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VECTOR-VALUED INEQUALITIES ON HERZ SPACES AND
CHARACTERIZATIONS OF HERZ-SOBOLEV SPACES
WITH VARIABLE EXPONENT

MiTsuo 1zUKI
Hokkaido University, Japan

ABSTRACT. Our first aim in this paper is to prove the vector-valued
inequalities for some sublinear operators on Herz spaces with variable ex-
ponent. As an application, we obtain some equivalent norms and wavelet
characterization of Herz—Sobolev spaces with variable exponent.

1. INTRODUCTION

The origin of Herz spaces is the study of characterization of functions
and multipliers on the classical Hardy spaces ([1,8]). By virtue of many
authors’ works Herz spaces have became one of the remarkable classes of
function spaces in harmonic analysis now. One of the important problems
on the spaces is boundedness of sublinear operators satisfying proper condi-
tions. Herndndez, Li, Lu and Yang ([7,17,19]) have proved that if a sublinear
operator T is bounded on LP(R"™) and satisfies the size condition

5@ <C [ o= a0l dy

for all f € L'(R™) with compact support and a.e. x ¢ supp f, then T is
bounded on both of the homogeneous Herz space K;‘”(R") and the non-
homogeneous Herz space Kg’q(R”). This result is extended to the weighted
case by Lu, Yabuta and Yang ([18]), and to the vector-valued case by Tang
and Yang ([25]). As an application of [18], noting that the Hardy-Littlewood
maximal operator M is a sublinear operator satisfying the assumption above,
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Nakai, Tomita and Yabuta ([22]) have proved the density of the set of all infin-
itely differentiable functions with compact support in weighted Herz spaces.
On the other hand, Lu and Yang ([20]) have initially introduced Herz-type
Sobolev spaces and Bessel potential spaces, and proved the equivalence of
them using boundedness of sublinear operators on Herz spaces. Later Xu and
Yang ([27,28]) generalize the result on Herz-type Sobolev spaces to the case
of Herz-type Triebel-Lizorkin spaces.

Many results on wavelet characterization of various function spaces in-
cluding Herz spaces are well-known now (cf. [5,6,9,10,12,14,21]). The
first wavelet characterization of Herz spaces is proved by Hernandez, Weiss
and Yang ([6]). The author and Tachizawa ([12]) have obtained the char-
acterizations of weighted Herz spaces applying the boundedness of sublinear
operators ([18]). Recently the author ([9]) and Kopaliani ([14]) have inde-
pendently proved wavelet characterization of Lebesgue spaces with variable
exponent LP(*) (R™) by virtue of the extrapolation theorem due to Cruz-Uribe,
Fiorenza, Martell and Pérez ([2]). Herz spaces with variable exponent are ini-
tially defined by the author in the paper [10] where he uses the Haar functions
to obtain wavelet characterization of those spaces by virtue of the result on
LPC)(R™) ([9,14]). He also gives wavelet characterization of non-homogeneous
Herz—Sobolev spaces with variable exponent in terms of wavelets with proper
smoothness and compact support ([11]). But the homogeneous case is not
considered in [10,11] where he follows an argument applicable only to the
non-homogeneous case using local properties of wavelets.

In the present paper we will prove the vector-valued inequalities for

sublinear operators on Herz spaces with variable exponent K;(’?) (R™) and

K;‘(’?) (R™). Additionally we apply the result to obtain Littlewood-Paley type
and wavelet characterization of Herz—Sobolev spaces with variable exponent
K;‘(’?)W‘S(R”) and K 'Y,W*(R"). We note that our method is applicable to
both the homogeneous and the non-homogeneous cases.

Let us explain the outline of this article. We first define function spaces
with variable exponent in Section 2. We will state properties of variable expo-
nent in Section 3. In Section 4 we prove the vector-valued inequalities for sub-

a,q

linear operators on Kp( )(R”) and Kg("_l)(R”). Applying the results, we give
Littlewood-Paley-type characterization of I.(;‘(’?)WS(R”) and K&’?)Ws (R™)
in Section 5. We additionally prove wavelet characterization of them in terms
of the Meyer scaling function and the Meyer wavelets in Section 6.
Throughout this paper |S| denotes the Lebesgue measure and xg means
the characteristic function for a measurable set S C R™. The set of all non-
negative integers is denoted by Ng. A symbol C always means a positive
constant independent of the main parameters and may change from one oc-
currence to another. The Fourier transform of a function f on R™ is denoted
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by
FrE) = f(&) = (@2m) " (z)e™ ¢ da.

Rn
2. DEFINITION OF FUNCTION SPACES WITH VARIABLE EXPONENT

In this section we define some function spaces with variable exponent.
Let E be a measurable set in R"” with |E| > 0.

DEFINITION 2.1. Let p(-): E — [1,00) be a measurable function.
1. The Lebesgue space with variable exponent L”(')(E) is defined by

LPC)(E) := {f is measurable : p,(f/)\) < oo for some constant A > 0},
where py(f) = [ |f(2)P® da.
2. The space Lfo(c')(E) is defined by
L‘fo(c')(E) = {f . f e LPU)(K) for all compact subsets K C E}
The Lebesgue space LP(")(E) is a Banach space with the norm defined
by
||f||Lp(A)(E) =inf {A > 0:pp(f/A) <1}.

Now we define two classes of exponent functions. Given a function f €
(E), the Hardy—Littlewood maximal operator M is defined by

Mf(z) == supr™ /B LMl @en),

LilOC
>0
where B(z,r) := {y € R" : | —y| < r}. We also use the following notation.
p_:=essinf{p(z) :x € E}, py :=esssup{p(z):z € E}.

DEFINITION 2.2.

(2.1) PE) = {p(-):E—[l,00) : p— >1and p; < c0}.

(2.2) B(E) := {p() € P(E) : M is bounded on Lp(')(E)}.
Later we will state some properties of variable exponent.

Now we define Herz and Herz—Sobolev spaces with variable exponent. We
use the following notation in order to define them. Let | € Z.

(2.3) B ={zeR" : || <2'}.

(2.4) R;:= B\ Bi_1.

(2.5) Xl = XR; -

(2.6) Xi:=Xxr, if I >1and X0 := xB,-

We first define Herz spaces with variable exponent by analogy with the
definition of the usual Herz spaces (cf. [6,7,17,19]).
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DEFINITION 2.3. Let « € R, 0 < ¢ < oo and p(-) € P(R").

1. The homogeneous Herz space Ka(’q)(R”) is defined by

Kty () = {1 € B @A) ¢ iy sy < 0}
where
al o0
1Fllims ey o= H{2 1 %o}
! =—llea(z)
1/q
= (ZQO‘lqllezllm <> .
l=—00

2. The non-homogeneous Herz space KZ‘(’?) (R™) is defined by

Ky ) i= {1 € LI @) 5 1 flxeq oy < o0}
where

Wiy = {2217 ol o o)

=0

£4(No)

1/q
(Z 2% |1 £ Xy ) .

The Herz spaces KS’?) (R™) and K;‘(q) (R™) are quasi-norm spaces with
Il - ||K§(,7)(Rn) and || - ||K§(,7)(Rn) respectively.
Next we define Herz—Sobolev spaces with variable exponent.

DEFINITION 2.4. Let « € R, 0 < ¢ < 00, p(-) € P(R"™) and s € Np.
1. The homogeneous Herz—Sobolev space Ka’q W#(R™) is the space of all

functions f € Ka(’q)(R") satisfying weak derwatwes D'fe Ka(’q)(R")
for all v € No™ with |y] < s.

2. The non-homogeneous Herz-Sobolev space K;(’?)WS(R”) is the space
of all functions f € K&’?)(R”) satisfying weak derivatives DVf €

Ko (R™) for all v € No™ with [y] < s.

The Herz-Sobolev spaces for constant p are initially defined by Lu and
Yang ([20]). Both of K;‘(’fl)WS(R”) and Ks("_])WS(R”) are also quasi-norm
spaces with

||f||1‘<§(?)w‘s(w) =) ||D7f||k§(?)(w) ;
[vI<s
a,q N = R «
1 |z wea ey zl: |D fHKp(’?)(]R”)
vI<s

respectively.
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3. PROPERTIES OF VARIABLE EXPONENT

Cruz-Uribe, Fiorenza and Neugebauer ([3]) and Nekvinda ([23]) proved
the following sufficient conditions independently. We remark that Nekvinda
([23]) gave a more general condition in place of (3.2).

PROPOSITION 3.1. Suppose that E is an open set. If p(-) € P(E) satisfies

B ) —pw)| € e i eyl <12
62 ) —pW| < e i >l

where C > 0 is a constant independent of x and y, then we have p(-) € B(E).

Below p’(-) means the conjugate exponent of p(-), namely 1/p(x) +
1/p'(z) = 1 holds. Then Y denotes all families of disjoint and open cubes
in R™. The following propositions are due to Diening ([4, Theorem 8.1 and
Lemma 5.5]). We remark that Diening has proved general results on Musielak—
Orlicz spaces. We describe them for Lebesgue spaces with variable exponent.

PROPOSITION 3.2. Suppose p(-) € P(R™). Then the following conditions
are equivalent.

(I) There exists a constant C' > 0 such that for all’ Y € Y and all f €
LP(')(R”),

(3.3) Z |flexa <O fllec)@ny-

QeY

(I) p(-) € B(R™).
am) () € BR).
(IV) There exists a constant po € (1,p_) such that py'p(-) € B(R™).

Lp(: )(]Rn)

PROPOSITION 3.3. Let p(-) € P(R™). If p(-) satisfies condition (I) in
Proposition 3.2, then there exist two positive constants 6 and C such that for
all Y € Y, all non-negative numbers tg and all f € L (R™) with fo =

loc
o fo f@)de #£0 QeY),

5
XQ <C | texe
Lp(')(]R”) QeY

(3.4) > tg ‘%

QeY LrC)(R™)

Propositions 3.2 and 3.3 lead the following corollary.

COROLLARY 3.4. Let p(-) € P(R™). If p(-) satisfies condition (I) in
Proposition 3.2, then there exists a positive constant C' such that for all balls
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B in R™ and all measurable subsets S C B,

(3.5) Ixalzoc)@ny o Bl
Ixsllprcr@ny  — S|

(3.6) Ixsll e ) < © (@)5
IxBllprcr@ny — |B|

where § is the constant appearing in (3.4).

PrOOF. Take a ball B and a measurable subset S C B arbitrarily. We
first show (3.5). By Proposition 3.2, p(-) belongs to B(R™). Thus M satisfies
the weak (p(-),p(-)) inequality, i.e., for all f € LPC)(R™) and all A > 0 we
have

Mixgas@ysa e @y < C e @ny-
If we take A € (0,|S|/|B|) arbitrarily, then we get

MixsllLec) @y < AMixgarxs)@>apllorcor @y < Cllxslizec) @nys
namely
HXBHLP(-)(]R”) <oa 'l
||XSHLp<«>(Rn)

Since A is arbitrary, we obtain (3.5). Next we prove (3.6). We can take a open
cube @Qp so that B C Qp C v/nB. Putting f = xg and Y = {Qp} in (3.4),

we get
)
XSl Loy gy SC'( |S] > .
||XQBHLP(‘)(]R") (93

By virtue of B C Qp C v/nB and (3.5), we see that

HXS”LP(‘)(]R") HXSHLP(‘)(]R") ||XQBHLP(‘)(]R")

||XBHLP(-)(RW) N ||XQBHLP(‘)(]R") HXBHLM-)(RW)

Ixsll Lo &) HX\/EBHLI»H(Rn)

||XQBHLP(')(]R”) HXBHLp(‘)(Rn)

(o) 57 = () <= () -

O

The next lemma describes the generalized Holder inequality and the du-
ality of LP(")(E). The proof is found in [15].

LEMMA 3.5. Suppose p(-) € P(E). Then the following hold.
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1. For all f € LPC)(E) and all g € LP' () (E) we have

(3.7) /E |f(@)g()| dz < rp ||f||Lv<->(E)H9||Lp/<»)(E)v

where rp =1+ 1/p_ —1/py.
2. For all f € L) (E) we have

(38)  Ifllcrm < sup{ /E F@)g(@)]d : gll gy < 1}.

In particular, L*C)(E) coincides with the dual space of LPC)(E) and the
norm || fll e (g is equivalent to the value

s { [ 1@ ol <1}

REMARK 3.6. Below we write u,(-) := r~1p(-) for positive constant
7> 0.
1. If p(-) € B(R™), then Corollary 3.4 implies that there exists a positive

constant d; such that for all balls B in R™ and all measurable subsets
S C B,

5
XS e (re S\
(3.9) XSl Loy @ny <C <u) '
IxBllLec ) @n) |B|
Thus we have that for all r > 0,

L .

X8| pur ) Ry _ Ixsoc) @n) < (@)7 "
— < :

IXBlperco@e  IIxallpm @n 1B

2. If p(-) € P(R™) satisfies (3.1) and (3.2) in Proposition 3.1, then
p'(+), ur(-) and ul(-) also belong to P(R™) and satisfy (3.1) and
(3.2) for all 0 < r < p_. Because they are in B(R"), we can take con-
stants d2, 6(r) > 0 such that for all balls B in R™ and all measurable
subsets S C B,

(3.10)

r(. n 2
(3.11) X5l Lorc) @n) < C <ﬁ) 7
Dol B
3(r)
XSl pur() pn
(3.12) H HL ( )(]R ) S C (ﬂ) .
”XBHL%(-)(RW,) |B|

3. If p(-) € B(R™), then Proposition 3.2 implies that p/(-), u,, € B(R™).
Thus (3.11) holds. In addition (3.10) and (3.12) are true with r = py.

Applying Lemma 3.5 we obtain the following.
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LEMMA 3.7. Let p(-) € P(R™). If p(-) satisfies condition (I) in Propo-
sition 3.2, then there exists a constant C > 0 such that for all balls B in
R”™,

1
@HXBHLM->(Rn)||XB||Lp'<->(Rn) <C

ProOOF. The assumption shows that

|||f|QXQ||Lp(«>(]Rn) <C|f XQHLP(‘)(]R”)

for all cube Q and all f € LP(-)(R™). Using (3.8) we obtain

1
@||XQHLP(‘>(]R") XQ||Lp’<»)(Rn)

1
@HXQ”LP(')(R")SUP{/R |f(@)xq@)dz : |fllrc)@ny < 1}
SuP{'ﬂQHXQ”LP(‘)(R") : Hf”LP(‘)(]R") < 1}
C sup {1/ X o s qamy * Ifllzocr @y <1} < C.

For each ball B we can take a cube Qg such that n=*/2Qp C B C Q5. Thus
we get

IN

1
EHXBHLP('>(R")||XB||LP’(->(R")

1
<C- mHXQBHLP(‘)(R") XQBHLP’(»)(]Rn) <C

4. VECTOR-VALUED INEQUALITIES FOR SUBLINEAR OPERATORS

In this section we prove the vector-valued inequalities for some sublinear
operators on Herz spaces with variable exponent under proper assumptions.

THEOREM 4.1. Let 1 < r < o0, p(-) € BR"), 0 < ¢ < 00 and —nd; <
a < ndy, where 01, 62 > 0 are the constants appearing in (3.9) and (3.11).
Suppose that T is a sublinear operator satisfying the vector-valued inequality

on LPC)(R™)
00 1/r 0 1/r
(4.1) <Z |T9h|r) <C (Z |gh|T>
h=1 h=1

for all sequences of functions {gn}7>, satisfying ||||{gn}n
and size condition

(12) 17 <C [ le=ul Wy

LP(‘)(]R") LP(‘)(]R")

o Lr()(R7) < o0,



HERZ-SOBOLEV SPACES WITH VARIABLE EXPONENT 483

for all f € L*(R™) with compact support and a.e. x ¢ supp f. Then we have
the vector-valued inequality on Kz‘(’?) (R™)

50 1/r 0o 1/r
(4.3) <Z |Tfh|7'> <C (Z |fh|7')
h=1 h=1

Kot @) Kot @)
for all sequences of functions {fn};>, satisfying |\H{fh}h||gr|\f(a(,q) < 00.
o

Moreover T also satisfies the same wvector-valued inequality as (4.3) on
K29 (R™).
p(-)

REMARK 4.2. 1. There do exist some operators satisfying vector-
valued inequality (4.1) provided p(-) € B(R™), for example, the
Hardy-Littlewood maximal operator and singular integral operators
(see [2]).

2. Theorem 4.1 is known when p(-) equals to a constant p € (1,00).
Hernéndez, Li, Lu and Yang ([7,17,19]) have proved (4.3) on the usual
Herz spaces provided —n/p < a < n/p'.

In order to prove Theorem 4.1, we additionally introduce the next lemma
which is well-known as the generalized Minkowski inequality.

LEMMA 4.3. If 1 < r < oo, then there exists a constant C' > 0 such that
for all sequences of functions { frn}72 satisfying ||[||[{fa}nller

(1.0 {fX/Jn@M@}UZg{@{fﬁn@rFﬁ@
h=1

h=1

L(R™) < 00,

PROOF OF THEOREM 4.1. Our method is based on [18, Proof of The-
orem 1] and [25]. We give the proof for the homogeneous case while the
non-homogeneous case is similar.

Because T is sublinear, we have that

KT fn}n

R '
= ¢ 29 T fidnler I e
j=—o00
N o q 1/q
< Z 2049 ||y ; Z I{T (frxi) Y uller ,
j=—o00 l=—0c0 LP(‘)(]R")
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for every {fn}pe, with ||||{fh}h|\gr||Ka(,q>(Rn) < 00. Thus we can decompose
o

as follows.
HHT bl e e
0o -2 q 1/q
< of 3% 2 (5 rgiaiel e )
Jj=—00 l=—o00
- e qy l/a
104 S0 20 (O3 TG ale o
j=—o00 1=j—1
oo oo ay Ve
+C 3 Y 22 [ GIHT axa) bller o my
j=—o0 1=j+2
=: FEi1+ Ey+ Ej5.
For convenience below we denote F := ||[{fp}n]|¢r. Since T satisfies (4.1), we

can easily obtain
By < C|IFllgoa gny -
We consider the estimates of Ey and FEs.

For each j € Z and I < j — 2 and a.e. z € Rj, size condition (4.2),
generalized Minkowski’s inequality (4.4) and generalized Holder’s inequality

(3.7) imply
HT )@l < cH{ / |xy|"|fh<y>|dy}
R, hllgr
< coin { / |fh<y>|dy}
Ry hlilgr
(4.5) < C27MIExull peco @myllxall porc ) ey

On the other hand, Proposition 3.2 and Lemma 3.7 lead

27In ||Xj||Lp<-)(Rn) ||Xl||Lp’(»)(1Rn)

< 27m ||XBJ||LP<»)(R7L) |XBL||L1"(')(]R”)
in —1
< C27/ {|Bj|HXBjHL;D’(')(]Rn)}||XBL||LP'(')(R")
(4.6) _ ol oo

x5, ||LP’<‘)(]R")



HERZ-SOBOLEV SPACES WITH VARIABLE EXPONENT 485

Applying (4.5) and (4.6) to Ey, we get

Ey

IN

o) . j—2
c{ 3 z( SR

Jj=—00 l=—00

X277 F Xl 1ot (rmy

qy 1/q
Xl|Lp'<»)(Rn)> }

o j—2 a) /4
(47 < C Z < Z 2al||FXl|Lp(»)(Rn)Qb(l_j)> ;
j=—00 \l=—o0
where b := nds — o > 0. Similarly we obtain
ay 14

oo oo

(48) E3 < C Z Z 2al|\FXlHLp<-)(Rn)Qd(j*l) ;
j=—o00 \I=j+2

where d := nd; + a > 0. To continue calculations for (4.7) and (4.8), we
consider the two cases “1 < ¢ < >” and “0 < g < 1”.
If 1 < g < oo, then we use Holder’s inequality and obtain

By

IN

{ Z ( Z 2aql||FXlHLp< ) &) qu(l—j)/2>
j=—00 \l=—o00
j—2 a/d N 1/q
% < Z qu/(l—j)/2> }
l=—o0

1/q
(oo}
Z Z QMZHFXZHLM ) (R™) 2tlt=D/

j=—0o0l=—00

C

{
Pl

S Z QQQZHFXIH%;)(«)(RH) Z gba(l—3)/2
l=—o0 j=l+2
I~ 1/q
aql
= C ZZ 274 ||FXl||%p(»>(Rn)}

I
Q
=
>
R
%
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If 0 < ¢ <1, then we get

1/q
B < C Z Z 22| F x|y oy 2707
j=—o00l=—00
o - 1/q
- C Z 2an||FXl||qu(->(Rn) Z 9bg(l—3)
l=—00 j=l+2
1/q
= { > 22 Fxall, e }
l=—0o0
= CIFlges @
Applying the same calculations to (4.8), we obtain
E‘ < C F L q ny .
5 < C I Fll o oy
We have finished the proof. O

Theorem 4.1 leads further results. The Hardy-Littlewood maximal op-
erator M satisfies the vector-valued inequality on LP(*)(R™) provided p(-) €
B(R™). The next proposition is [2, Corollary 2.1].

PROPOSITION 4.4. If p(-) € B(R™) and 1 < r < oo, then we have

0 1/r 00 1/r
(Z IMghI’“) (Z Ighl’”>
h=1 Lo (R h=1

for all sequences of functions {gn}yZy satisfying [[[{gn}nllerll poc)mny < oo

Lp(- ) (R™)

Because the Hardy—Littlewood maximal operator M is sublinear and sat-
isfies the size condition

Mf(z) < C/ [z =yl f(y)l dy,
]Rn
we immediately the following.

COROLLARY 4.5. Suppose that o, ¢ and p( - ) satisfy the same assumptions

as Theorem 4.1. Then we have
00 1/r
(Su)
h=1

00 1/r
(4.9) (Z |th|r)
h=1

for all sequences of functions {fn}5>, satisfying ||||{fn}n
In addition, M also satisfies the same vector-valued inequality as (4.9) on

a,q n
KL (RT).

o, q g
K2t (Bm) K20t (R

or I'(s(’fz)(R") < 00.
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In particular M becomes a bounded operator on Herz spaces with variable
exponent. Thus the same argument as [22] leads the density of the set of all
differentiable functions with compact support C°(R™).

THEOREM 4.6. Let s € Ny and suppose that «, q and p(-) satisfy the
same assumptions as Theorem 4.1. Then C°(R™) is dense in Kg(’f])Ws(R")
and in K ;% W*(R").

5. CHARACTERIZATIONS OF HERZ-SOBOLEV SPACES WITH VARIABLE
EXPONENT

In this section we will give some equivalent norms on Herz—Sobolev spaces
with variable exponent.

5.1. Characterizations of Herz spaces.

We first define a class of systems ®(R"™) and Herz-type Triebel-Lizorkin
spaces with variable exponent. Using them, we will characterize Herz spaces
with variable exponent.

DEFINITION 5.1. The set ®(R™) consists of all systems {p;}52, C S(R™)
satisfying the following conditions.
(i) supppo C {z € R™ : [z] < 2}. 4
(ii) suppy; C {z € R™ : 2971 <|z| < 29H1} if j € No.
(i) For everyy € No™ there exists a constant ¢y > 0 such that |D7p;(z)| <
2771 for all j € Ny and all z € R™.
(iv) Y72 wi(z) =1 on R™.
DEFINITION 5.2. Suppose s € Ny, 0 < g < o0, p(-) € P(R") and o € R.
Take o = {p;}52, € ®(R"™). Then define

K;(,q)Fs P(R™) = {f eS'(R") : ||f||kpa<,7)F;,¢(Rn) < oo},
K;é(q)Fa ‘P(R") = {f S Sl(R") . ||f||K§(’?)F25"”(R") < oo} ,
where
1/2
o0
R O > |iF \ :
§=0
Kot (R™)
1/2
>0 2
Hf”K" RSP Rr) T Z 281 F—1 ‘
§=0
K29 (Rm)

Now we give characterizations of Herz spaces with variable exponent.
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LEMMA 5.3. Let 1 < ¢ < o0, p(-) € BR") and a € R with |a] <
nmin{dy, d2}, where 61, 62 > 0 are the constants appearing in (3.9) and
(8.11). Then we have

o,q 0,0 mny _ 1-a,q n a,q 0,0 mny _ 7,9
KB P (RY) = K0 (R, K0 Ey P (RY) = K

with equivalent norms. In particular KE(’fZ)FQ()"P(R”) and KZ?(’fZ)FQO"p(R”) are
independent of the choice of p = {p;}52, € ®(R").

(R™)

In order to prove Lemma 5.3, we introduce weighted Lebesgue spaces,
Muckenhoupt’s A,, class and the extrapolation theorem. A non-negative and
locally integrable function is said to be a weight.

DEFINITION 5.4. Let w be a weight and p1 € (1,00) a constant. The
weighted Lebesgue space LE(R™) is defined by

LPH(R™) := {f is measurable : || f[| Lr1 gny < oo},

1/p1
e = ([ 1r@r ot )

Now we define Muckenhoupt’s A,, weights.

where

DEFINITION 5.5. The class of weights Ay, consists of all weights w satis-
fying w=t/P1=1) ¢ L (R™) and

p1—1
Ay, (w) :== sup L/ w(z) dx (L/ wl/(pll)(x)da?) < 0.
Q:cube |Q| Q |Q| Q

The next lemma is the extrapolation theorem due to Cruz-Uribe,
Fiorenza, Martell and Pérez (]2, Corollary 1.11]). They have proved the
boundedness of many important operators on variable Lebesgue spaces by
applying the result, provided that M is bounded.

LEMMA 5.6. Let p(-) € B(R™) and A be a family of ordered pairs of non-
negative and measurable functions (f,g). Suppose that there exists a constant
p1 € (1,p=) such that for all w € A,, and all (f,g) € A with f € LE}(R™),

”f”Lpl(R") <C ||g||Lﬁ,1(]R”)a

where C' > 0 is a constant depending only on n, p1 and Ap, (w). Then it
follows that for all (f,g) € A such that f € LPC)(R™),

”f”LP(‘)(]R") < Hg”LP(‘)(R")v
where C' > 0 is a constant independent of (f,g).

We also describe the duality of Herz spaces with variable exponent. The
duality for usual Herz spaces is proved in [7]. By virtue of Lemma 3.5, the
same argument as [7] leads the next lemma.
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LEMMA 5.7. Suppose a € R, p(-) € P(R™) and 1 < q < oo. Then
KZ‘(’?) (R™) coincides with the dual space of KZ;(O”)Z (R™). Moreover the quasi-
norm ||f||Ka(,q)(R.,L) is equivalent to the value

sw{| [ st as

The same duality is also true for K% (R").

: - ’ < .
ooty < 1}

PrROOF OF LEMMA 5.3. Define

1/2
2

oo
Tf = | 3 |F e
j=0
Take a constant exponent p; € (1,00) and w € A, arbitrarily. By virtue of
[16], we have
C U N mr@ny S NTFller @ny < C I pzr gn
for all f € C2°(R™). Using Lemma 5.6, we get
(5.1) C U rcr@ny S NITF o @ny < CIF Lo ) @n)-

Because C2°(R") is dense in LP(*)(R™), (5.1) also holds for all f € LP()(R™).
On the other hand, the operator T satisfies size condition (4.2) (cf. [27, Proof
of Theorem 2.1]). Thus Theorem 4.1 leads the estimate

(5.2) T fllicos, @y < C WMoy ey

for all f € Ky (R™).
Next we show

||f||k§(v?)(Rn) <c ”TfHK;’('?)(]Rn)

for all f € Ks("_])(R"). By virtue of Theorem 4.6 and Lemma 5.7, it suffices
to prove

(5.3)

f(x)g(x) dx

R

<C ||Tf||K§("?)(]Rn)
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for all f, g € C(R™) with gl ;- < 1. Using the Plancherel formula
/()

(R™)
and the properties of {¢;}%2,, we obtain

f(x)g(x) dx
R

F(©)3(¢) ¢
R

oo

[ Y w0i©Y a@i i

=0

[ e0®F© e0l©) + 2190} a(6) de

+ [ e OHO ti1©) + 93O + e1a(€ () ds‘

=1

M

JCCIGRCICE RS

Ga) +Y

=0

/Rn 25(©)F(€)i-1()3(6) dg'

/ 9i(OFf(©)ei+1(99(6) dg' .

By the Cauchy—Schwarz inequality and generalized Holder inequality we have

I IRICHOMIE d&' = Y| F i@ el ds
=0 R™ =0 R™

(5.5) S P "
Applying (5.2), we get

(56) ”Tg”Kp—,‘(Xf;'(]Rn) S C ”g”K;?j“)'(R") § C

Combining (5.4), (5.5) and (5.6), we have (5.3). The non-homogeneous case
follows by the same argument. O

5.2. Characterizations of Herz—Sobolev spaces.
We need preparations in order to get equivalent norms of Herz—Sobolev
spaces with variable exponent. In this subsection we refer to [26,28].

THEOREM 5.8. Let d;j > 0, {€;}32, be a sequence of compact sets of
R™ defined by Q; := {z € R™ : |z| < d;} for each j € Ny, 0 < g < o0,
p(-) €PR), 0<r <p_ and —nr—26; < a < nr~18(r), where &y, 6(r) >0
are the constants appearing in (3.9) and (3.12). Suppose the following (I) or
(II).
(I) » =po, p(-) € B(R™) and p— < 2, where py € (1,p_) is the constant
appearing in Proposition 3.2.
(IT) p(-) satisfies (3.1) and (3.2) in Proposition 3.1.



HERZ-SOBOLEV SPACES WITH VARIABLE EXPONENT 491

Then there exists a constant C' > 0 such that

fit =8
(5_7) {gseuﬂgb W}j_ <C Hll{fj}jHé?||K§('_’J)(R")
—co|| g2

Bl ks rn)

for all sequences of functions {f;}32, satisfying H||{f]}]||€2HKa 1 (gny < OO
B

and supp f; C Q; for each j € Ny. The same inequality as (5. 7) also holds
for the non-homogeneous case.

PrOOF. Take {f;}52, satisfying (LF5 352 | < oo andsupp f; C

Ko ()
p(-)
Q; for each j € Ny arbitrarily. Denote g;(z) := fj(dj_lx). Because ¢;(§) =

dj"fj(dj«f) and supp g; C {|¢] < 1}, we get

lg;(z = )|

e <€ Mg D@

(5.8)

for a.e. x, & € R (cf. [26, p. 22]). By M(|f;|")(x) = M(lg;(d;-)|")(z) =
M(lg;)I")(djzx), (5.8) leads

[fi(z = &)

T S C MA@

Denote u,(-) := 77 1p(-). Note that 1 < 2/r < oo and —nd 7! < ra <
nd(r). Applying Corollary 4.5 we obtain

sup (- —¢
geR” 1 + 1+ (dyle)yn/m [
1|2

g n
Kot (R™)

< cf|{munmv}.

el @)
i, 1/r

= C[|{MULMY) ., Kool
1/r

< T

=~ C {f] } @2/T ra q/v(Rn)

i), ket (kn)

Namely we have proved (5.7). The non-homogeneous case is obtained by the
same argument as above. O



492 M. IZUKI

DEFINITION 5.9. Let L € No. AL(R") consists of all systems {p;}32, C
S(R™) of functions with compact supports such that

Cleshy) = suwp 2l > D70 ()]
V<L
+ osup (fofF + 275 Y ID(gs(27 ) (@)
@70, j€No <L
< Q0.

Note that ®(R™) C Ar(R") for all L € Ny. The next lemma is due to
(26, p. 53]. Let r > 0, L € N, {p;}525 € AL(R") and f € S'(R™). We define
the maximal function for each j € Ny,

y U i)
( . ) (cp]f)(m) T yseu]lgt 1+|2jy|n/r

LEMMA 5.10. Letr > 0, s € R and L € N such that L > |s|+3n/r+n+2.
Then there exists a constant C' > 0 such that

1/2
00 . 2
> (2 s (570
j=0 0<7<1
1/2
s 2
< C Oiup C {SDJ }j Z 2] SDJ
T )

for all {p;}52, € ®(R"), all {9]}32 € AL(R™) with 0 < 7 < 1, dll f €
S'(R™) and all x € R™.

Applying Lemma 5.10 and Theorem 5.8 with f; = F~! [gajf} and d; =

2912 we immediately obtain the following lemma.

LEMMA 5.11. Let 0 < ¢ < o0, p(-) € P(R"), 0 <7 < p_, —nr—2§; <
a < nr=14(r), where 81, 5(r) > 0 are the constants appearing in (3.9) and
(8.12), s € Ng and L € N with L > s+ 3n/r +n+ 2. Suppose (I) or (II) in
Theorem 5.8. Then there exists a constant C > 0 such that

) 1/2
> (2]'5 sup (sz:;-*f))
=0 0<T<1 )
Koty (R™)
(5.10) <C sup C{ej i) fllgoa poemn)
0<7T<1 p()72

for all p = {p;}32y € ®(R"), all {¢]}72y € AL(R") with 0 < 7 < 1 and
all f € K&’?)F;’W(R"). The same inequality as (5.10) also holds for the
non-homogeneous case.
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The next theorem is the Fourier multiplier theorem for Herz—Sobolev
spaces with variable exponent.

THEOREM 5.12. Let ¢ = {p;}72, € ®(R"), 0 < g < o0, p(-) € P(R"),
0<r<p_, —nr 25 <a<nr14(r), where d1, 5(r) > 0 are the constants
appearing in (3.9) and (8.12), s € Ng and L € N with L > s+ 3n/r + n+ 2.
Suppose (I) or (II) in Theorem 5.8. Then there exists a constant C > 0 such
that

(5.11) Hf—l [mf}

kg reany = O Wl o ey

for all {p;}72, € ®(R"), all m € C*(R") with m, < oo and dll f €
K;‘(’?)FQS"P(R”), where
my = sup sup (1+ |z[H)"V2|DYm(z)|.
lv|<LzeR™
The same inequality as (5.11) also holds for the non-homogeneous case.
A function m is said to be a Fourier multiplier for K;f(’f])F;"p(R") if (5.11)
holds for all f € K&’%F;"P(R").

PROOF. For all m € C*°(R") with my, < oo and all f € K*% F3'¥(R"),

p(-)" 2
we have
7 [,
1/2

> 17112

= | Xl [wr 7 [A]])
J=0 o

Kp(w‘)(]Rn)
1/2

o0

= (Xl [emd]]
=0 .

Kot (R™)
1/2

< {22 emn

=0 -
K:v(y‘)(Rn)
Because {p;m}52, € AL(R"), Lemma 5.11 leads
71 F . . .
|71 [mi] Hk;(,)F;WM < CCUpsmb) I licos pyee ey

IN

Cmy, Hf”f(;‘j‘(*?)F;""(R”) :

The non-homogeneous case follows by the same argument. O
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Now we have some equivalent norms of Herz—Sobolev spaces with variable
exponent.

THEOREM 5.13. Let ¢ = {p;}52, € ®(R"), 1 < g < o0, p(-) € P(R")

and a € R. Suppose the following (I) or (II).

M p(-) € B(RY), p_ < 2, (p/)- < 2 and —nmin{p;261,02} < a <
nmin{d(po)py ', 61,02}, where d1,52 > 0 and po € (1,p_) are the con-
stants appearing in (3.9), (3.11) and Proposition 3.2, respectively, and
d(po) > 0 appears in (3.12) with r = pg.

(IT) p(-) satisfies (3.1) and (3.2) in Proposition 3.1, and |a| < nmin{dy, d2}.
Then the following four values

11 s, wre enys > DYl ks emy
lv|=0,s
Wl mponys |77 [0+ 02727

o, q n
Ky ®R™)

are equivalent on K;(’?)WS(R”).
The same equivalence also holds for the non-homogeneous case.
In particular Hfllka(’q)FzS’*”(]R”) and ||f||Ka(,q)F2s,w(Rn) are independent of the
p(- p(-

choice of p = {p;}72, € ®(R").

REMARK 5.14. Theorem 5.13 is proved by Xu and Yang ([27,28]) for
constant p in the setting of Herz-type Triebel-Lizorkin spaces provided
—n/p<a<n/p.

PROOF. Below we denote I°f := F~! [(1 + |2[?)*/2f|. For every f €
K9 W*(R") it obviously follows that

p(+)
> IDY fll s mmy < I llcma e emy-
"yl:O,S

We also note that Theorem 4.6 shows the density of C2°(R™) in I.(;‘({ e (R™).
Thus we have only to prove

(5.12) ||Isf||K§('f1)(]Rn) < C ”f”l'(s('f’)F;'”’(]R") 5

(5.13) IF g ppe@ny < C Msfllgas @y

(514) ||f||K§(,?)Ws(Rn) < C ||Iéf||K;‘(’q)(]R”) ’

(5.15) Isfllgcon @ny < C > DYl s
"yl:O,S

for all f € C°(R™).
We write ¢f(z) = 27°(1 + |22)7%/2¢;(x). Then we see that ¢° :=
{¥31320 € AL(R™) for every L € N.
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e Proof of (5.12): By Lemma 5.3 we have
HIsfHK;(*?)(]Rn) <C ||Isf||k§(v?)pgvvs(ugn)

e HH{}‘*I e FLAY|

Qg n
Koty ®™)

e[l nestr s e,

K R
=C ”f“l'(s("?)F;'”’(]R”) :
e Proof of (5.13): We define (cpj)* f by (5.9) with r := pg if we suppose
(1), r := 1 if we suppose (IT). Using Lemmas 5.11 and 5.3 we obtain
7l o, ooy = s Ul poveqany

_ {25jf’1 [(1+le2)’5/2¢jf[lsf]]}j P

K20 (B)

=|||[{F* [(p;.‘}'[lsf]] ill,

<@ an}

J 1| e2

2 oL q
Ko9) (Rm)

Kooty ®)
< C sfllgea poes @ny < C Msfllgos @) -

e Proof of (5.14): Note that (1 + |2|?)~%/? is a Fourier multiplier for
K;(’?)FQO"P(R”) for every |y| < s. By virtue of Lemma 5.3 and Theorem

5.12, we get
sy = Y 00 g <€ X 177 [ s e
[v]<s [v|<s
=C > Hf‘ {g;’y(]_ +|zf2) .]-‘[Isf]} ‘ O
2 oS (R
<C Z ”Isf”}'{s(’?)on"P(R”) <C ||Isf||K§(’7)(R") :
lvI<s

e Proof of (5.15): We can take Fourier multipliers p;(x),..., pn(x) for

Ko‘(q)FO #(R™) such that

n

G(2) =1+ > pu(@)an® = C (1 +]a]?)?
h=1
(see [26, p. 60]). Define H(z) := (1 + || 2)s/2G(z)~", then H(z) is
also a Fourier multiplier for K ’q FO #(R™). Therefore using Lemma
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5.3 and Theorem 5.12 again, we obtain

Isfll weva mon
s fll oo )

S O lLsfllgas poemn)
J— 71 . 71 ;
iAo e G 1) oo
< cl|F[ef]|,
[ }K;’?)FS’*”(R”)
n
< C c0a g0 (R - °f
< {HfHKP(‘)F?OLP(R,)‘F}; F [Ph(I)-ﬁh f:| K;’%FQ{)W(RR)}
< c{nfnkw F;,Wﬁi F [Ph@)f{aassfnw }
P h=1 h Ko Fy * R
< c{llfll Ty fH }
hS Kol F? (Rm) |
pl)72 el | KEE0 Kyt F3 e (R™)
<

C > D fllicss ey -

[v|=0,s

Consequently we have proved the theorem for K;(’?)WS(R”). The case of

K ;‘(v?)WS(Rn) is proved by the same argument. 0

6. WAVELET CHARACTERIZATION OF HERZ—SOBOLEV SPACES

Based on the fundamental wavelet theory (cf. [21]), we can construct
functions ¢, !, ¥2, ..., ? ~1 satisfying the following.

1. p, ¥l € S(R") for every I =1, 2,...,2" — 1.
2. The sequence

{eom ¥y 1 1=1,2,...,2" =1, €No, k € Z"}

forms an orthonormal basis in L?(R").
3. Jan 7Yl (x)dz =0 for all v € Ng™ and every [ =1, 2,...,2" — 1.
4. ¢ is real-valued and band-limited with supp ¢ C [—%TF, %ﬂn.
5. Each ¢! is real-valued and band-limited with supp 1/31 C {f e R” :

a~' < |¢| < a} for some constant a > 5T¥™.

The function ¢ is called the Meyer scaling function and each v! is called the
Meyer wavelet in terms of multiresolution analysis.
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Using the Meyer scaling function ¢ and the Meyer wavelets {1 : [ =
1,2,...,2™ — 1} we define

1/2
Tof = <Z|<fa<PO,k>XO,k|2>

keZn
1/2
2"—1 oo ) 9
nf o= (33 2l ]
=1 j=0kezZn
Uf = Iof+1I1f,

where
Xk = 27"2x0, 0y Qi = H [277kp, 279 (ky, + 1)) (k= (k1,....kn) € Z"),
h=1

and (f,g) denotes the L*-inner product, namely (f,g) := [, f( g(x) da.
In terms of the square function U f, we have the followmg Wavelet char-
acterization of Herz—Sobolev spaces with variable exponent.

THEOREM 6.1. Let s € Ny, 1 < ¢ < o0, p(-) € P(R") and o € R.
Suppose the following (I) or (II).
@M p(-) € BR™), p_ <2, (p')_ <2 and |a| < nmin{d(po)py ", py 201,02},
where 61, 62 > 0 and pg € (1,p_) are the constants appearing in (3.9),
(8.11) and Proposition 3.2, respectively, and §(po) > 0 appears in
(8.12) with r = pg.
(IT) p(-) satisfies (3.1) and (3.2) in Proposition 3.1, and |a| <nmin{dy, d2}.
Then we have that for all f € K;f(’f])WS(R”),

(6.1) Cil||f||K‘*v? wen) S US| o @ny < ClF s we@n)-

Additionally if a satisfies a < n((p )) then the same wavelet characterization
as (6.1) also holds for Kg"_] Ws(R™).

REMARK 6.2. Before the proof, we have to check that the wavelet co-
efficients {(f, o), (f, §k>}l,j r are well-defined in Theorem 6.1. We first
consider the homogeneous case. If S(R") ¢ K,* o () (R”) is true, then

L2001 < Ol oyl gy < 0

holds for all f € K;(,t_z Ws(R™) and all ¢ € S(R™). Thus we have only to
show that S(R™) C f( ‘)1( Take g € S(R™) arbitrarily and denote
)

mo = Eg,;f. Because |g( | <

").
C (1 + |z|)~¥ for any positive number K >
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—aq’ +nmg, we get

”g XR, ”Lp'( ) (Rn < C (1 + 2l71)7K HXRL HLP'( (R -
Hence we obtain the estimate
ql

g
Kp/( ,’3 (R™)

9]l

(o]
< C Y 274+ 2) T e o gy

l=—00
0o 0
< C ZQ—an’(1+2l—1)—K2lnmg+C Z 2—alq’(1+2l—1)—K2lnmgl
=1 l=—00
0o 0
< C ZQI(faq'JrnmofK) +C Z 21(*aq/+nm51).
=1 l=—00

By virtue of K > —aq’ + nmg and a < both of the two series are finite.

n
q'mo’
Therefore we have proved S(R") C K];(a‘)l (R™).

In the non-homogeneous case, the similar calculations imply S(R™) C

—a,q' . .
Kp,( s (R™) without the assumption a < q’Z@o'

We will prove Theorem 6.1 for the non-homogeneous case while the homo-

geneous case is similar. In order to prove the theorem, we need the following
two lemmas.

LEMMA 6.3. Let v € No™ with |y| < s. Then we have that for all f €
K50 W (R™),
Zo(D"f)(z) < C M f(x).
LEMMA 6.4. Let N € Ny and v € No™ such that |y| < N. Then we have
that for all f € K;(’?)WN_M(R"),

1/2

n
2" -1 oo 2

> P (D
=1 j=0kezZr .
Kp(ﬂ)(Rn)

< Cllfllxeys wr=im @)

PRrROOF OF LEMMA 6.3. We see that

1/2
( 31 <Dw>o,k>><o,k<m>|2>

kezn

Zo(D” f)(x)

IN

/n > Ixor(@) (D)o kW) 1£(y)] dy.

kezn
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By virtue of [13, Lemma 2.8], we can take a bounded and radial decreasing
function H € L'(R") so that

> Ixor(@) (D @)or(y) < H(z —y).

kezn
In addition, we get
L A@=ylf)ldy < CM[(z)
(cf. [24, p. 63]). Therefore we have proved the lemma. O

PROOF OF LEMMA 6.4. Denote <Z)§(y) = 20 (DVYl)(—27y) for j € Z and
l=1,2,...,2" — 1. Then we have

Z |(f, (DY) 5 0) X5k ()

| 2

kezr
2

= Z (z)2‘j"/2q§§-(2_jk—z) dz| xjr(z)?

keZ” R?L

2

= Z “155 * f(2 jk)| XQj,k(x)

kezr

2

< > sup [@hx f(W)] X, (@)

kezn YEQik

2

< sup ¢k fa - 2)|

|z]<277/n

. B 2
< sup ‘(ZS] * f(l' Z)‘ . sup (1 + |2jz|n/r)2
- (1 + |2] |)n/r -
|z|<2-9/n z |z|<2-9y/n

< C(Flg5l ),

where f[qbé-]*f is defined by (5.9) with r := pg if we suppose (I), r := 1 if we
suppose (II). Hence by virtue of Lemma 5.11 and Theorem 5.12, we get

1/2
2" -1 oo . 2
35S [ 0
I=1 j=0 keZn K29 (R™)
p(-)
o . , 1/2
< Y| SprhE |
=1 || \j=0 o("
K:v(‘)(]Rn)

< Cj”f”K&ﬂﬂVN*WKRny
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PROOF OF THEOREM 6.1. By virtue of Lemma 6.3, we obtain Zy f(x) <
CMf(z) for all f e K;f(’f])Ws(R"). Because p(-) € B(R™), we get

IZofll o, mey < C I fllieays @y < C IFll s e ny -

Additionally if we apply Lemma 6.4 with N = s and v = (0,...,0), then we
immediately obtain

IZ2fllk= s gy < C F o e oy -
Therefore we have
14 flixes @y < 1o fllrays ey + T2 fllos @y < C I Fllgeos wre gy -
Next we prove
(6.2) Hf”K:‘(’?)WS(]R") <C ||uf||K§(’?)(R") :

We follow a duality argument (cf. [5, Chapter 6]) applying Lemma 5.7.

Note that C°(R™) is dense in KZ‘(’.)WS(R") and in K];(a_")l (R™) by virtue
of Theorem 4.6. Hence it suffices to show that for all f, g € C(R") with

HgHK*“v‘I’(Rn) <1and all v € Ng™ with |y| <,
()

DY f(x)g(x) dx
R

< ClUfllgos @n) -

Because f, D7g € L?(R"), we obtain the wavelet expansions

2" -1 oo
fo= D (feoreort+ DD > (Fuh vy,
kezn I=1 j=0kezn
2"—1 oo
D' = Y (D'g.pordpor+ D Y, > (DVg, 0wl
kezn I=1 j=0 kezn

Thus we have

| D i@ta) ds

f(@)D7g(x) d
R™

2" —1 oo

35T STk Dg et )

I=1 j=0keZn

(6.3) < | > (freor)(D7g,%0k)

kezn
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Now we estimate the first sum. Using the Cauchy—Schwarz inequality and
the generalized Holder inequality, we get

Z <fa <p0,k><D’Yg7(p0,k> < Z |<fa @O,k><D’Y‘g7§00,k>| / XO,k(x) dx
kezn kezn R~

< [ nr@n® @ d

<

C 105 s e IE(D79) iy
Applying Lemma 6.3, we see that
’Y ’ < ’ < ’ <
12007 0) | gy < € 1Ml ety < € N9l gy <

Therefore we have the estimate

(6.4) Z (f, 0,k)(D7 9, ¢o,k)

keZ?L

< ClZofliges n) -

Next we estimate the second sum of (6.3). Using the Cauchy—Schwarz
inequality and the generalized Holder inequality again, we obtain

"1 oo
Z SO LDV )
=1

j=0 kezZm

2" -1 oo
< XYY vl [ ks
I=1 j=0 keZ» Rn
2"—1 oo
= [ X3 [(ehabvalo)e. 2D xal)] de
" =1 j=0kezn
2" -1 oo
= / Z Z |2js<f7w§,k>Xj,k( ) <ga (DWJ )]k X]k ‘ dx
R™ =1 j=0 kezn
2" -1 oo 1/2
< / L@ [ S 3 o (0@ | de
R? I=1 j=0kezZn
< C ”IIf”K;’('?)(]Rn)
2" —1 oo 1/2
<A ST ST g (07 xa (@)
=1 j=0kezn

K ’

AQ

7 @)
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Thus by virtue of Lemma 6.4 we get

2"—1 oo

>3 S HEND 00| < CIT e o 19l

=1 j=0 keZn

(6.5) < C ||Ilf||K;‘(f1)(]Rn)-
Combing (6.4) and (6.5), we obtain (6.2).
Consequently we have proved the theorem. O

REMARK 6.5. In [11] a wavelet characterization of different type of
KZ‘(’%WS(R”) without the restriction on « in Theorem 6.1 is given. Let

seN, 1<qg<oo p(-)€ BR") and o € R. Using a C*T!-smooth and
compactly supported scaling function ¢ of a multiresolution analysis and an
associated wavelets {1! : [ = 1,2,...,2" — 1} it was proved that the quasi-
norm ||f||K§(,z_z)Ws(Rn) is equivalent to

1/2
/2 fon 1 o /

S emxanl ] H DD 1275 (f, 0 ) x| :

kezn I=1 j=J keZ» K )
p(-)
where J is a sufficiently large integer depending only on s. In order to prove
above he does not use boundedness of sublinear operators but local properties
of wavelets. But this argument is not applicable to the homogeneous case.
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