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CONTINUITY OF THE POLAR DECOMPOSITION FOR
UNBOUNDED OPERATORS ON HILBERT C*-MODULES
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Shahrood University of Technology, Iran

ABSTRACT. For unbounded operators t, s between Hilbert C*-modules
which admit the polar decompositions V||, W|s|, respectively, we obtain
an explicit upper bound estimate for the gap between ¢t and s in terms of
the norm of the bounded operators V — W, Cjy| — C|5 and Cjg=| — Cjsx|,
where Cjy and C| are the Cayley transforms of |t| and |s|. The result
are used to drive a criterion for continuity of the polar decomposition for
unbounded operators between Hilbert C*-modules.

1. INTRODUCTION

A Hilbert C*-module is an object like a Hilbert space except that the
inner product is not scalar-valued, but takes its values in a C*-algebra of
coefficients. Some fundamental properties of Hilbert spaces like Pythagoras’
equality, self-duality, and even decomposition into orthogonal complements
must be given up. They play an important role in the modern theory of
C*-algebras and the study of locally compact quantum groups.

A (left) pre-Hilbert C*-module over an arbitrary C*-algebra A is a left
A-module E equipped with an A-valued inner product (-,-) : E x E — A,
which is A-linear in the first variable and has the properties:

(x,y) = {y,x)", (x,z) >0 with equality if and only if x = 0.

A pre-Hilbert A-module F is called a Hilbert A-module if E is a Banach
space with respect to the norm ||z|| = ||(x, )||*/2. A Hilbert A-submodule F
of a Hilbert A-module F is orthogonally complemented if E and its orthogonal
complement E+ := {y € F: (z,y) =0 for allz € E} yield F = E® E+. For
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the basic theory of Hilbert C*-modules we refer to the book by E. C. Lance
[10] and the papers [4,11].

Throughout the present paper we assume A to be an arbitrary C*-algebra
(not necessarily unital). We deal with bounded and unbounded operators
at the same time, so we denote bounded operators by capital letters and
unbounded operators by small letters. We use the notations Dom(.), Ker(.)
and Ran(.) for domain, kernel and range of operators, respectively.

We denote by B(E, F') the set of all adjointable operators from a Hilbert
A-module F to another Hilbert A-module F, i.e., of all maps T : £ — F
such that there exists T* : F' — E with the property (T'z,y) = (x,T*y) for
allz € E, y € F. B(E,E) is abbreviated by B(E).

The gap topology is induced by the metric d(t, s) = || Pgu) — Pa(s)|| where
Pg(ty and Pg(s) are projections onto the graphs of densely defined closed
operators t, s, respectively. The gap topology has been studied systematically
in the book [8] and the papers [3,9,12,14] and references therein.

An unbounded regular operator between Hilbert C*-modules is an ana-
logue of a closed operator on a Hilbert space. A closed and densely defined
operator t from a Hilbert C*-module E to another Hilbert C*-module F is
called regular if its adjoint ¢* is also densely defined and if the range of (1+t*¢)
is dense in E. The author and M. Frank in [6] have given necessary and
sufficient conditions for unbounded regular operators to admit polar decom-
position. Suppose V|t| and W]|s| are the polar decompositions of unbounded
regular operators ¢ and s, and d denotes the gap distance between ¢t and s. In
the present paper we give an explicit upper bound for d(t, s) in terms of the
quantities [|Cj¢| —Cjg(| ; [|Cjex| — Cjs=|l and ||V —W]|, in which Cjy, C|5| are the
Cayley transforms of selfadjoint regular operators |¢|, |s|, respectively. This
result enables us to find a criterion for continuity of the polar decomposition
for unbounded regular operators. The author believes that the final results,
i.e., Theorem 3.2 and Corollary 3.3 can be regarded as the new results even
in the case of Hilbert spaces.

2. PRELIMINARIES

Unbounded regular operators were first introduced by Baaj and Julg in
[2], later they were studied more by Woronowicz in [16], while investigating
noncompact quantum groups. Suppose F, F are Hilbert 4-modules, an A4-
linear operator ¢t : Dom(t) C E — F is said to be regular if
(i) tis closed and densely defined with domain Dom(t),
(i) its adjoint ¢* is also densely defined, and
(iii) the range of 1 4 t*t is dense in F.
Note that if we set A = C, i.e., if we take E, I to be Hilbert spaces, then
this is exactly the definition of a densely defined closed operator, except that
in that case, both the second and the third condition follow from the first
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one. We denote the set of all regular operators from E to F by R(E,F). In
case E = F, R(E, FE) is denoted by R(E). If t is regular then ¢* and t*t are
regular, and ¢ = t**. Define Q; := (1 4+ t*t)7'/2, Ry := (1 +t*t)™! = Q? and
Fy = t(1+t*t)~ Y2 = tQy, then Ran(Q;) = Dom(t), 0 < Q; < 1in B(FE) and
F, € B(E,F) ([10, (10.4)]). The bounded operator F; is called the bounded
transform of the regular operator t. The map t — F; defines a bijection

R(E,F)—{T € B(E,F):|T|| <1 and Ran(l—T*T) is dense in F'}.
This map is adjoint-preserving, i.e., F;" = Fy«, cf. [10, Theorem 10.4]. In
particular, we have ||[Fy|| < 1 and tR; = FiQ; € B(E, F') which imply |[tR:|| =
£ Q| < [[F2[[[|Qell < 1.

COROLLARY 2.1. Suppose t : Dom(t) C E — F is an unbounded regular
operator, then FyFy' =1 — R} and (tR)* = t* Ry~

PROOF. The first equality follows from the fact that Q- = (1—F,F;«)'/2.
Since F} = Fj«, we have (tQ:)* = t*Qs. Applying [6, Remark 2.2] to the
regular operator t*, we obtain t*Q%. = Q;t*Q~. We therefore have (tR;)* =
(tQ: Q)" = QF (tQr)* = Qut*Qu = 1*QF = t* Ry a

Suppose t € R(E, F), the absolute value of ¢ is defined by [t| := (t*t)'/?,
then |t| is a positive regular operator and satisfies Dom(|t|) = Dom(t). Basic
definitions and a few simple facts about regular operators on Hilbert C*-
modules can be found in [10, chapters 9 and 10], and the papers [5,16] with
details.

Let t € R(E,F) then E® F = G(t)® V(G(t*)), where V € B(E® F,F &
E) is defined by V(x,y) = (y,—x), cf. [10, Theorem 9.3]. The orthogonal
projection Pg) : E® F — E @ F can be described through the following
matrix

R, t*Ry.
(2.1) Powy = <tht L ét*) €B(E®F).

To see this, just use [10, (9.7)] and Corollary 2.1.
DEFINITION 2.2. Lett,s € R(E,F) then the gap metric on the space of
all unbounded regular operators is defined by d(t,s) = ||Pgw) — Pas)l| where

Pe@y and Pg(s) are orthogonal projections onto G(t) and G(s), respectively.
The topology induced by this metric is called gap topology.

Let E, F be two Hilbert A-modules and operators ¢, s be in R(E, F). An
equivalent picture of the gap metric is now definable by using (2.1) as well
as the fact that (¢R;)* = t*Ry». Indeed, the following metric, which is again
denoted by d, is uniformly equivalent to the gap metric
(2.2) d(t,s) :=sup{ || Ry — Rs||, [[Re» — Rs- ||, [[tR: — sRs]| }.

This fact follows from (2.1) and [14, Remark 1.1]. The metric (2.2) shows that
the gap metric is stable under taking adjoint operation, i.e., d(t, s) = d(t*, s*).
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PROPOSITION 2.3. Suppose d is the gap metric and T,S are bounded
adjointable operators in B(E,F). Then

[+ T @+ ISHIHIT = S
< d(T,S) < max {[|T]| + [[S[l, 1+ SIS+ ITH} T = S
In particular, the metric which is given by the usual norm of bounded operator

and the gap metric d are equivalent on the space of all bounded adjointable
operators.

PRrOOF. In view of the equality Ry — Rs = Ry (S*S — T*T) Rg and the
facts that ||Rr|| <1 and ||Rs|| < 1, we have

|Rr — Rsl| < [[Rel[|S™S =TT || Rs]|
< 5T =T) + (5" =TT
< ASTIHES =T+ 1S* = T[Tl
= (T +1sHIT =Sl
ITRr = SRs|| = |(T' = S)Rr + S(Rr — Rs)
< T =S+ 1SI1Rr - Rs||
< T =SIA+ISTAST+ITI) -

Similarly || Ry~ — Rs«|| < (|| T||+1|S]]) |[T—S||- The above inequalities and the
expression (2.2) imply that d(T,S) < My ||T — S||, where My = max { |T|| +
IS, L4+ ISI(IS| + IT)}. We know that T — S = (T — S)Ry R;,* and
(T —S)Rr =TRr — SRs + S(Rs — Rr), so we obtain

IT =8| < (T~ 8)Rr| IR
< (A+|TIPINT - S)Re|
< (L+|TI*) (ITRr = SRs]| + ||S|[[|Rs — Rrl|)
< (L+|TI*) (T, S) + 1S d(T, 5))
< (LTI L+ IS]) d(T, ).
Therefore M||T — S| < d(T, S), for My = [(1 + ||T]|?)(1 + ||S]))] 1. O

Following [12], the space of all bounded adjointable operators between
Hilbert C*-modules is an open dense subset of the space of all unbounded
regular operators with respect to the gap topology. As we stated in Propo-
sition 2.3, the restriction of the gap topology on the space of all bounded
adjointable operators is equivalent with the topology which is generated by
the usual operator norm. However, the uniform structures induced by the
gap metric and by the operator norm on the space of bounded adjointable
operators are different. This follows from the fact that the metric which is
given by the usual norm of bounded operator is complete while the gap metric
on the set of bounded adjointable operators is not complete.
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REMARK 2.4. Let E be a Hilbert A-module and SR(E) be the set of all
selfadjoint elements of R(E). Suppose t € SR(E), then [10, Lemmata 9.7,
9.8] imply that the operators ¢t & i are injective and surjective, in addition

Ci: SR(E) — C={U € B(E) : U is unitary and 1 — U has dense range},
t o= Co=(t—i)(t+4)?
is a bijection which is called the Cayley transform of ¢, cf. [10, Theorem

10.5]. The Cayley transform C; can be written as C; = 1 — 2i(t 4 i)~". Thus
(t+i)"t = (s+1i)"' =%(C, —C,), for each t, s € SR(E).

PROPOSITION 2.5. On the space SR(E) the gap metric is uniformly equiv-
alent to the metric d given by

1
(2.3) d(t,s)=||(t+3) ' —(s+4i) | = 5lICe = Cill, for all ¢, s € SR(E).

PROOF. Suppose t, s are selfadjoint regular operators on E then the gap
metric can be written as d(t, s) = sup{||R:— Rs||, ||[tRt—sRs||} . The operators

t £+ ¢ are bijections and so
24 (t—d) t=@t+i)(*+1) =tR + iRy,
' (t4+i) L=t —i)(t*+1) ' =tR, — iR,

which imply

R, = %((t —i)7 = (t+0)7),
(2.5) 1Z
tRy = 5((75 — i) (t+a)7.

On the other hand every bounded adjointable operator and its adjoint oper-
ator have the same norm, use this fact and the equalities (2.4) and (2.5), we
can infer that

(2.6) d(t,s) < d(t,s) < d(t,s).

N | =

3. THE POLAR DECOMPOSITION AND CONTINUITY

We begin this section with the notification that bounded and unbounded
module maps between Hilbert C*-modules are generally not decomposable
into their polar forms, cf. [6,15]. However, the author and M. Frank in
[6, Theorem 3.1] gave a necessary and sufficient condition.

THEOREM 3.1. Suppose E,F are Hilbert A-modules and t € R(E,F)
denotes a regular operator then the following conditions are equivalent:

(i) t has a unique polar decomposition t = V|t|, where V € B(E, F) is

a partial isometry for which Ker(V) = Ker(t), Ker(V*) = Ker(t*),

Ran(V) = Ran(t) and Ran(V*) = Ran(|t|) = Ran(t*).
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(ii) E = Ker(|t|) @ Ran(|t|) and F = Ker(t*) & Ran(t).
In this situation, V*V|t| = [t|, V*t = |t| and VV*t =1t.

The above theorem and [5, Proposition 2.2] show that regular operators
with closed range have always polar decomposition. Recall that an operator
Vin B(E, F) is a partial isometry if Fo = Ran(V) is complemented in F' and
there exists a complemented submodule Ey of E such that V is isometric from
Eo onto Fy and V(Eg) = 0. Like the general theory of Hilbert spaces, V is a
partial isometry if and only if V*V is a projection in B(E), if and only if VV*
is a projection in B(F), if and only if VV*V =V, if and only if V*VV* = V*
(see e.g. [10,13]).

THEOREM 3.2. Let t,s € R(E,F) have the unige polar decompositions
t =VIt|, s = W]s|, respectively. Then

(i) d(t,s) < ||V =W+ 3Cpu = Cpll + 51 Cle=| — Cpsvyll, and
(ii) 1| Cep = Cisll < 4d(t, s) + 4[]V — W

PROOF. Suppose V[t|, W|s| are the polar decomposition of regular oper-
ators t,s. Since Ry = (1+t*t)~' = (1 +[t[*)~' = Ry and Ry = Ry, we
have ||R; — Rl = ||Rjy) — Rgll < d(|t],|s]). Analogously, |[Ry — Re«|| =
| Rjp=) — Rys=|ll < d(]t*],]s*]). The equality tR; — sRy =V ([t|Rpy) — |s|Rs|) +
(V — W) |s| R}, together with the facts that ||V| <1 and |||s|R 4|l < 1 imply
that

[tRe — sRs|l - < VI [E1Rp — Is[Risy | + 1V = W [ 3[Ry |
< wladl, [s)) + [V =Wl
< d(fe] [s]) + [V =W
In view of (2.3) and (2.6), the preceding inequalities imply

At,) = supl IRy~ Ryl IR — Boell B, — sl
IV = W+ d(lt], Is]) + d(1£°],]s7])

1 1
IV =WI+ 5 1€t = Cpsill + 5 [1Cpe=y = o=yl

IN

IN

This proves (i).
To prove (ii) we note for V*t = |t| and W*s = |s| the identities
[t| Ry — |s|Rjs| = VtR, — W*sR, = V*(tRy — sR.) + (V' — W*)sR,.
Consequently,
e Ry = [sI R | < [VEIIER: — sRs|| + [[V* = W[ || sEs |
< vrldds) + v = wr|
< dt,s)+||V-W|.
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Since, ||R‘t| — R|5‘|| = |R: — R|| < d(t,s) and ||C|t‘ —C|5‘|| = 26?(|t|, Is]) <
4d(Jt],|s|) we have
[Cep = Cafll < 4d([t],Is]) = dsup{ [[R — Rys/ll, [I [t|R)e) — s[RI }
4d(t, s) + 4[|V —W|.

IN

O

COROLLARY 3.3. Supposet,t, € R(E,F), for eachn € N. Suppose V|t| is
the polar decomposition of t, and for each n, V,|t,| is the polar decomposition
of tn.

() If Vo=V =0, [[Cr, — Clgll = 0 and || Cpz) — Ceil| — 0 as
n — +o0o, then t, — t in the gap topology.

(ii) If |V — V|| — 0 and d(t,,t) — 0 as n — 400, then Cp,,| — Cjy in
the norm topology.

Recall that a C*-algebra of compact operators is a cp-direct sum of ele-
mentary C*-algebras K(H;) of all compact operators acting on Hilbert spaces
H;, ie€l,ie, A= co-DicK(H;), cf. [1, Theorem 1.4.5]. If A is an arbitrary
C*-algebra of compact operators then for every pair of Hilbert A-modules
E, F, every densely defined closed operator ¢t : Dom(t) C E — F' is automati-
cally regular and has polar decomposition, cf. [5-7]. These facts enable us to
reformulate Theorem 3.2 and Corollary 3.3 in terms of densely defined closed
operators on Hilbert C*-modules over C*-algebras of compact operators, or
in terms of densely defined closed operators on Hilbert spaces.
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