FINITE p-GROUPS G WITH $p>2$ AND $d(G)=2$ HAVING EXACTLY ONE MAXIMAL SUBGROUP WHICH IS NEITHER ABELIAN NOR MINIMAL NONABELIAN

Zvonimir Janko
University of Heidelberg, Germany

Abstract

We give here a complete classification (up to isomorphism) of the title groups (Theorem 8 and Theorem 9). The corresponding problem for $p=2$ was solved in [4].

Let G be a nonabelian finite p-group (p prime). If all maximal subgroups of G are abelian, then such groups are minimal nonabelian and they are known long time ago (L. Rédei). If all maximal subgroups of G are abelian or minimal nonabelian and at least one of them is minimal nonabelian, then such p-groups are called A_{2}-groups and they are completely determined in $\S 71$ of [2]. It is a surprising fact that it is still possible to classify completely p-groups G all of whose maximal subgroups but one are abelian or minimal nonabelian. For 2-groups $(p=2)$ this was done in [4]. Here we classify up to isomorphism such p-groups G in case $p>2$ under the assumption that $\mathrm{d}(G)=2$, i.e., G is 2 -generated (Theorems 8 and 9). In a forthcoming paper we shall also consider the case $\mathrm{d}(G)>2$.

Our notation is standard (see [1] and [2]). In particular, $\mathrm{S}\left(p^{3}\right)$ denotes for $p>2$ the nonabelian group of order p^{3} and exponent p and an L_{3}-group is a p-group G in which $\Omega_{1}(G)$ is of order p^{3} and exponent p and $G / \Omega_{1}(G)$ is cyclic of order $>p$.

We state now all known results which are quoted in the proof of our theorems. Moreover, if these results are quoted from the unpublished book [3], then we also give a proof.

[^0]Lemma 1 ([1, Lemma 1.1]). If G is a nonabelian p-group with an abelian maximal subgroup, then $|G|=p|\mathrm{Z}(G)|\left|G^{\prime}\right|$.

Exercise 1 ([1, Exercise 1.6(a)]). The number of abelian subgroups of index p in a nonabelian p-group G is 0,1 , or $p+1$.

Exercise 2 ([1, Exercise 1.69(a)] (Mann)). If A and B are distinct maximal subgroups in a p-group G, then $\left|G^{\prime}:\left(A^{\prime} B^{\prime}\right)\right| \leq p$.

Exercise 3 ([1, Exercise 9.1(c)]). Let G be a p-group of maximal class and order p^{m}. If $p>2$ and $m>3$, then G has no cyclic normal subgroup of order p^{2}.

Theorem 2 ([1, Theorem 36.1(c)]). If G / R is metacyclic for some G invariant subgroup R of index p in G^{\prime}, then G is also metacyclic.

Lemma 3 ([1, Lemma 36.5]). (a) If a p-group G is two-generator of class 2 , then G^{\prime} is cyclic.
(b) If G is a nonabelian two-generator p-group, then $G^{\prime} / \mathrm{K}_{3}(G)$ is cyclic.

Theorem 4 ([1, Theorem A.1.3] (The Hall-Petrescu formula)). In an arbitrary group G, the following formula holds for $x, y \in G$ and any positive integer n :

$$
x^{n} y^{n}=(x y)^{n} c_{2}^{\binom{n}{2}} c_{3}^{\binom{n}{3}} \ldots c_{n}^{\binom{n}{n}}
$$

where $c_{i} \in \mathrm{~K}_{i}(\langle x, y\rangle), i=2, \ldots, n$.
Theorem 5 ([2, Theorem 65.7(z)]). Suppose that G is an A_{2}-group of order $>p^{4}$. If G^{\prime} is cyclic of order $>p$, then G is metacyclic and $\left|G^{\prime}\right|=p^{2}$.

Theorem 6 ([2, Theorem 69.1]). If G is a minimal non-metacyclic p group, $p>2$, then either G is of order p^{3} and exponent p or G is a group of maximal class and order 3^{4}.

Proposition 7 ([3, Proposition A.40.12] (Berkovich)). A p-group G of order $>p^{4}, p>2$, has exactly one non-metacyclic maximal subgroup if and only if G is an L_{3}-group.

Proof. Suppose that G has exactly one non-metacyclic maximal subgroup. Assume in addition that G has no normal subgroup of order p^{3} and exponent p. By Theorem 69.3 in [2], G is either metacyclic (which in our case is not possible) or G is a 3 -group of maximal class. By Theorem 9.6 in [1], our 3 -group G has exactly three subgroups of maximal class and index 3 . Since 3 -groups of maximal class and order $>3^{3}$ are obviously non-metacyclic, we get a contradiction.

Now suppose that R is a G-invariant subgroup of order p^{3} and exponent p. Since all maximal subgroups of G that contain R are non-metacyclic, we conclude that G / R is cyclic. Since G has a metacyclic maximal subgroup, it follows that G has no subgroup of order p^{4} and exponent p. Let H / R be a
subgroup of order p in G / R so that $\Omega_{1}(G) \leq H$ and $\exp (H)=p^{2}$. Since an S_{p}-subgroup of $\operatorname{Aut}(R)$ is of exponent p and G / R is cyclic of order $>p$, we get $H=R \mathrm{C}_{H}(R)$ and so H is of class ≤ 2. It follows that $\Omega_{1}(H)=R$ and so G is an L_{3}-group.

Suppose that G is an L_{3}-group. Let M be a maximal subgroup of G such that $R \not \leq M$. Then M has a cyclic subgroup of index p and so is metacyclic.

Exercise 4 ([3, Exercise P9]). Let $H=\langle a, b\rangle$ be a two-generator p-group with $\left|H^{\prime}\right|=p$. Then $\Phi(H)=\left\langle a^{p}, b^{p},[a, b]\right\rangle$ and H is minimal nonabelian.

Proof. For any $x, y \in H,\left[x^{p}, y\right]=[x, y]^{p}=1$ and so $\mho_{1}(H) \leq \mathrm{Z}(H)$ and $\Phi(H)=\left\langle\mho_{1}(H), H^{\prime}\right\rangle \leq \mathrm{Z}(H)$. We get $\Phi(H)=\mathrm{Z}(H)$ and so $H / \mathrm{Z}(H) \cong \mathrm{E}_{p^{2}}$ implies that H is minimal nonabelian. Set $H_{0}=\left\langle a^{p}, b^{p},[a, b]\right\rangle \leq \Phi(H)$ so that H / H_{0} is an abelian group generated by two elements of order p and so H / H_{0} is elementary abelian of order $\leq p^{2}$. Thus $\Phi(H) \leq H_{0}$ and so $H_{0}=\Phi(H)$.

We turn now to a proof of our theorems.
TheOrem 8. Let G be a two-generator p-group, $p>2$, with exactly one maximal subgroup M which is neither abelian nor minimal nonabelian. If G has an abelian maximal subgroup A, then we have:

$$
\begin{gathered}
G=\langle h, k|[h, k]=v,[v, k]=z,[v, h]=z^{\rho}, \\
\left.v^{p}=z^{p}=[z, h]=[z, k]=1, h^{p}=z^{\sigma}, k^{p^{n+1}}=z^{\tau}\right\rangle,
\end{gathered}
$$

where $n \geq 1$ and ρ, σ, τ are integers $\bmod p$ with $\rho \not \equiv 0(\bmod p)$.
We have $|G|=p^{n+4}, G^{\prime}=\langle v, z\rangle \cong \mathrm{E}_{p^{2}}, \mathrm{Z}(G)=\left\langle k^{p}, z\right\rangle, \Phi(G)=\mathrm{Z}(G) G^{\prime}$, $G^{\prime} \cap \mathrm{Z}(G)=\langle z\rangle \cong \mathrm{C}_{p},\left[G^{\prime}, G\right]=\langle z\rangle$ and so G is of class 3 . Also, $S=$ $\langle v, h\rangle \cong \mathrm{S}\left(p^{3}\right) \quad$ if $\sigma \equiv 0(\bmod p)$) or $S \cong \mathrm{M}_{p^{3}}($ if $\sigma \not \equiv 0(\bmod p)$), S is normal in $G, G=S\langle k\rangle, S \cap\langle k\rangle \leq\langle z\rangle, G / S \cong \mathrm{C}_{p^{n+1}}, M=S\left\langle k^{p}\right\rangle$, $\mathrm{d}(M)=3, M^{\prime}=\langle z\rangle, A=\mathrm{C}_{G}\left(G^{\prime}\right)$, the set of maximal subgroups of G is $\Gamma_{1}=\left\{A, M, M_{1}, \ldots, M_{p-1}\right\}$, where all M_{i} are minimal nonabelian with $M_{1}^{\prime}=\ldots=M_{p-1}^{\prime}=\langle z\rangle$ and $G / \mathrm{Z}(G) \cong \mathrm{S}\left(p^{3}\right)$. Finally, G is an L_{3}-group if and only if $\tau \not \equiv 0(\bmod p)$ and in that case $\Omega_{1}(G) \cong \mathrm{S}\left(p^{3}\right), G / \Omega_{1}(G)$ is cyclic of order $p^{n+1}(n \geq 1)$ and $\mathrm{Z}(G)=\left\langle k^{p}\right\rangle \cong \mathrm{C}_{p^{n+1}}$ is cyclic.

Proof. Obviously, A is a unique abelian maximal subgroup of G (otherwise, by Exercise 1.6(a) in [1], all $p+1$ maximal subgroups of G would be abelian). By a result of A.Mann (see Exercise 1.69(a) in [1]), $\mid G^{\prime}$: $\left(A^{\prime} M_{1}^{\prime}\right) \mid \leq p$, where M_{1} is a minimal nonabelian maximal subgroup of G and so $\left|G^{\prime}\right| \leq p^{2}$. But if $\left|G^{\prime}\right|=p$, then this fact together with $\mathrm{d}(G)=2$ would imply that G is minimal nonabelian, a contradiction. Hence $\left|G^{\prime}\right|=p^{2}$. From $|G|=p\left|G^{\prime}\right||Z(G)|$ (Lemma 1.1 in [1]) follows $|G: \mathrm{Z}(G)|=p^{3}$. Set $\Gamma_{1}=$ $\left\{A, M, M_{1}, \ldots, M_{p-1}\right\}$, where all $M_{i}(i=1, \ldots, p-1)$ are minimal nonabelian.

We have $\mathrm{Z}(G) \leq M_{i}$ (otherwise $\mathrm{d}(G)=3$) and so $\mathrm{Z}(G)=\mathrm{Z}\left(M_{i}\right)=\Phi\left(M_{i}\right)$ for all $i=1, \ldots, p-1$. Also, $\Phi\left(M_{i}\right)<\Phi(G)<M_{i}$ and so $\Phi(G)$ is abelian. For each $x \in G-A, \mathrm{C}_{A}(x)=\mathrm{Z}(G)$ and so $x^{p} \in \mathrm{Z}(G)$. Hence $G / \mathrm{Z}(G)$ is generated by its elements of order p and so $G / \mathrm{Z}(G) \cong \mathrm{S}\left(p^{3}\right)$ because $\mathrm{d}(G)=2$ and so $G / \mathrm{Z}(G)$ cannot be elementary abelian. This implies $G^{\prime} \cap \mathrm{Z}(G) \cong \mathrm{C}_{p}$, $\Phi(G)=\mathrm{Z}(G) G^{\prime}$ and G is of class 3. Also, $M_{i}^{\prime}=M^{\prime}=G^{\prime} \cap \mathrm{Z}(G)$ for all $i=1, \ldots, p-1$. If $\mathrm{d}(M)=2$, then $M^{\prime} \cong \mathrm{C}_{p}$ would imply that M is minimal nonabelian, a contradiction. Hence we have $\mathrm{d}(M) \geq 3$. In particular, $|M| \geq p^{4}$ and so $|G| \geq p^{5}$.
(i) First assume that $G^{\prime}=\langle v\rangle \cong \mathrm{C}_{p^{2}}$ is cyclic. Since $\left\langle v^{p}\right\rangle=M_{i}^{\prime}$ is not a maximal cyclic subgroup in $M_{i}>\Phi(G)=\mathrm{Z}(G) G^{\prime}$, it follows that all M_{i} $(i=1, \ldots, p-1)$ are metacyclic. In particular, $\left|\Omega_{1}(\Phi(G))\right| \leq p^{2}$. Suppose that A is also metacyclic so that M (with $\mathrm{d}(M) \geq 3$) is the only non-metacyclic maximal subgroup of G. By a result of Y. Berkovich (see A.40.12 in [3]), G is an L_{3}-group. But then $G^{\prime} \leq \Omega_{1}(G)$, where $\Omega_{1}(G)$ is of order p^{3} and exponent p and so $G^{\prime} \cong \mathrm{E}_{p^{2}}$, a contradiction. It follows that A must be non-metacyclic in which case $\Omega_{1}(A) \not \leq \Phi(G)$. Let a be an element of order p in $A-\Phi(G)$ and let $k \in G-A$ be such that $\langle\Phi(G), k\rangle=M_{1}$. Since $[k, v] \neq 1$, we may replace k with another generator of $\langle k\rangle$ so that we may assume that $[k, v]=v^{p}$. Since $\langle k, v\rangle^{\prime}=\left\langle v^{p}\right\rangle \leq \mathrm{Z}(G)$, it follows that $\langle k, v\rangle$ is minimal nonabelian and so $\langle k, v\rangle=M_{1}$. We have (see for example Exercise P9 in [3]),

$$
\mathrm{Z}(G)=\Phi\left(M_{1}\right)=\left\langle k^{p}, v^{p},[k, v]=v^{p}\right\rangle=\left\langle k^{p}, v^{p}\right\rangle
$$

All maximal subgroups of G distinct from $A=\Phi(G)\langle a\rangle$ are $\Phi(G)\left\langle a^{i} k\right\rangle=$ $\mathrm{Z}(G)\left\langle a^{i} k, v\right\rangle$, where i is any integer $\bmod p$. Since $\left[a^{i} k, v\right]=\left[a^{i}, v\right]^{k}[k, v]=$ $v^{p} \in \mathrm{Z}(G)$, it follows that $\left\langle a^{i} k, v\right\rangle$ is minimal nonabelian. Again (see Exercise P9 in [3]),

$$
\Phi\left(\left\langle a^{i} k, v\right\rangle\right)=\left\langle\left(a^{i} k\right)^{p}, v^{p},\left[a^{i} k, v\right]=v^{p}\right\rangle=\left\langle\left(a^{i} k\right)^{p}, v^{p}\right\rangle .
$$

The factor-group $G /\left\langle v^{p}\right\rangle$ is minimal nonabelian (since $\mathrm{d}\left(G /\left\langle v^{p}\right\rangle\right)=2$ and $\left.\left(G /\left\langle v^{p}\right\rangle\right)^{\prime} \cong \mathrm{C}_{p}\right)$ and so computing in $G /\left\langle v^{p}\right\rangle$, we get:

$$
\left.\left(a^{i} k\right)^{p}=a^{i p} k^{p}\left[k, a^{i}\right]^{i} \begin{array}{c}
p \\
2
\end{array}\right) x, \text { where } x \in\left\langle v^{p}\right\rangle .
$$

But $a^{i p}=1$ and $\left[k, a^{i}\right] \in\langle v\rangle$ so that $\left[k, a^{i}\right]^{\binom{p}{2}} \in\left\langle v^{p}\right\rangle$ which gives $\left(a^{i} k\right)^{p}=k^{p} y$ for some $y \in\left\langle v^{p}\right\rangle$. By the above,

$$
\Phi\left(\left\langle a^{i} k, v\right\rangle\right)=\left\langle k^{p} y, v^{p}\right\rangle=\left\langle k^{p}, v^{p}\right\rangle=\mathrm{Z}(G)
$$

and so $\Phi(G)\left\langle a^{i} k\right\rangle=\mathrm{Z}(G)\left\langle a^{i} k, v\right\rangle=\left\langle a^{i} k, v\right\rangle$ is minimal nonabelian for all $i=1, . ., p-1$. It follows that G is an A_{2}-group, a contradiction.
(ii) We have proved that $G \cong \mathrm{E}_{p^{2}}$. Since $\left[G, G^{\prime}\right]=G^{\prime} \cap \mathrm{Z}(G) \cong \mathrm{C}_{p}$, we get by the Hall-Petrescu formula (Appendix 1 in [1]) for any $x, y \in G$, $(x y)^{p}=x^{p} y^{p} l$ for some $l \in G^{\prime} \cap \mathrm{Z}(G)$.

We have $A=\mathrm{C}_{G}\left(G^{\prime}\right)$ and we take an element $k \in G-A$ such that $\Phi(G)\langle k\rangle=M_{1}$ is a minimal nonabelian maximal subgroup of G. Then for any element $v \in G^{\prime}-\mathrm{Z}(G)$, we have $[v, k]=z$, where $\langle z\rangle=G^{\prime} \cap \mathrm{Z}(G)$. Since $\langle k, v\rangle^{\prime}=\langle z\rangle,\langle k, v\rangle$ is minimal nonabelian and so $\langle k, v\rangle=M_{1}$. In particular,

$$
\Phi(\langle k, v\rangle)=\left\langle k^{p}, v^{p},[v, k]\right\rangle=\left\langle k^{p}, z\right\rangle=\Phi\left(M_{1}\right)=\mathrm{Z}(G) .
$$

Thus $\left\langle k^{p}\right\rangle$ covers $\mathrm{Z}(G) /\langle z\rangle$, where $|\mathrm{Z}(G)| \geq p^{2}$. Set $\mathrm{Z}(G) /\langle z\rangle \cong \Phi(G) / G^{\prime} \cong$ $\mathrm{C}_{p^{n}}$ with $n \geq 1$ so that $|G|=p^{n+4}$. Consider the abelian group G / G^{\prime} of rank 2. Since $\left(G^{\prime}\langle k\rangle\right) / G^{\prime} \cong \mathrm{C}_{p^{n+1}}$, there is a subgroup S / G^{\prime} of order p such that $G=S\langle k\rangle$ and $S \cap\langle k\rangle \leq\langle z\rangle$. Let $h \in S-G^{\prime}$ so that $h^{p} \in\langle z\rangle$ since $h^{p} \in \mathrm{Z}(G) \cap G^{\prime}=\langle z\rangle$.

Assume that $S \leq A$ in which case $h \in A-\Phi(G)$ and $G=\langle h, k\rangle$. We may assume $[h, k]=v$ and we examine all maximal subgroups $\Phi(G)\left\langle h^{i} k\right\rangle$ of $G(i$ is any integer $\bmod p)$ which are distinct from A. We have $\left[v, h^{i} k\right]=$ $[v, k]\left[v, h^{i}\right]^{k}=[v, k]=z$ and so $\left\langle v, h^{i} k\right\rangle$ is minimal nonabelian. On the other hand,

$$
\Phi\left(\left\langle v, h^{i} k\right\rangle\right)=\left\langle v^{p}=1,\left(h^{i} k\right)^{p}=h^{i p} k^{p} l,\left[v, h^{i} k\right]=z\right\rangle=\left\langle k^{p}, z\right\rangle=\mathrm{Z}(G),
$$

(where $l \in\langle z\rangle$) since $\left(h^{i} k\right)^{p}=k^{p} l^{\prime}$ for some $l^{\prime} \in\langle z\rangle$. This means that $\Phi(G)\left\langle h^{i} k\right\rangle=\left\langle v, h^{i} k\right\rangle$ and so all these p maximal subgroups of G are minimal nonabelian. But then G is an A_{2}-group, a contradiction.

We have proved that $S \not \leq A=\mathrm{C}_{G}\left(G^{\prime}\right)$ and so $1 \neq[v, h] \in\langle z\rangle$. Since $G=\langle h, k\rangle$, we may set $[h, k]=v$ and $[v, k]=z$, where $v \in G^{\prime}-\mathrm{Z}(G)$ and $\langle z\rangle=G^{\prime} \cap \mathrm{Z}(G)$. Also, $[v, h]=z^{\rho}, h^{p}=z^{\sigma}$, and $k^{p^{n+1}}=z^{\tau}$, where ρ, σ, τ are integers $\bmod p$ with $\rho \not \equiv 0(\bmod p)$. Here $S=\langle v, h\rangle \cong \mathrm{S}\left(p^{3}\right)$ or $\mathrm{M}_{p^{3}}, S$ is normal in $G, G=S\langle k\rangle$ with $\langle k\rangle \cap S \leq\langle z\rangle$ and $M=S \mathrm{Z}(G)=S\left\langle k^{p}\right\rangle$ with $\mathrm{d}(M)=3$.

It remains to examine all p maximal subgroups $\Phi(G)\left\langle h^{i} k\right\rangle(i=0,1, \ldots, p-$ 1) of G which are distinct from $M=\Phi(G)\langle h\rangle=S\left\langle k^{p}\right\rangle$. We compute $\left[v, h^{i} k\right]=[v, k][v, h]^{i}=z z^{\rho i}=z^{\rho i+1}$, where the congruence $\rho i+1 \equiv 0(\bmod$ p) has exactly one solution i^{\prime} for $i($ noting that $\rho \not \equiv 0(\bmod p))$. Hence $A=\Phi(G)\left\langle h^{i^{\prime}} k\right\rangle$ is an abelian maximal subgroup of G and for all other $i \not \equiv i^{\prime}$ $(\bmod p)$, we see that $\left\langle v, h^{i} k\right\rangle$ is minimal nonabelian and moreover,

$$
\Phi\left(\left\langle v, h^{i} k\right\rangle\right)=\left\langle v^{p}=1,\left(h^{i} k\right)^{p}=h^{i p} k^{p} l,\left[v, h^{i} k\right]=z^{\rho i+1} \neq 1\right\rangle
$$

for some $l \in\langle z\rangle$. Hence $\Phi\left(\left\langle v, a^{i} k\right\rangle\right)=\left\langle k^{p}, z\right\rangle=\mathrm{Z}(G)$ and so $\Phi(G)\left\langle h^{i} k\right\rangle=$ $\left\langle v, h^{i} k\right\rangle$ is a minimal nonabelian maximal subgroup of G. Our theorem is proved.

ThEOREM 9. Let G be a two-generator p-group, $p>2$, with exactly one maximal subgroup H which is neither abelian nor minimal nonabelian. If G has no abelian maximal subgroup, then $\Gamma_{1}=\left\{H, H_{1}, \ldots, H_{p}\right\}$, where $H_{i} \quad(i=$ $1, \ldots, p)$ are non-metacyclic minimal nonabelian, $G^{\prime} \cong \mathrm{E}_{p^{3}}, W=\left[G, G^{\prime}\right] \cong$ $\mathrm{E}_{p^{2}}, W \leq \mathrm{Z}(G)$ (and so G is of class 3) and $\mathrm{C}_{G}\left(G^{\prime}\right)=\Phi(G)$ is abelian.

Moreover, $\left\{H^{\prime}, H_{1}^{\prime}, \ldots, H_{p}^{\prime}\right\}$ is the set of $p+1$ subgroups of order p in W and the following holds.
(a) If $|G| \geq p^{6}$, then we have:

$$
\begin{gathered}
G=\langle h, x| h^{p^{m+1}}=1,[h, x]=v, h^{p^{m}}=u,[v, h]=z,[v, x]=u^{\alpha}, \\
\left.v^{p}=z^{p}=[u, x]=[z, h]=[z, x]=1, x^{p} \in\langle u, z\rangle\right\rangle,
\end{gathered}
$$

where $m \geq 2$ and α is an integer $\bmod p$ with $\alpha \not \equiv 0(\bmod p)$. Here $|G|=p^{m+4}, G^{\prime}=\langle u, z, v\rangle \cong \mathrm{E}_{p^{3}}, W=\left[G, G^{\prime}\right]=\langle u, z\rangle \leq \mathrm{Z}(G)$, $\mathrm{Z}(G)=\left\langle h^{p}\right\rangle \times\langle z\rangle \cong \mathrm{C}_{p^{m}} \times \mathrm{C}_{p}, \Phi(G)=\mathrm{Z}(G) \times\langle v\rangle$. Finally, $H=$ $\Phi(G)\langle x\rangle$, where in case $x^{p} \in W-\langle u\rangle$ we have $\mathrm{d}(H)=3$ and in case $x^{p} \in\langle u\rangle$ we have $\mathrm{d}(H)=4$ and $H_{i}=\left\langle v, x^{i} h\right\rangle(i=1, \ldots, p)$ is the set of p non-metacyclic minimal nonabelian maximal subgroups of G.
(b) If $|G|=p^{5}$, then:

$$
\begin{gathered}
G=\langle h, x| h^{p^{2}}=1,[h, x]=v, h^{p}=u^{\alpha},[v, h]=z,[v, x]=u, \\
\left.v^{p}=z^{p}=[u, x]=[z, h]=[z, x]=1, h^{p}=u^{\beta} z^{\gamma}\right\rangle,
\end{gathered}
$$

where α, β, γ are integers $\bmod p$ with $\beta \not \equiv 0(\bmod p)$. We have $\Phi(G)=$ $G^{\prime}=\langle u, z, v\rangle \cong \mathrm{E}_{p^{3}}$ and $W=\left[G, G^{\prime}\right]=\langle u, z\rangle=\mathrm{Z}(G) \cong \mathrm{E}_{p^{2}}$.

If $p \geq 5$, then $\gamma \equiv \alpha(\bmod p)$. In that case $\alpha \equiv 0(\bmod p)$ implies $\mho_{1}(G)=\langle u\rangle$ and $\Omega_{1}(G)=H \cong \mathrm{~S}\left(p^{3}\right) \times \mathrm{C}_{p}$ and $\alpha \not \equiv 0(\bmod p)$ implies $\mho_{1}(G)=W, \Omega_{1}(G)=G^{\prime}$ and $H \cong \mathrm{M}_{p^{3}} \times \mathrm{C}_{p}$. Also, all p maximal subgroups $H_{i}=G^{\prime}\left\langle x^{i} h\right\rangle(i$ integer $\bmod p)$ are non-metacyclic minimal nonabelian.

If $p=3$, then either $\beta=1$ and $\gamma \not \equiv \alpha(\bmod 3)$ or $\beta=-1$ and $\gamma \equiv \alpha(\bmod 3)$. In that case $H=G^{\prime}\langle x\rangle \cong \mathrm{S}(27) \times \mathrm{C}_{3}$ or $H \cong \mathrm{M}_{27} \times \mathrm{C}_{3}$ and all 3 maximal subgroups $H_{i}=G^{\prime}\left\langle x^{i} h\right\rangle$ (i integer mod 3) are nonmetacyclic minimal nonabelian.

Proof. We set $\Gamma_{1}=\left\{H, H_{1}, \ldots, H_{p}\right\}$, where $H_{i}(i=1, \ldots, p)$ are minimal nonabelian. Since H is neither abelian nor minimal nonabelian, $|H| \geq p^{4}$ and so $|G| \geq p^{5}$.

First suppose that two distinct minimal nonabelian maximal subgroups of G have the same commutator subgroup, say, $H_{1}^{\prime}=H_{2}^{\prime}$. Then considering G / H_{1}^{\prime} (see Exercise 1.6(a)), we see that all maximal subgroups of G / H_{1}^{\prime} are abelian and so we get $H^{\prime}=H_{1}^{\prime}=\ldots=H_{p}^{\prime}=\langle z\rangle \cong \mathrm{C}_{p}$. By a result of A. Mann (see Exercise 1.69(a) in [1]), $\left|G^{\prime}:\left(H_{1}^{\prime} H_{2}^{\prime}\right)\right|=\left|G^{\prime}: H_{1}^{\prime}\right| \leq p$ and so $\left|G^{\prime}\right| \leq p^{2}$. But if $\left|G^{\prime}\right|=p$, then this fact together with $\mathrm{d}(G)=2$ implies (see Exercise P9 in [1]) that G is minimal nonabelian, a contradiction. Hence $\left|G^{\prime}\right|=p^{2}$. Also, $\mathrm{d}(H) \geq 3$ and so H is non-metacyclic. Indeed, if $\mathrm{d}(H)=2$, then (noting that $\left.\left|H^{\prime}\right|=p\right) H$ would be minimal nonabelian, a contradiction.

Suppose for a moment that $G^{\prime}=\langle v\rangle \cong \mathrm{C}_{p^{2}}$ is cyclic. Then $H_{1}^{\prime}=\ldots=$ $H_{p}^{\prime}=\left\langle v^{2}\right\rangle$ and $G^{\prime}=\langle v\rangle \leq H_{i}$ so that H_{i}^{\prime} is not a maximal cyclic subgroup in H_{i} and therefore H_{i} is metacyclic for all $i=1, \ldots, p$. By a result of Y.

Berkovich (see A.40.12 in [3]), G is an L_{3}-group. But in that case, G^{\prime} is of exponent p, a contradiction. We have proved that $G^{\prime} \cong \mathrm{E}_{p^{2}}$.

We have that $\Phi(G)=H_{1} \cap H_{2}$ is a maximal normal abelian subgroup of G. Taking $h_{1} \in H_{1}-\Phi(G)$ and $h_{2} \in H_{2}-\Phi(G)$, we have $\left\langle h_{1}, h_{2}\right\rangle=G$ and so $s=\left[h_{1}, h_{2}\right] \in G^{\prime}-\langle z\rangle$ and $s \notin \mathrm{Z}(G)$. Indeed, if $s \in \mathrm{Z}(G)$, then $G /\langle s\rangle$ would be abelian, a contradiction. In particular, $\left[G, G^{\prime}\right]=\langle z\rangle=H_{1}^{\prime}$ and so G is of class 3 . Since $s \notin \mathrm{Z}(G)$, we have $s \notin \mathrm{Z}\left(H_{1}\right)$ or $s \notin \mathrm{Z}\left(H_{2}\right)$ and we may assume without loss of generality that $s \notin \mathrm{Z}\left(H_{1}\right)$. Suppose that there is an element $x \in H_{1}-\Phi(G)$ such that $x^{p} \in\langle z\rangle$. Then $G^{\prime}\langle x\rangle$ is minimal nonabelian of order p^{3} and so $G^{\prime}\langle x\rangle=H_{1}$, contrary to $|G| \geq p^{5}$. Assume that $\langle z\rangle=H_{1}^{\prime}$ is not a maximal cyclic subgroup in H_{1}. Then there is $v \in \Phi(G)$ such that $v^{2}=z$. This implies that all $H_{i}, i=1, \ldots, p$, are metacyclic. Again by a result of Y. Berkovich (A.40.12 in [3]), G is an L_{3}-group. This means that $U=\Omega_{1}(G)$ is of order p^{3} and exponent p and G / U is cyclic of order $\geq p^{2}$. We have $G^{\prime} \leq U$ and so if U is nonabelian, then $\mathrm{C}_{G}\left(G^{\prime}\right)$ covers G / U and $\mathrm{C}_{G}\left(G^{\prime}\right)$ is an abelian maximal subgroup of G, a contradiction. If U is elementary abelian, then $\left|G: \mathrm{C}_{G}(U)\right|=p$ since a Sylow p-subgroup of $\mathrm{GL}_{3}(p)$ is isomorphic to $\mathrm{S}\left(p^{3}\right)$ and so is of exponent p. But in that case $\mathrm{C}_{G}(U)$ is an abelian maximal subgroup of G, a contradiction. Hence $\langle z\rangle=H_{1}^{\prime}$ is a maximal cyclic subgroup in H_{1} which implies that H_{1} is non-metacyclic. Noting that $\left|H_{1}\right| \geq p^{4}$, we get $E=\Omega_{1}\left(H_{1}\right)=\Omega_{1}(\Phi(G)) \cong \mathrm{E}_{p^{3}}$ which also implies that all H_{i} are non-metacyclic.

By the previous paragraph, $\Omega_{1}\left(\left\langle h_{1}\right\rangle\right)=\langle u\rangle \leq E$ and $u \in E-G^{\prime}$. We have $H_{1}=E\left\langle h_{1}\right\rangle$ and so H_{1} is a splitting extension of G^{\prime} by $\left\langle h_{1}\right\rangle$, where $\mathrm{o}\left(h_{1}\right)=p^{n}, n \geq 2$. Since G / G^{\prime} is abelian of rank 2 , we get $G=H_{1} F$ with $H_{1} \cap F=G^{\prime}$ and $\left|F: G^{\prime}\right|=p$. We have $G / F \cong H_{1} / G^{\prime} \cong \mathrm{C}_{p^{n}}$. If F is nonabelian, then $\mathrm{C}_{G}\left(G^{\prime}\right)$ covers G / F and so $\mathrm{C}_{G}\left(G^{\prime}\right)$ is an abelian maximal subgroup of G, a contradiction. Hence F is abelian. Assume that $\mho_{1}(F) \not \subset$ $\langle z\rangle$. Then $\left|\mho_{1}(F)\right|=p$ and $G^{\prime}=\langle z\rangle \times \mho_{1}(F) \leq \mathrm{Z}(G)$, a contradiction. Hence $\mho_{1}(F) \leq\langle z\rangle$ and so for an element $x \in F-G^{\prime}$ we have $x^{p} \in\langle z\rangle$.

Since $G=\left\langle h_{1}, x\right\rangle$, we may set $\left[x, h_{1}\right]=s \in G^{\prime}-\langle z\rangle$ and $\left[s, h_{1}\right]=z$, where $H_{1}^{\prime}=\langle z\rangle \leq \mathrm{Z}(G)$. Then $x^{h_{1}}=x s, s^{h_{1}}=s z$ and $s^{h_{1}^{i}}=s z^{i}$ for all $i \geq 1$. We get $x^{h_{1}^{2}}=(x s)^{h_{1}}=(x s)(s z)=x s^{2} z$ and claim that we have $x^{h_{1}^{i}}=x s^{i} z^{\binom{i}{2}}$ for all $i \geq 2$. Indeed, by induction on i,

$$
x^{h_{1}^{i+1}}=\left(x^{h_{1}}\right)^{h_{1}^{i}}=(x s)^{h_{1}^{i}}=\left(x s^{i} z^{\binom{i}{2}}\right)\left(s z^{i}\right)=x s^{i+1} z^{\binom{i}{2}+i}=x s^{i+1} z^{\binom{i+1}{2}} .
$$

Our formula gives $x^{h_{1}^{p}}=x s^{p} z^{\binom{p}{2}}=x$ and so $F\left\langle h_{1}^{p}\right\rangle$ is an abelian maximal subgroup of G, a contradiction.

We have proved that $H_{1}^{\prime}=\left\langle z_{1}\right\rangle, H_{2}^{\prime}=\left\langle z_{2}\right\rangle, \ldots, H_{p}^{\prime}=\left\langle z_{p}\right\rangle$ are pairwise distinct subgroups of order p in $G^{\prime} \cap \mathrm{Z}(G)$. By a result of A. Mann (Exercise $1.69(\mathrm{a})$ in $[1]),\left|G^{\prime}:\left(H_{1}^{\prime} H_{2}^{\prime}\right)\right| \leq p$ and so $\left|G^{\prime}\right| \leq p^{3}$. Set $W=\left\langle z_{1}, \ldots, z_{p}\right\rangle$ so that W is an elementary abelian subgroup of order $\geq p^{2}$ contained in $G^{\prime} \cap \mathrm{Z}(G)$
which implies that G^{\prime} is abelian of exponent $\leq p^{2}$. We have $G=\langle x, y\rangle$ for some $x, y \in G$. If $[x, y] \in \mathrm{Z}(G)$, then $G /\langle[x, y]\rangle$ is abelian which implies that $G^{\prime}=\langle[x, y]\rangle$ is cyclic, contrary to the fact that $W \leq G^{\prime}$. Thus $[x, y] \in G^{\prime}-W$ which gives $\left|G^{\prime}\right|=p^{3}, W \cong \mathrm{E}_{p^{2}},\{1\} \neq\left[G, G^{\prime}\right] \leq W \leq \mathrm{Z}(G)$ and so G is of class 3. Let $\left\langle z_{p+1}\right\rangle$ be the subgroup of order p in W such that $\left\langle z_{p+1}\right\rangle \neq\left\langle z_{i}\right\rangle$ for all $i=1, \ldots, p$.

For any fixed $i \in\{1, \ldots, p\}$ we consider $G /\left\langle z_{i}\right\rangle$, where $H_{i} /\left\langle z_{i}\right\rangle$ is abelian (and two-generated) and $H_{j} /\left\langle z_{i}\right\rangle$ is minimal nonabelian for all $j \neq i, j \in$ $\{1, \ldots, p\}$. This implies that $H /\left\langle z_{i}\right\rangle$ must be nonabelian (Exercise 1.6(a) in [1]). If $G /\left\langle z_{i}\right\rangle$ is metacyclic, then a result of N. Blackburn (Theorem 36.1 in $[1])$ gives that G is also metacyclic, contrary to $\mathrm{E}_{p^{2}} \cong W \leq G^{\prime}$. Hence $G /\left\langle z_{i}\right\rangle$ is non-metacyclic. Suppose that $H /\left\langle z_{i}\right\rangle$ is minimal nonabelian. Then $G /\left\langle z_{i}\right\rangle$ is a non-metacyclic A_{2}-group. If $\left|G /\left\langle z_{i}\right\rangle\right|>p^{4}$, then Theorem 65.7(a) in [2] implies that $G^{\prime} /\left\langle z_{i}\right\rangle \cong \mathrm{E}_{p^{2}}$. Suppose that $\left|G /\left\langle z_{i}\right\rangle\right|=p^{4}$ and $G^{\prime} /\left\langle z_{i}\right\rangle \cong \mathrm{C}_{p^{2}}$. In that case each maximal subgroup of $G /\left\langle z_{i}\right\rangle$ is metacyclic and so $G /\left\langle z_{i}\right\rangle$ is minimal non-metacyclic. By Theorem 69.1 in $[2], G /\left\langle z_{i}\right\rangle$ is a group of maximal class and order 3^{4}. But in that case $G^{\prime} /\left\langle z_{i}\right\rangle$ cannot be cyclic (see Exercise 9.1 (c)in [1]). We have proved that in any case $G^{\prime} /\left\langle z_{i}\right\rangle \cong \mathrm{E}_{p^{2}}$. Assume now that $H /\left\langle z_{i}\right\rangle$ is not minimal nonabelian and we know already that $H /\left\langle z_{i}\right\rangle$ is nonabelian. By Theorem 8, we have again $G^{\prime} /\left\langle z_{i}\right\rangle \cong \mathrm{E}_{p^{2}}$. As a consequence we get $[x, y]^{p} \in\left\langle z_{i}\right\rangle$ for each $i=1, \ldots, p$ which implies $[x, y]^{p}=1$ and so $G^{\prime} \cong \mathrm{E}_{p^{3}}$ is elementary abelian.

By Lemma $36.5(\mathrm{~b})$ in $[1], G^{\prime} /\left[G, G^{\prime}\right]$ is cyclic and so $\left[G, G^{\prime}\right]=W$ (since $\left.\left[G, G^{\prime}\right] \leq W\right)$. Since $(G / W)^{\prime} \cong \mathrm{C}_{p}$ and $\mathrm{d}(G / W)=2, G / W$ is minimal nonabelian (Exercise P9 in [3]) and so H / W is abelian which implies $\{1\} \neq$ $H^{\prime} \leq W$. Suppose that $H^{\prime}=\left\langle z_{j}\right\rangle$ for some $j \in\{1, \ldots, p\}$. Then $G /\left\langle z_{j}\right\rangle$ is nonabelian with at least two distinct abelian maximal subgroups $H_{j} /\left\langle z_{j}\right\rangle$ and $H /\left\langle z_{j}\right\rangle$. But then $\left(G /\left\langle z_{j}\right\rangle\right)^{\prime} \cong \mathrm{C}_{p}$ (Exercise P1 in [3]), a contradiction. We have proved that $H^{\prime}=\left\langle z_{p+1}\right\rangle$ or $H^{\prime}=W$.

Suppose that $H^{\prime}=W \leq \mathrm{Z}(G)$. In that case $\mathrm{d}(H) \geq 3$. Indeed, if $\mathrm{d}(H)=2$, then H is a two-generator group of class 2 in which case H^{\prime} must be cyclic (Proposition 36.5(a) in [1]), a contradiction. Consider $G /\left\langle z_{p+1}\right\rangle$ with $\mathrm{d}\left(G /\left\langle z_{p+1}\right\rangle\right)=2$ and having minimal nonabelian maximal subgroups $H_{i} /\left\langle z_{p+1}\right\rangle$ for all $i=1, \ldots, p$. The remaining maximal subgroup $H /\left\langle z_{p+1}\right\rangle$ is neither abelian nor minimal nonabelian since $\mathrm{d}\left(H /\left\langle z_{p+1}\right\rangle\right) \geq 3$. But $\left(H_{i} /\left\langle z_{p+1}\right\rangle\right)^{\prime}=W /\left\langle z_{p+1}\right\rangle$ for all $i=1, \ldots, p$, contrary to the first part of this proof. Hence we must have $H^{\prime}=\left\langle z_{p+1}\right\rangle$.

We have proved that $H^{\prime}, H_{1}^{\prime}, \ldots, H_{p}^{\prime}$ are $p+1$ pairwise distinct subgroups of order p in W. Since H is not minimal nonabelian, we have $\mathrm{d}(H) \geq 3$ and so $|H| \geq p^{4}$ and $|G| \geq p^{5}$. Also, $\Omega_{1}\left(H_{i}\right)=G^{\prime} \leq \Phi(G)$ for all $i=$ $1, \ldots, p$, where $\Phi(G)$ is abelian. Therefore we have either $\mathrm{C}_{G}\left(G^{\prime}\right)=\Phi(G)$ or $\mathrm{C}_{G}\left(G^{\prime}\right)$ is a maximal subgroup of G. In any case there exist two minimal nonabelian maximal subgroups of G, say, H_{1} and H_{2}, such that $G^{\prime} \nsubseteq \mathrm{Z}\left(H_{1}\right)$
and $G^{\prime} \nsubseteq \mathrm{Z}\left(H_{2}\right)$. Then $H_{1} \cap H_{2}=\Phi(G)$ and taking some elements $h_{1} \in$ $H_{1}-\Phi(G)$ and $h_{2} \in H_{2}-\Phi(G)$, we have $\left\langle h_{1}, h_{2}\right\rangle=G$ and so $v=\left[h_{1}, h_{2}\right] \in$ $G^{\prime}-W$. Indeed, if $v \in W$, then $G /\langle v\rangle$ is abelian, a contradiction. We may set $\left[v, h_{1}\right]=z_{1}$ and $\left[v, h_{2}\right]=z_{2}$ so that $H_{1}^{\prime}=\left\langle z_{1}\right\rangle, H_{2}^{\prime}=\left\langle z_{2}\right\rangle$ and $W=\left\langle z_{1}\right\rangle \times\left\langle z_{2}\right\rangle$. All maximal subgroups of G are $H_{1}=\Phi(G)\left\langle h_{1}\right\rangle$ and $\Phi(G)\left\langle h_{1}^{i} h_{2}\right\rangle$, where i is any integer mod p. We compute:

$$
\left[v, h_{1}^{i} h_{2}\right]=\left[v, h_{2}\right]\left[v, h_{1}^{i}\right]^{h_{2}}=z_{2}\left(z_{1}^{i}\right)^{h_{2}}=z_{1}^{i} z_{2} \neq 1
$$

which shows that $\mathrm{C}_{G}(v)=\Phi(G)$ and so $\mathrm{C}_{G}\left(G^{\prime}\right)=\Phi(G)$. Since $\left\langle v, h_{1}\right\rangle$ (with $\left.\left[v, h_{1}\right]=z_{1}\right)$ is minimal nonabelian, we have $\left\langle v, h_{1}\right\rangle=H_{1}=G^{\prime}\left\langle h_{1}\right\rangle$. Hence $H_{1} / G^{\prime} \cong \mathrm{C}_{p^{m}}$ is cyclic of order $p^{m}, m \geq 1$, and $h_{1}^{p^{m}} \in W-\left\langle z_{1}\right\rangle$. The abelian group G / G^{\prime} is of rank 2 and so G / G^{\prime} is of type $\left(p^{m}, p\right)$ and $|G|=p^{m+4}$. Finally, $\Phi(G)=G^{\prime}\left\langle h_{1}^{p}\right\rangle=\left\langle h_{1}^{p}\right\rangle \times\langle v\rangle \times\left\langle z_{1}\right\rangle$ is of type $\left(p^{m}, p, p\right)$.
(i) First suppose that $m \geq 2$. Set $u=h_{1}^{p^{m}}$ so that $u \in W-H_{1}^{\prime}, o\left(h_{1}\right)=$ $p^{m+1} \geq p^{3}$ and $\Phi(G) / G^{\prime}$ is cyclic of order $p^{m-1} \geq p$ since $H_{1} / G^{\prime} \cong \mathrm{C}_{p^{m}}$. Consider any H_{i} for $2 \leq i \leq p$ so that $H_{i} \cap H_{1}=\Phi(G)$. Let $h_{i} \in H_{i}-\Phi(G)$ and $v \in G^{\prime}-W$ so that $1 \neq\left[h_{i}, v\right]=z_{i}$ and $H_{i}^{\prime}=\left\langle z_{i}\right\rangle$. Since $\left\langle h_{i}, v\right\rangle$ is minimal nonabelian, we have $\left\langle h_{i}, v\right\rangle=H_{i}=G^{\prime}\left\langle h_{i}\right\rangle$ and so H_{i} / G^{\prime} is also cyclic of order p^{m}. We have $h_{i}^{p} \in \Phi(G)-G^{\prime}$ and $\left\langle h_{i}^{p}\right\rangle$ covers $\Phi(G) / G^{\prime}$. It follows $h_{i}^{p}=h_{1}^{\delta p} k$ for some $k \in G^{\prime}$ and $\delta \not \equiv 0(\bmod p)$. Then $h_{i}^{p^{2}}=h_{1}^{\delta p^{2}}$ and so $\left\langle h_{i}^{p^{m}}\right\rangle=\langle u\rangle$, where $u=h_{1}^{p^{m}}$ and this implies that $u \in W-H_{i}^{\prime}$. We have proved that $u \notin H_{i}^{\prime}$ for all $i=1, \ldots, p$ which forces $\langle u\rangle=H^{\prime}$.

Since G / G^{\prime} is abelian of type $\left(p^{m}, p\right), m \geq 2$, we get $G=H_{1} F$ with $H_{1} \cap F=G^{\prime}$ and $\left|F: G^{\prime}\right|=p$. For the maximal subgroup $\Phi(G) F$ of G we have $(\Phi(G) F) / G^{\prime}=\left(\Phi(G) / G^{\prime}\right) \times\left(F / G^{\prime}\right) \cong \mathrm{C}_{p^{m-1}} \times \mathrm{C}_{p}$ and so $(\Phi(G) F) / G^{\prime}$ is not cyclic which implies that $\Phi(G) F=H$. Taking $h_{1}=h \in H_{1}-\Phi(G)$ and $x \in F-\Phi(G)$, we have $\mathrm{o}(x) \leq p^{2}, G=\langle h, x\rangle$ and so $v=[h, x] \in G^{\prime}-W$. We set again $u=h^{p^{m}}$ and we know that $H^{\prime}=\langle u\rangle$. Also set $[v, h]=z_{1}=z$, where $H_{1}^{\prime}=\langle z\rangle, W=\langle u\rangle \times\langle z\rangle, v^{h}=v z$ and $v^{h^{j}}=v z^{j}$ for $j \geq 1$. Since $\mathrm{C}_{G}\left(G^{\prime}\right)=\mathrm{C}_{G}(v)=\Phi(G)$, we have $x^{p} \in W=\langle u, z\rangle$ and $[v, x]=u^{\alpha}$ with $\alpha \not \equiv 0(\bmod p)$. We have obtained all relations stated in part (a) of our theorem. From $[h, x]=v$, we get $\left[h^{2}, x\right]=[h, x]^{h}[h, x]=v^{h} v=(v z) v=v^{2} z$. We prove by induction on $j \geq 2$ that $\left[h^{j}, x\right]=v^{j} z^{\binom{j}{2}}$. Indeed,

$$
\begin{aligned}
{\left[h^{j+1}, x\right]=\left[h h^{j}, x\right]=} & {[h, x]^{h^{j}}\left[h^{j}, x\right]=v^{h^{j}}\left(v^{j} z^{\binom{j}{2}}\right)=\left(v z^{j}\right)\left(v^{j} z^{\binom{j}{2}}\right)=} \\
& v^{j+1} z^{j+\binom{j}{2}}=v^{j+1} z^{\binom{j+1}{2}} .
\end{aligned}
$$

In particular, $\left[h^{p}, x\right]=v^{p} z^{\binom{p}{2}}=1$ and so $h^{p} \in \mathrm{Z}(G)$ since $G=\langle h, x\rangle$. We get $\mathrm{Z}(G)=\left\langle h^{p}\right\rangle \times\langle z\rangle \cong \mathrm{C}_{p^{m}} \times \mathrm{C}_{p}$ and $\Phi(G)=\mathrm{Z}(G) \times\langle v\rangle$. We have $H=F *\left\langle h^{p}\right\rangle$ with $F \cap\left\langle h^{p}\right\rangle=\langle u\rangle$. If $x^{p} \in W-\langle u\rangle$, then F is minimal nonabelian and so $\mathrm{d}(H)=3$. If $x^{p} \in\langle u\rangle$, then $F=\langle v, x\rangle \times\langle z\rangle$, where $\langle u\rangle=\mathrm{Z}(\langle v, x\rangle)$ and $\langle v, x\rangle \cong \mathrm{S}\left(p^{3}\right)$ or $\mathrm{M}_{p^{3}}$ and so $\mathrm{d}(H)=4$.

Finally, we have to check all p maximal subgroups $H_{i}=\Phi(G)\left\langle x^{i} h\right\rangle$ of G which are distinct from H and we have to show that they are minimal nonabelian. We have

$$
\left[v, x^{i} h\right]=[v, h]\left[v, x^{i}\right]^{h}=z\left(u^{\alpha i}\right)^{h}=z u^{\alpha i}
$$

where $\left\langle z u^{\alpha i}\right\rangle$ are pairwise distinct subgroups of order p in W for $i=1, \ldots, p$ since $\alpha \not \equiv 0(\bmod p)$. Hence $\left\langle v, x^{i} h\right\rangle$ is minimal nonabelian with $\left\langle v, x^{i} h\right\rangle^{\prime}=$ $\left\langle z u^{\alpha i}\right\rangle \neq\langle u\rangle$. By Hall-Petrescu formula (Appendix 1 in [1]), we get for all $r, s \in G$,

$$
(r s)^{p^{m}}=r^{p^{m}} s^{p^{m}} c_{2}^{\left(p^{m}\right)} c_{3}^{\left(p_{3}^{m}\right)},
$$

where $c_{2} \in G^{\prime}$ and $c_{3} \in W=\left[G, G^{\prime}\right]$. But $m \geq 2$ and so $(r s)^{p^{m}}=r^{p^{m}} s^{p^{m}}$. We get $\left(x^{i} h\right)^{p^{m}}=\left(x^{i}\right)^{p^{m}} h^{p^{m}}=h^{p^{m}}=u$ and so $\mathrm{o}\left(x^{i} h\right)=p^{m+1}$ which together with $\left\langle v, x^{i} h\right\rangle=G^{\prime}\left\langle x^{i} h\right\rangle$ and $G^{\prime} \cap\left\langle x^{i} h\right\rangle=\langle u\rangle$ implies that $\left|\left\langle v, x^{i} h\right\rangle\right|=p^{m+3}$. But $|G|=p^{m+4}$ and so $\left\langle v, x^{i} h\right\rangle=H_{i}$ is minimal nonabelian and we are done.
(ii) Suppose that $m=1$ which implies $|G|=p^{5}$ and $G^{\prime}=\Phi(G)$ with $\mathrm{C}_{G}\left(G^{\prime}\right)=G^{\prime}$. We have $H_{1} \cap H=G^{\prime}$ and since $\Omega_{1}\left(H_{1}\right)=G^{\prime}$, we get for an element $h \in H_{1}-G^{\prime}, 1 \neq h^{p} \in W=\left[G, G^{\prime}\right]=\mathrm{Z}(G) \cong \mathrm{E}_{p^{2}}$. Also we have $\mho_{1}(G) \leq W$. Take an element $x \in H-G^{\prime}$ so that $x^{p} \in W, G=\langle h, x\rangle$ and $v=[h, x]=G^{\prime}-W$. Set $[v, x]=u$ so that $1 \neq u \in W$ and $\langle u\rangle=H^{\prime}$. Then $[v, h]=z \notin\langle u\rangle$ and so $H_{1}^{\prime}=\langle z\rangle$ and $W=\langle u\rangle \times\langle z\rangle$. Since $\langle v, x\rangle$ is minimal nonabelian, we have $\langle v, x\rangle \neq H$ which implies $x^{p}=u^{\alpha}$ (for some integer $\alpha \bmod p$) and $H=\langle v, x\rangle \times\langle z\rangle$, where $\langle v, x\rangle \cong \mathrm{S}\left(p^{3}\right)$ or $\mathrm{M}_{p^{3}}$. Since H_{1} is non-metacyclic minimal nonabelian, $\langle z\rangle$ is a maximal cyclic subgroup in H_{1} which implies $h^{p}=u^{\beta} z^{\gamma}$ with $\beta \not \equiv 0(\bmod p)$. All p maximal subgroups $H_{i}=G^{\prime}\left\langle x^{i} h\right\rangle(i$ is any integer $\bmod p)$ of G which are distinct from H must be minimal nonabelian. Since $\left[v, x^{i} h\right]=[v, h]\left[v, x^{i}\right]^{h}=z\left(u^{i}\right)^{h}=z u^{i} \neq 1$ and $\left\langle v, x^{i} h\right\rangle$ is minimal nonabelian with $\left\langle v, x^{i} h\right\rangle^{\prime}=\left\langle u^{i} z\right\rangle$ and so we must have $H_{i}=\left\langle v, x^{i} h\right\rangle$, we get $\left\langle\left(x^{i} h\right)^{p}\right\rangle \neq\left\langle u^{i} z\right\rangle$ or equivalently
(*)

$$
\left\langle\left(x^{i} h\right)^{p}, u^{i} z\right\rangle=\langle u, z\rangle
$$

for all integers $i \bmod p$.
(ii1) First we assume $p \geq 5$ in which case G is regular. By Hall-Petrescu formula (Appendix 1 in [1]), we have in our case for all $r, s \in G$,

$$
(r s)^{p}=r^{p} s^{p} c_{2}^{\binom{p}{2}} c_{3}^{\binom{p}{3}}
$$

where $c_{2} \in G^{\prime}$ and $c_{3} \in W=\left[G, G^{\prime}\right]$ and so $(r s)^{p}=r^{p} s^{p}$. Hence $\left(x^{i} h\right)^{p}=$ $x^{p i} h^{p}=u^{\alpha i}\left(u^{\beta} z^{\gamma}\right)=u^{\alpha i+\beta} z^{\gamma}$. Our condition (*) is equivalent with:

$$
\left|\begin{array}{cc}
\alpha i+\beta & \gamma \\
i & 1
\end{array}\right|=(\alpha-\gamma) i+\beta \not \equiv 0(\bmod p)
$$

for all integers $i \bmod p$, where we know that $\beta \not \equiv 0(\bmod)$. This is equivalent with $\alpha-\gamma \equiv 0(\bmod p)$ and so $\gamma \equiv \alpha(\bmod p)$. If $\alpha \equiv 0(\bmod p)$, then
$\mho_{1}(G)=\langle u\rangle$ and $\Omega_{1}(G)=H \cong \mathrm{~S}\left(p^{3}\right) \times \mathrm{C}_{p}$. If $\alpha \not \equiv 0(\bmod p)$, then $\mho_{1}(G)=$ W and $\Omega_{1}(G)=G^{\prime}$ so that $H \cong \mathrm{M}_{p^{3}} \times \mathrm{C}_{p}$.
(ii2) Finally, we suppose $p=3$. In that case the Hall-Petrescu formula gives for all $r, s \in G,(r s)^{3}=r^{3} s^{3} c_{3}$, where $c_{3} \in W$. This is not a sufficient information because we have to know exactly the element c_{3}. Using the usual commutator identities (see $\S 7, \mathrm{p} .98$) together with $x y=y x[x, y]$ we compute exactly $(r s)^{3}$. We get:

$$
\begin{aligned}
(r s)^{2} & =r(s r) s=r(r s[s, r]) s=r^{2} s(s[s, r][s, r, s])=r^{2} s^{2}[s, r][s, r, s] \\
(r s)^{3} & =r^{2} s^{2}[s, r][s, r, s] \cdot r s=r^{2} s^{2} \cdot r[s, r] s[s, r, r][s, r, s] \\
& =r^{2}\left(s^{2} r\right) s[s, r][s, r, s][s, r, r][s, r, s]
\end{aligned}
$$

But we have:

$$
\begin{aligned}
r^{2}\left(s^{2} r\right) s[s, r] & =r^{2}\left(r s^{2}\left[s^{2}, r\right]\right) s[s, r]=r^{3} s^{3}\left[s^{2}, r\right]\left[s^{2}, r, s\right][s, r] \\
& =r^{3} s^{3}[s, r][s, r]^{s}\left[s^{2}, r, s\right][s, r] \\
& =r^{3} s^{3}[s, r]([s, r][s, r, s])\left[s^{2}, r, s\right][s, r]=r^{3} s^{3}[s, r, s]\left[s^{2}, r, s\right]
\end{aligned}
$$

and so

$$
\begin{equation*}
(r s)^{3}=r^{3} s^{3}[s, r, s]\left[s^{2}, r, s\right][s, r, s][s, r, r][s, r, s]=r^{3} s^{3}\left[s^{2}, r, s\right][s, r, r] \tag{1}
\end{equation*}
$$

Also we get:

$$
\left[s^{2}, r\right]=[s, r]^{s}[s, r]=[s, r][s, r, s][s, r]=[s, r]^{2}[s, r, s]
$$

and so:

$$
\left[s^{2}, r, s\right]=\left[[s, r]^{2}[s, r, s], s\right]=\left[[s, r]^{2}, s\right]=[s, r, s]^{[s, r]}[s, r, s]=[s, r, s]^{2}
$$

and so we have by (1):

$$
(r s)^{3}=r^{3} s^{3}[s, r, s]^{2}[s, r, r]=r^{3} s^{3}[s, r, s]^{-1}[s, r, r]=r^{3} s^{3}[s,[s, r]][[s, r], r]
$$

and so we have obtained the formula:

$$
\begin{equation*}
(r s)^{3}=r^{3} s^{3}[s,[s, r]][[s, r], r] \tag{**}
\end{equation*}
$$

Since $\left\langle h^{p}, z\right\rangle=\left\langle u^{\beta} z^{\gamma}, z\right\rangle=\langle u, z\rangle($ noting that $\beta \not \equiv 0(\bmod 3))$, we have to use our condition ($*$) only for $i=1,2$. By $(* *),(x h)^{3}=$ $x^{3} h^{3}[h,[h, x]][[h, x], x]=u^{\alpha} u^{\beta} z^{\gamma}[h, v][v, x]=u^{\alpha+\beta+1} z^{\gamma-1}$, and so from $\left\langle u^{\alpha+\beta+1} z^{\gamma-1}, u z\right\rangle=\langle u, z\rangle$, we get

$$
\left|\begin{array}{cc}
\alpha+\beta+1 & \gamma-1 \tag{2}\\
1 & 1
\end{array}\right|=\alpha+\beta-\gamma-1 \not \equiv 0(\bmod 3)
$$

We compute $\left[h, x^{2}\right]=[h, x][h, x]^{x}=v v^{x}=v(v u)=v^{2} u$ and so by $(* *)$,

$$
\left(x^{2} h\right)^{3}=x^{6} h^{3}\left[h, v^{2} u\right]\left[v^{2} u, x^{2}\right]=u^{2 \alpha}\left(u^{\beta} z^{\gamma}\right) z^{-2} u=u^{-\alpha+\beta+1} z^{\gamma+1}
$$

From our condition $(*)$ for $i=2$, we get $\left\langle u^{-\alpha+\beta+1} z^{\gamma}+1, u^{2} z\right\rangle=\langle u, z\rangle$, or equivalently:

$$
\left|\begin{array}{cc}
-\alpha+\beta+1 & \gamma+1 \tag{3}\\
-1 & 1
\end{array}\right|=-\alpha+\beta+\gamma-1 \not \equiv 0(\bmod 3) .
$$

Now, (2) and (3) hold if and only if:

$$
(\alpha+\beta-\gamma-1)(-\alpha+\beta+\gamma-1) \not \equiv 0(\bmod 3)
$$

This is equivalent with:

$$
\begin{gathered}
((\beta-1)+(\alpha-\gamma))((\beta-1)-(\alpha-\gamma)) \not \equiv 0(\bmod 3) \text { or } \\
(\beta-1)^{2}-(\alpha-\gamma)^{2} \not \equiv 0(\bmod 3) .
\end{gathered}
$$

Hence if $\beta=1$, then $\gamma \not \equiv \alpha(\bmod 3)$ and if $\beta=-1$, then $\gamma \equiv \alpha(\bmod 3)$.
We have obtained the groups stated in part (b) of our theorem which is now completely proved.

References

[1] Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin, 2008.
[2] Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 2, Walter de Gruyter, Berlin, 2008.
[3] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 3, Walter de Gruyter, Berlin-New York, to appear 2011.
[4] Z. Božikov and Z. Janko, Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian, Glas. Mat. Ser. III 45(65) (2010), 63-83.
Z. Janko

Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 26.1.2010.

[^0]: 2010 Mathematics Subject Classification. 20D15.
 Key words and phrases. Minimal nonabelian p-groups, A_{2}-groups, metacyclic pgroups, Frattini subgroups, Hall-Petrescu formula, generators and relations.

