescu formula (Appendix 1 in [1]) for any z,y € G,
(zy)? = aPyPl for some I € G' N Z(G).
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We have A = Cg(G’) and we take an element k& € G — A such that
®(G)(k) = M; is a minimal nonabelian maximal subgroup of G. Then for
any element v € G’ — Z(G), we have [v, k] = z, where (z) = G’ N Z(G). Since
(k,v) = (2), (k,v) is minimal nonabelian and so (k,v) = M;. In particular,

D((k,v)) = (P, oP, [, k]) = (kP,z) = ®(My) = Z(G).

Thus (kP) covers Z(G)/(z), where |Z(G)| > p*. Set Z(G)/(z) = ®(G)/G" =
Cpn with n > 1 so that |G| = p"**. Consider the abelian group G/G’ of
rank 2. Since (G'(k))/G" =2 Cpnt1, there is a subgroup S/G’ of order p such
that G = S{k) and SN (k) < (z). Let h € S — G’ so that h? € (z) since
hP € Z(G) NG = (2).

Assume that S < A in which case h € A — ®(G) and G = (h, k). We
may assume [h, k] = v and we examine all maximal subgroups ®(G)(h'k) of
G (i is any integer mod p) which are distinct from A. We have [v, h'k] =
[v, k][v, h']*¥ = [v,k] = z and so (v, h'k) is minimal nonabelian. On the other
hand,

®((v, hlk>) = (P =1, (hlk)p = hipkplv [v, hzk] =z) = (kP, 2) = Z(G),

(where | € (z)) since (h'k)? = kPI’ for some I’ € (z). This means that
®(G)(h'k) = (v, h'k) and so all these p maximal subgroups of G are minimal
nonabelian. But then G is an As-group, a contradiction.

We have proved that S £ A = Cg(G’) and so 1 # [v,h] € (z). Since
G = (h,k), we may set [h,k] = v and [v,k] = z, where v € G' — Z(G) and
(z) = G' NZ(G). Also, [v,h] = 2P, h? = 2°, and P = 27, where p,o, T
are integers mod p with p # 0 (mod p). Here S = (v,h) = S(p*) or M3, S
is normal in G, G = S(k) with (k) NS < (z) and M = SZ(G) = S(kP) with
d(M) = 3.

It remains to examine all p maximal subgroups ®(G)(h'k) (i = 0,1,...,p—
1) of G which are distinct from M = ®(G)(h) = S(kP). We compute
[v, h'k] = [v, k][v, h]* = 22P* = 2P**T1 where the congruence pi + 1 = 0 (mod
p) has exactly one solution ¢’ for ¢ (noting that p # 0 (mod p)). Hence
A = ®(G)(h'k) is an abelian maximal subgroup of G and for all other i # 7’
(mod p), we see that (v, h’k) is minimal nonabelian and moreover,

O((v, h'k)) = (v = 1, (W'k)? = W'PRPL [o, k] = 271 # 1)

for some | € (z). Hence ®((v,a’k)) = (kP,z) = Z(G) and so ®(G)(h'k) =
(v,h'k) is a minimal nonabelian maximal subgroup of G. Our theorem is
proved. 0

THEOREM 9. Let G be a two-generator p-group, p > 2, with exactly one
maximal subgroup H which is neither abelian nor minimal nonabelian. If G
has no abelian mazximal subgroup, then I'v = {H, H1, ..., H,}, where H; (i =
1,...,p) are non-metacyclic minimal nonabelian, G' = Ej3, W = [G,G'] =
Ep, W < Z(G) (and so G is of class 3) and Cq(G') = ®(G) is abelian.
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Moreover, {H', Hy, ..., H} is the set of p+ 1 subgroups of order p in W and
the following holds.

(a) If |G| > pb, then we have:
G=(ha|W"" =1, [ha]=v, " =u, [v,h] =z, [v,2] = u®,
P =2 = [U,l‘] - [Zah] - [Z,IL'] =1, 2" € <U,Z> s
where m > 2 and « is an integer mod p with o #Z 0 (mod p). Here
|G| = pm+4’ G = <U,Z,U> = Ep3’ W = [Ga G/] = <U,Z> < Z(G)’
Z(G) = () x (z) = Cpm x Cp, ®(G) = Z(G) x (v). Finally, H =
®(G)(x), where in case zP € W — (u) we have d(H) = 3 and in case
2P € (u) we have d(H) = 4 and H; = (v,2'h) (i = 1,...,p) is the set
of p mon-metacyclic minimal nonabelian mazimal subgroups of G.
(b) If |G| = p°, then:
G = <h,l‘|hp2 =1, [h,z] =v, I’ =u®, [v,h] =z, [v,2] =u,
WP = 2P = [u,z] = [2,h] = [z,2] = 1, hP = uP2Y),
where a, 8,7 are integers mod p with 3 % 0 (mod p). We have ®(G) =
G = (u,2,v) 2 Ep; and W = [G,G'] = (u,2) = Z(G) =2 E,p.

If p > 5, then v = a (mod p). In that case a = 0 (mod p) implies
01(G) = (u) and 0 (G) = H 2 S(p3) x Cp and o # 0 (mod p) implies
U1(G) =W, (G) = G and H = M,s x Cp. Also, all p mazimal
subgroups H; = G'(x*h) (i integer mod p) are non-metacyclic minimal
nonabelian.

If p = 3, then either 8 =1 and v # « (mod 3) or § = —1 and
v = «a (mod 3). In that case H = G'(x) = S(27)x C3 or H = My7 xC3
and all 3 mazimal subgroups H; = G'(z'h) (i integer mod 3) are non-
metacyclic minimal nonabelian.

Proor. Weset I'y = {H, Hy, ..., Hp}, where H; (i =1, ...,p) are minimal
nonabelian. Since H is neither abelian nor minimal nonabelian, |[H| > p* and
so |G| > p°.

First suppose that two distinct minimal nonabelian maximal subgroups
of G have the same commutator subgroup, say, H{ = HJ}. Then considering
G/Hj (see Exercise 1.6(a)), we see that all maximal subgroups of G/H] are
abelian and so we get H' = Hj = ... = H, = (z) = C,. By a result of A.
Mann (see Exercise 1.69(a) in [1]), |G’ : (H{HS)| = |G’ : H]| < p and so
|G'| < p?. But if |G| = p, then this fact together with d(G) = 2 implies
(see Exercise P9 in [1]) that G is minimal nonabelian, a contradiction. Hence
|G'| = p?. Also, d(H) > 3 and so H is non-metacyclic. Indeed, if d(H) = 2,
then (noting that |H'| = p) H would be minimal nonabelian, a contradiction.

Suppose for a moment that G' = (v) = C,2 is cyclic. Then Hj = ... =
H) = (v*) and G’ = (v) < H; so that H] is not a maximal cyclic subgroup
in H; and therefore H; is metacyclic for all ¢ = 1,...,p. By a result of Y.
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Berkovich (see A.40.12 in [3]), G is an Lz-group. But in that case, G’ is of
exponent p, a contradiction. We have proved that G’ = E,.

We have that ®(G) = Hy N Hy is a maximal normal abelian subgroup of
G. Taking hy € H; — ®(G) and he € Hy — ®(G), we have (hy, hy) = G and
s0 s = [h1,ha] € G — (z) and s &€ Z(G). Indeed, if s € Z(G), then G/(s)
would be abelian, a contradiction. In particular, [G,G’] = (z) = H] and so
G is of class 3. Since s ¢ Z(G), we have s € Z(Hy) or s ¢ Z(H3) and we
may assume without loss of generality that s ¢ Z(H;). Suppose that there
is an element © € H; — ®(G) such that 2P € (z). Then G'(x) is minimal
nonabelian of order p* and so G’(z) = Hj, contrary to |G| > p®. Assume that
(z) = Hj is not a maximal cyclic subgroup in Hy. Then there is v € ®(G)
such that v? = z. This implies that all H;, i = 1, ..., p, are metacyclic. Again
by a result of Y. Berkovich (A.40.12 in [3]), G is an Ls-group. This means
that U = Q;(G) is of order p? and exponent p and G/U is cyclic of order
> p?. We have G’ < U and so if U is nonabelian, then Cg(G’) covers G/U
and Cg(G’) is an abelian maximal subgroup of G, a contradiction. If U is
elementary abelian, then |G : Cq(U)| = p since a Sylow p-subgroup of GL3(p)
is isomorphic to S(p?) and so is of exponent p. But in that case Cg(U) is an
abelian maximal subgroup of G, a contradiction. Hence (z) = H] is a maximal
cyclic subgroup in H; which implies that H; is non-metacyclic. Noting that
|Hi| > p*, we get E = Qi (Hy) = 0 (®(G)) = E,» which also implies that all
H; are non-metacyclic.

By the previous paragraph, Q;((h1)) = (u) < F and u € E — G'. We
have H; = E(h;) and so H; is a splitting extension of G’ by (h1), where
o(h1) = p", n > 2. Since G/G’ is abelian of rank 2, we get G = H1 F with
HNF =G and |[F : G'| = p. We have G/F = H|/G' = Cpn. If F is
nonabelian, then Cg(G’) covers G/F and so Cg(G’) is an abelian maximal
subgroup of G, a contradiction. Hence F is abelian. Assume that U1 (F) £
(z). Then |U1(F)| =p and G’ = (z) x U1(F) < Z(G), a contradiction. Hence
U1(F) < (z) and so for an element x € F' — G’ we have 2P € (z).

Since G = (h1,x), we may set [x,h1] = s € G’ — (z) and [s, h1] = z, where
H| = (2) < Z(G). Then z™ = x5, s"* = sz and s" = s2* for all i > 1. We

get 2" = (xs)" = (xs)(sz) = x5z and claim that we have 2/ = wsiz(2) for

all ¢ > 2. Indeed, by induction on i,

7

2 = (MM = (2 = (572 () (s27) = 2R = g1 (5),

Our formula gives z' = 2s72(8) = 2 and so F (h¥) is an abelian maximal
subgroup of GG, a contradiction.

We have proved that H = (21), Hy = (22),....H, = (2) are pairwise
distinct subgroups of order p in G’ NZ(G). By a result of A. Mann (Exercise
1.69(a) in [1]), |G’ : (H1H})| < pandso |G'| < p3. Set W = (21, ..., 2p) so that

W is an elementary abelian subgroup of order > p? contained in G’ N Z(G)



448 Z. JANKO

which implies that G’ is abelian of exponent < p?>. We have G = (x,y) for
some z,y € G. If [x,y] € Z(G), then G/(|z,y]) is abelian which implies that
G’ = ([z,y]) is cyclic, contrary to the fact that W < G’. Thus [z,y] € G'— W
which gives |G'| = p3, W 2 E,2, {1} # [G,G'] < W < Z(G) and so G is of
class 3. Let (zp41) be the subgroup of order p in W such that (zp41) # (z:)
foralli=1,...,p.

For any fixed ¢ € {1,...,p} we consider G/(z;), where H;/(z;) is abelian
(and two-generated) and H;/(z;) is minimal nonabelian for all j # ¢, j €
{1,...,p}. This implies that H/(z;) must be nonabelian (Exercise 1.6(a) in
[1]). If G/{z;) is metacyclic, then a result of N. Blackburn (Theorem 36.1 in
[1]) gives that G is also metacyclic, contrary to E 2 & W < G'. Hence G/(z;)
is non-metacyclic. Suppose that H/(z;) is minimal nonabelian. Then G/(z;)
is a non-metacyclic Ag-group. If |G/(z;)| > p*, then Theorem 65.7(a) in [2]
implies that G'/(z;) = E,» . Suppose that |G/(z;)| = p* and G'/(z;) = C,e.
In that case each maximal subgroup of G/(z;) is metacyclic and so G/(z;) is
minimal non-metacyclic. By Theorem 69.1 in [2], G/(z;) is a group of maximal
class and order 3*. But in that case G’/(z;) cannot be cyclic (see Exercise
9.1(c)in [1]). We have proved that in any case G'/(z;) = E,2. Assume now
that H/(z;) is not minimal nonabelian and we know already that H/(z;) is
nonabelian. By Theorem 8, we have again G'/(z;) = E, 2. As a consequence
we get [z,y|P € (z;) for each i = 1,...,p which implies [z,y]P = 1 and so
G' = E,s is elementary abelian.

By Lemma 36.5(b) in [1], G'/[G,G"] is cyclic and so [G,G'] = W (since
[G,G'] < W). Since (G/W) = C, and d(G/W) = 2, G/W is minimal
nonabelian (Exercise P9 in [3]) and so H/W is abelian which implies {1} #
H' < W. Suppose that H = (z;) for some j € {1,...,p}. Then G/(z;) is
nonabelian with at least two distinct abelian maximal subgroups H,/(z;) and
H/(z;). But then (G/(z;)) = C, (Exercise P1 in [3]), a contradiction. We
have proved that H' = (z,41) or H' = W.

Suppose that H' = W < Z(G). In that case d(H) > 3. Indeed, if
d(H) = 2, then H is a two-generator group of class 2 in which case H' must
be cyclic (Proposition 36.5(a) in [1]), a contradiction. Consider G/(zp+1)
with d(G/(zp+1)) = 2 and having minimal nonabelian maximal subgroups
H;/{zp41) for all ¢ = 1,...,p. The remaining maximal subgroup H/(zp+1)
is neither abelian nor minimal nonabelian since d(H/(zp+1)) > 3. But
(Hi/{zp+1)) = W/{(zp41) for all i = 1,...,p, contrary to the first part of
this proof. Hence we must have H' = (zp41).

We have proved that H', Hj,...,H,, are p + 1 pairwise distinct subgroups
of order p in W. Since H is not minimal nonabelian, we have d(H) > 3
and so |H| > p* and |G| > p°. Also, Q1(H;) = G' < ®(G) for all i =
1,...,p, where ®(G) is abelian. Therefore we have either C5(G’) = ®(G) or
Ce(G') is a maximal subgroup of G. In any case there exist two minimal
nonabelian maximal subgroups of G, say, H; and Ha, such that G’ £ Z(H;)
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and G' £ Z(Hz). Then Hy N Hy = ®(G) and taking some elements hy €
H, — ®(G) and hy € Hy — ®(G), we have (hy,hs) = G and so v = [hy, ho] €
G'—W. Indeed, if v € W, then G/(v) is abelian, a contradiction. We may set
[v, h1] = 21 and [v, hg] = 2z so that H| = (z1), H}) = (z2) and W = (z1) X (22).
All maximal subgroups of G are Hy = ®(G)(h1) and ®(G)(h¢hs), where i is
any integer mod p. We compute:

[U,h’ihg] = [v, hg][v,h’i]}12 = 22(21')}12 = 21'22 #1,

which shows that Cg(v) = ®(G) and so Ce(G') = ®(G). Since (v, hy) (with
[v,h1] = z1) is minimal nonabelian, we have (v,hy) = H; = G'(h1). Hence
Hy /G’ = Cpm is cyclic of order p™, m > 1, and kY € W — (z1). The abelian
group G//G’ is of rank 2 and so G/G’ is of type (p™,p) and |G| = p™T2.
Finally, ®(G) = G'(h7) = () x (v) x (z1) is of type (p™, p, p)-

(i) First suppose that m > 2. Set u = h?  so that u € W — H!, o(hy) =
p™ 1 > p? and ®(G)/G is cyclic of order p™~! > p since H;/G' = Cpm.
Consider any H; for 2 <1i < p so that H; N H; = ®(G). Let h; € H; — ®(G)
and v € G' =W so that 1 # [h;,v] = z; and H] = (z;). Since (h;,v) is minimal
nonabelian, we have (h;,v) = H; = G'(h;) and so H;/G’ is also cyclic of order
p™. We have h? € ®(G) — G’ and (h?) covers ®(G)/G'. It follows h? = hPk
for some k € G’ and 6 # 0 (mod p). Then th = h‘lszg2 and so (hfm> = (u),
where u = h’fm and this implies that v € W — H]. We have proved that
u ¢ H for all ¢ = 1, ..., p which forces (u) = H’.

Since G/G’ is abelian of type (p™,p), m > 2, we get G = H F with
HyNF =G and |F : G’'| = p. For the maximal subgroup ®(G)F of G we
have (®(G)F)/G’" = (®(G)/G") x (F/G") = Cym-1 x Cp, and so (®(G)F)/G’
is not cyclic which implies that ®(G)F = H. Taking hy = h € H; — ®(G)
and z € F — ®(G), we have o(z) < p?, G = (h,z) and so v = [h,z] € G’ = W.
We set again u = h?" and we know that H' = (u). Also set [v,h] = 21 = z,
where H| = (2), W = (u) x (2), v" = vz and v» = vz7 for j > 1. Since
Ce(G@) = Cg(v) = ®(G), we have 2P € W = (u, z) and [v,z] = u® with
a # 0 (mod p). We have obtained all relations stated in part (a) of our
theorem. From [h,z] = v, we get [h2,z] = [h, 2)"[h,z] = v'v = (v2)v = v22.
We prove by induction on j > 2 that [h/, 2] = vi 2 (). Indeed,

[+ o] = [Ah o] = [, o] W, 2] = o (17 208)) = (v27) (07 () =
Wt (G) = it (3),
In particular, [h?, z] = v22(2) =1 and so h? € Z(G) since G = (h,z). We get
Z(G) = (hP) x (z) = Cpm x C, and ®(G) = Z(G) x (v). We have H = F x (hP)
with F N (k) = (u). If 2P € W — (u), then F is minimal nonabelian and

so d(H) = 3. If aP € (u), then F' = (v,z) x (z), where (u) = Z({v,z)) and
(v,x) = S(p®) or Mz and so d(H) = 4.
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Finally, we have to check all p maximal subgroups H; = ®(G)(z'h) of
G which are distinct from H and we have to show that they are minimal
nonabelian. We have

[v, 2°h] = [v, B][v, 2 |" = 2(u*)" = 2u™,

where (zu®?) are pairwise distinct subgroups of order p in W for i = 1,...,p
since a # 0 (mod p). Hence (v,z’h) is minimal nonabelian with (v, z'h) =
(zu®") # (u). By Hall-Petrescu formula (Appendix 1 in [1]), we get for all
r,s € G,

m

pr
(rs)pm = rpmspmcg 2 )cg 3 ),

where c; € G’ and c3 € W = [G,G’]. But m > 2 and so (rs)?" = r?" sP". We
get (z'h)P" = ()P h?" = k" = u and so o(x'h) = p™*t! which together
with (v, 2'h) = G'{x'h) and G’ N (x'h) = (u) implies that |(v,x*h)| = p™T3.
But |G| = p™* and so (v, 2°h) = H; is minimal nonabelian and we are done.

(ii) Suppose that m = 1 which implies |G| = p° and G’ = ®(G) with
Ce(G’) = G'. We have Hi N H = G’ and since Q1(H,) = G', we get for
an element h € Hy — G', 1 # h? € W = [G,G'] = Z(G) = Ep2. Also we
have U1(G) < W. Take an element x € H — G’ so that 2P € W, G = (h,z)
and v = [h,2] = G' = W. Set [v,2] = u so that 1 # u € W and (u) = H'.
Then [v,h] = z € (u) and so H] = (z) and W = (u) x (z). Since (v,x) is
minimal nonabelian, we have (v,z) # H which implies a? = u® (for some
integer @ mod p) and H = (v,z) x (2) , where (v,z) = S(p?) or M,s. Since
H; is non-metacyclic minimal nonabelian, (z) is a maximal cyclic subgroup
in H; which implies h? = u®2” with 8 # 0 (mod p). All p maximal subgroups
H; = G'(z'h) (i is any integer mod p) of G which are distinct from H must
be minimal nonabelian. Since [v, z'h] = [v, h][v, 2%]" = 2z(u*)" = zu’ # 1 and
(v,2'h) is minimal nonabelian with (v,x'h)’ = (u'z) and so we must have
H; = (v,z'h), we get ((x'h)P) # (u'z) or equivalently

(%) ((@'h)?,u'z) = (u, 2)

for all integers 7 mod p.
(iil) First we assume p > 5 in which case G is regular. By Hall-Petrescu
formula (Appendix 1 in [1]), we have in our case for all r, s € G,

m

(rs)f = rpspcgg) cgg),

where c; € G’ and c3 € W = [G,G’] and so (rs)P = rPsP. Hence (z'h)P =
P hP = u® (uP27) = u® P27, Our condition () is equivalent with:

7 1

aitf v ‘:(a_7)¢+5¢0(modp)

for all integers ¢ mod p, where we know that 8 # 0 (mod). This is equivalent
with @ — v = 0 (mod p) and so v = a(mod p). If @« = 0 (mod p), then
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01(G) = (u) and Q1(G) = H =2 S(p?) x Cp. If @ # 0 (mod p), then U1(G) =
W and Q;(G) = G’ so that H = M,s x C,,.

(ii2) Finally, we suppose p = 3. In that case the Hall-Petrescu formula
gives for all ;5 € G, (rs)® = r3s%c3, where c3 € W. This is not a sufficient
information because we have to know exactly the element c3. Using the usual
commutator identities (see §7, p. 98) together with xy = yz[x,y] we compute
exactly (rs)®. We get:

(rs)? = r(sr)s =r(rs[s,r])s = r’s(s[s,r][s, 7, s]) = r?s?[

(rs)3 = 7’252[5,7’][5,7", s]-rs= r2s? s, r)s[s,r, r][s, 7, s]

= 7r23(s%r)s[s,7|[s, 7, s][s, 7, 7][s, 7, 8].

S’ T] [87 T? S]’

But we have:

r2(s*r)s[s, 7] = r2(rs®[s?,r])s[s, 7] = r3s3[s?, r][s%, 7, 8][s, 7]

r3s3[s, r][s, 7]*[s%, 7, 8][s, 7]

3835, r]([s,7][s, 7, 8])[s%, 7, ][5, 7] = r°s3[s, 7, 8][s?, 7, 5]
and so
(1) (rs)® =r3s%[s,r, s][s%, 7, 8][s, 7, 8][s,7,7][s, 7, 8] = r3s3[s, 7, 8][s, 7, 7]
Also we get:
[s2,7] = [s,7]°[s,7] = [s,7][s, 7, 8][s,7] = [s,7][s, 7, 5]
and so:
[527 T, S] = [[Sa T]2[57 T, S]a 5] = [[Sa T]27 5] = [57 T, S][&T] [57 T, 8] = [57 T, 8]27

and so we have by (1):

33[

(rs)® = r3s%[s, 1, 8]2[s, 7, 7] = 138 [s, 7, 8] " L[s,r,v] = r3s3[s, [s,7]][[s, 7], 7],

and so we have obtained the formula:

(k) (rs)® = r3s%[s, [s,7]] [[s,7],7].

Since (h?,z) = (u’27,2z) = (u,z) (noting that 3 # 0 (mod 3)),we
have to use our condition (x) only for i = 1,2. By (xx), (zh)® =
23h3[h, [h, x]] [[h, ], 2] = u*uP2[h,v][v,2] = u*tPH1z7~1 and so from

(uetBTI =1 uz) = (u, 2), we get

1 -1
) G b By~ 1£0 (mod 3).
We compute [h, 2] = [h, z][h, 7]* = vv® = v(vu) = v2u and so by (*x),

(22h)® = 2083 [h, v?u][v?u, 2] = w2 (uP2Y) 2 2u = oAt
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From our condition (%) for i = 2, we get (u~*TA+1z"+1 422) = (u,z2), or
equivalently:

—a+pB+1 y+1
® SRR

Now, (2) and (3) hold if and only if:
(a+B—v—1)(—a+B8+~v—1)Z0 (mod 3).
This is equivalent with:
(B=1)+(a—9)((B—=1) = (a—7)) #Z0 (mod 3) or

(8-1)% = (a—7)* #0 (mod 3).
Hence if 8 =1, then v # « (mod 3) and if 3 = —1, then v = « (mod 3).
We have obtained the groups stated in part (b) of our theorem which is
now completely proved. O

=—a+f3+7-1#0 (mod 3).
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